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Abstract. Various approaches to explaining predictions of black box
models have been proposed, including model-agnostic techniques that
measure feature importance (or effect) by presenting modified test in-
stances to the underlying black-box model. These modifications rely on
choosing feature values from the complete range of observed values. How-
ever, when applying machine learning algorithms to the task of forecast-
ing from multivariate time-series, it is suggested that the temporal aspect
should be taken into account when analyzing the feature effect. A mod-
ification of individual conditional expectation (ICE) plots is proposed,
called ICE-T plots, which displays the prediction change for temporally
ordered feature values. Results are presented from a case study on pre-
dicting the Swedish gross domestic product (GDP) based on a compre-
hensive set of indicator and prognostic variables. The effect of calculating
feature effect with and without temporal constraints is demonstrated, as
well as the impact of transformations and forecast horizons on what fea-
tures are found to have a large effect, and the use of ICE-T plots as a
complement to ICE plots.
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1 Introduction

Machine learning for time series analysis has received significant attention over
the years, in particular classification of (univariate or multivariate) series, see
e.g., [8]. The task of forecasting, i.e., predicting how the time series will extend
beyond the latest observed time point, rather than labeling the time series, has
also received some attention within the machine learning community, with work
in the area dating back several decades, see e.g., [4].

In a recent study [7], researchers at the International Monetary Fund (IMF)
investigated the use of machine learning for multivariate time series forecasting
of the gross domestic product (GDP) one quarter and four quarters of a year
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ahead, respectively, for a number of countries, where macroeconomical variables
and previous outcome (GDP) observed over a few decades were used to predict
the future GDP change. It was found that the machine learning models not
only outperformed traditional statistical techniques, but also IMF’s own World
Economic Outlook (WEO) forecasts. However, the model with the strongest
predictive performance consisted of an ensemble produced by the Super Learner
[9], i.e., effectively a black-box model, and in the discussion of future work, the
researchers consequently pointed out the need for methods that are able ”to
unbox and interpret machine learning models to provide explanation for their
outputs, and help understand the differences in forecast performance across a
wide-range of model and expert-based forecasts”.

In this study, we will consider the task of forecasting the GDP of Sweden,
a country not included in IMF’s original study, and investigate the application
of techniques for explaining predictions, by analyzing the impact each feature
has on predictions of the underlying (black-box) model. In the standard ma-
chine learning setting, where a model is trained from a set of examples that is
assumed to be independently sampled according to some fixed but unknown dis-
tribution, the effect (or importance) of a feature with respect to the model, may
be estimated by measuring how the predictive performance (or the predictions)
change when modifying the values of the features for a set of examples. Such
a procedure was proposed in [3], which aimed for explaining random forests by
providing estimates of the variable importance, measured by the performance
degradation when randomly permuting the values for each feature in turn. The
procedure exploited the fact that the performance of random forests (like any
model generated by bagging) can be estimated using out-of-bag predictions, but
the procedure may be straightforwardly applied also to other models, if a sep-
arate dataset is used to measure performance degradation. Another procedure
for investigating the impact of features on the model is the partial dependency
plot (PDP), which was proposed in [5]. Rather than measuring the effect on
predictive performance, such a plot shows the output of the (black-box) model
for possible values of a selected feature (or subset of features), averaged over a
sample of examples for which values for the selected feature are varied, while
keeping the values for the non-selected features unchanged. It should be noted
that both variable importance and PDPs, as calculated by the above procedures,
estimate the impact on a set of examples, rather than estimating the effect for a
specific prediction. However, in a typical forecasting scenario, we will update or
generate a new model for each new observation in the series, and there will hence
not be a single (black-box) model used to make the predictions, but a sequence
of models. Moreover, we are not mainly interested in the general properties of
these models, but rather in features affecting the specific prediction for which
each model is used.3 Hence, rather than trying to characterize global properties

3 Each model in the sequence is assumed to be used for making only one prediction,
relative to some specified time-point, i.e., the forecast horizon. In case predictions
for multiple future time-points are needed, a separate model is assumed for each
horizon.
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of each model, we are interested in properties relating to the specific prediction,
for which the model is used. The individual conditional expectation (ICE) plot
[6], is an adaptation of PDP for individual examples, which instead of averaging
over a set of examples, calculates and displays the effect of individual feature val-
ues on the resulting prediction for a specific instance. However, similar to PDPs,
ICE plots display the predictions as a graph over all possible feature values for
the selected feature(s) vs. the resulting prediction, and applying this directly to
forecasting models trained from time-series means that the temporal dimension
is lost. In this work, we propose a complementary visualization, called the ICE
Temporal (ICE-T) plot, which displays the prediction changes for temporally
ordered feature values.

In the next section, we describe the various approaches to explaining pre-
dictions by feature effects in more detail, including the novel ICE-T plot. In
Section 3, we describe the considered prediction task and dataset together with
the experimental setup and present findings from the empirical investigation.
Finally, in Section 5, we summarize the main conclusions and outline directions
for future research.

2 Calculating Feature effect

In the following, we will assume that we have an ordered set X ∈ RN×D of N
objects with D features, and an ordered set of labels Y ∈ RN . Let Xi,j denote
the element at row i and column j in the matrix X, and Yi denote the ith element
of the vector Y . Let Xi,: = (Xi,1, . . . , Xi,D) denote the ith row (object) of X,
Xa:b denote the sequence of rows (Xa,:, . . . , Xb,:), X:,i = (X1,i, . . . , XN,i) denote
the ith column of X, and Ya:b denote the sequence of elements (Ya, . . . , Yb).
Let u(x = (x1, . . . , xD), i, v) = x′ = (x1, . . . , xi−1, v, xi+1, . . . , xD), i.e., given an
object x ∈ RD, the function returns an updated object x′ ∈ RD where the ith
feature value xi has been replaced by the value v.

We will moreover assume that we have an underlying (black-box) model M ,
such that given an object x ∈ RD, it returns a (predicted) label ŷ = M(x) ∈ R.

Given an object x ∈ RD, a set of values V and a model M , the feature effect
FE on feature i, is defined as:

FE(x,M, i, V ) = M(x)−
∑

v∈V M(u(x, i, v))

|V |
(1)

The above function hence calculates the difference between the original pre-
diction for the object x and the average prediction from updating the object on
feature i with values from V .

In case V = X:,i for some random sample X drawn independently from the
same distribution as the training set that was used to construct M , then FE
provides an estimate of the expected prediction change relative to this distribu-
tion (and feature). However, as we are here primarily interested in understanding
what effect different features have on a specific prediction, rather than provid-
ing an unbiased estimate of the expected change for unseen examples, we will,
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as commonly done, allow the feature effect to be estimated with respect to the
training (or any other) set. It should be noted that the feature effect is in con-
trast to variable (or feature) importance, not defined in relation to the labels
(Y ), but only considers the average change of the prediction.

When producing PDP [5] plots, the predictions are averaged over multiple
objects, which in turn are updated with respect the full range of possible values
for the feature (as observed in the training set). In contrast, an ICE plot [6] is
calculated with respect to a single object, again using the full range of observed
values. Given an object x ∈ RD, a set of objects X ∈ RN×D, an underlying
model M and a feature j, as defined above, an ICE plot can be defined by the
following set of points:

ICE(x,M, i,X) = {(v, FE(x,M, i, {v})) : v ∈ X:,i} (2)

When plotted, with the feature values on the x-axis and the feature effect
on the y-axis, the points are normally connected by lines, effectively providing
an interpolation of the predictions of the underlying model between each pair of
consecutive feature values.

For multivariate time series data, we typically have timestamps for the ob-
jects in X, i.e., T = (t1, . . . , tN ). Assuming these time points to be unique, we
define an ICE-T plot by the following set of points:

ICE-T (x,M, i,X, T ) = {(th, FE(x,M, i, {Xh,i})) : h = 1, . . . , N} (3)

In contrast to the ICE plot, the ICE-T plot hence allows for visualizing the
feature effect over time, where the x-axis represents the time at which feature
values have been observed, rather than specific feature values. Since the actual
feature values are not included in an ICE-T plot, it should be considered to give
a complementary view to the ICE plot.

3 Empirical Investigation

In this section, we first describe the prediction task that is considered in this
study. We then describe how the empirical investigation has been designed, in-
cluding the data preparation, before presenting the findings from the empirical
investigation.

3.1 Swedish GDP data

GDP, or gross domestic product, is a measure of the total economic activity
taking place on an economic territory which leads to output meeting the final
demands of the economy. GDP is an aggregate in the national accounts, an
accounting system meant to summarise and describe the country’s economic ac-
tivities and development. There are in principle three ways to compute GDP:
1) the production approach, which is the sum of all value added from produced
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goods and services, 2) the expenditure approach, which is the sum of all expen-
ditures made for consuming the output of the economy or adding to wealth, or
3) the income approach, which is the sum of all incomes earned by producing
goods and services [2]. There is therefore a number of components that together
form GDP or other aggregates of economic activity. The data from the National
accounts in this model primarily concern the second approach to GDP, i.e., the
expenditure approach. Thus, the model is dependent on levels of household and
government consumption, investments and exports and imports.

Swedish GDP is compiled and published by Statistics Sweden (SCB). GDP
and other national accounts are made in accordance with a common European
standard [2]. The GDP for previous periods are constantly revised. At each quar-
terly publication there are usually revisions for the latest previously published
quarterly numbers. There is also a general revision each year, which could lead
to revisions up to 25 years back in time.

In addition to parts and aggregates of the national accounts, there are also
other economic features that should have predictive power for estimates of GDP.
For this study, we have chosen the most prominent features in the economic
outlook in forecasts from the Swedish National Financial Management Authority.
Examples of such features are unemployment figures, inflation and interest rates.
Apart from Swedish domestic economic features, there are also exchange rates
and foreign interest rates as those are relevant for the export-oriented economy
of Sweden.

There are also a small number of economic indicators used as features. These
can be backward- or forward-looking (GDP in itself is often used as a backward-
looking indicator of the general health of the economy). Backward-looking in-
dicators that are used in this model are for example reported vacancies from
employers, redundancy notices and number of newly purchased cars. Indicators
like these are often used as they convey trends in actual, not calculated, eco-
nomic activity. They are used both in forecasting and in business reporting in
the general news.

Forward-looking features are in general used to capture intent and predictions
for the future through surveys. Answers from such surveys are then summarised
to an index which can be tracked over time. An example of such a study incorpo-
rated in this model is the Swedish Economic Tendency Survey conducted by the
Swedish National Institute for Economic Research. The results from the survey
is used to construct an indicator. The Economic Tendency Indicator is based on
monthly surveys of households and firms and consequently captures the senti-
ment among these players in the Swedish economy. The indicator is based on the
information contained in the confidence indicators for manufacturing, services,
construction, retail and consumers [1].

All features used in the model have values on a quarterly basis. The values for
some of the features are available on a monthly or even daily basis, but they are
either summed or averaged to a quarterly value in the model. Data is available
for most features from 1993 up to the last quarter of 2018, and features with
missing values in this time span have been excluded. The complete multivariate
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time-series considered in this study contains 104 objects with 68 features, in
addition to time points and outcome (GDP).

3.2 Experimental setup

The experiment has been designed to emulate a realistic scenario, where only
data available up to the point in time in which a prediction is made, may be used
for generating (and explaining predictions of) a model to predict the outcome
(GDP) at a specified later time point. We here consider two time frames; pre-
dicting the GDP one quarter of a year ahead and four quarters of a year ahead,
respectively. Moreover, in addition to considering the actual GDP as the target
variable, we will consider predicting the percentage change relative to the time
point at which the prediction is made, and investigate how this transformation
affects both predictive performance and feature effects. In addition to using the
features described in the previous section, we will also, as is common in time-
series forecasting, use the (recent) previous outcomes as features; in this study
we will use five features to represent the outcome of the current (the time point
at which the prediction is made) and four preceding quarters, which we refer to
as lagged values. It should be noted that this means that some of the lagged val-
ues will be missing for the first four objects in the time series (as we do not know
what the earlier outcome was), and rather than handling missing values, e.g., by
imputation, we simply exclude these objects from the training set. Furthermore,
if we at the current time point th want to make a prediction for time point th+a,
i.e., a quarters ahead, we cannot assume that the outcome for the time points
th+1, . . . , th+a−1 are known at the time of prediction. Consequently, we have
also excluded the corresponding a − 1 objects, at time points th−a+1, . . . , th−1,
from the training set. Note that the latter only affects the second scenario in
which we are making predictions four quarters ahead, i.e., resulting in that three
preceding objects are excluded from the training set. Rather than searching for
the optimal predictive model with careful hyperparameter tuning, we have here
opted to use the standard GradientBoostingRegressor as implemented in [10],
with default parameter settings.

Given the complete multi-variate time series X ∈ RN×D, time points T =
(t1, . . . , tN ) and outcomes O ∈ RN , a model to make a prediction at the time
point th ∈ Tb:N−a for the outcome at time point th+a is generated from the ob-
jects Xb:h−a and labels Y = Ob+a:h, where b is the number of lagged values and
a is the number of time steps ahead for which a prediction is made. As stated
above, we will consider b = 5 together with a = 1 and a = 4, respectively. More-
over, to handle the so-called cold-start problem, we will only make predictions
for the last 64 time points for which the outcome a quarters ahead are known.

We will investigate the feature effect for a subset of the features over time. We
have considered two options for aggregating the feature effect at time-point th;
averaging the (absolute) feature effect using feature values in the entire training
set, i.e., Xb:h−a, or averaging using feature values in a time window of size w,
i.e., Xh−a−w+1:h−a. In this study, we will consider w = 12, i.e., values from the
12 most recent objects in the training set are used.
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4 Experimental Results

In Fig. 1 and Fig. 2, the predicted vs. actual outcomes in million Swedish Krona
(MSEK), are plotted when making predictions one and four quarters ahead,
respectively, and when using the original (blue dashed lines) and transformed
targets (orange dashed lines), where the latter concerns the percentage change,
which here is projected back to the original scale to allow for a direct compar-
ison. When predicting one quarter ahead, the model using transformed targets
clearly outperforms the model using non-transformed targets, with the former
obtaining a root mean-squared error (RMSE) of 20448 MSEK and a Pearson
correlation coefficient of 0.981, while the latter has an RMSE of 37942 MSEK
and a correlation coefficient of 0.936. The performance difference between the
two methods is less clear when predicting four quarters ahead; using original
targets leads to an RMSE of 36353 MSEK and a correlation coefficient of 0.954,
while for the transformed targets the RMSE is 32918 MSEK with a correlation
coefficient of 0.951. Interestingly, the task of predicting one year ahead is slightly
more easy than predicting one quarter ahead when using the original targets.
In terms of RMSE, the use of the transformation (percentage change) is clearly
effective independently of the forecast horizon, while the correlation coefficient
is hardly affected by this transformation when predicting a year ahead.

Fig. 1. Predicted vs. actual outcome one quarter ahead with transformed and original
target
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Fig. 2. Predicted vs. actual outcome four quarters ahead with transformed and original
target

In order to analyze the differences between the models using the original
and the transformed targets, we can take a look at the aggregated (absolute)
feature effect, averaged over all predictions and for each prediction calculating
the feature effect with respect to all previously observed feature values. In Fig. 3
and Fig. 4, the average absolute effect is plotted for the top 20 features (listed in
descending order) when making predictions one quarter ahead, without and with
the transformation, respectively. Note that although the scales differ, since the
former model predicts the actual GDP (in MSEK) while the latter predicts the
percentage change, we can still compare them by their relative impact. For the
former, one of the lagged variables (nbnpmpf-4), which represents the outcome
four quarters before the time of prediction, is dominating, while the effect is
distributed differently for the latter, although four of the lagged variables appear
among the top five.

Fig. 5 shows that when not having applied the transformation, the picture
for predicting four quarters ahead is similar to when making predictions one
quarter ahead; two of the lagged variables appear among the top five, although
two different ones. However, when having applied the transformation, the pic-
ture changes quite drastically when predicting four quarters ahead, as shown
by Fig. 6. Here, the highest ranked lagged variable (nbnpmpf-4) is ranked be-
hind eight other features, which indicates that the importance of using lagged
variables decreases when having applied the (percentage change) transformation
and considering a more distant forecast horizon.
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Fig. 3. Aggregated feature effect for original target and one quarter ahead

Fig. 4. Aggregated feature effect for transformed target and one quarter ahead

Fig. 5. Aggregated feature effect for original target and four quarters ahead
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Fig. 6. Aggregated feature effect for transformed target and four quarters ahead

However, the graphs displaying aggregated feature effect do not show how
it varies over time and can hence not be related to individual predictions. In
Fig. 7, the feature effect for the nine top ranked features (according to Fig. 6), is
displayed over time, where the feature effect is, as above, calculated with respect
to all feature values that have been observed prior to each prediction. One may
clearly see that the relative sizes of the effects vary over time.

Fig. 7. Feature effect over time for transformed target and four quarters ahead

When calculating the feature effect in relation to all previously observed
feature values, we do not know whether the impact is due to deviations to values
observed a long time ago or more recently. One way of measuring feature effect in
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relation to more recent observations is to include only the latest feature values
in the calculation (limiting the set V in Eq. 1). In Fig. 8, the set of feature
values to include is limited to the 12 most recent observations. When focusing
the analysis to the most recent feature values, one may observe some dramatic
changes to using all observed feature values, e.g., the effect of the Swedish Krona
to US Dollar exchange rate (sek_usd) starts to increase significantly before 2010,
when using the time constraint, while the impact of nexf (Swedish export) during
2014 disappears.

Fig. 8. Feature effect using time constraint for transformed target and four quarters
ahead

When focusing on a specific prediction, we may take a look at an ICE plot
(Eq. 2). In Fig. 9 and Fig. 10, ICE plots are shown for the predictions at January
1, 2010 and July 1, 2014, respectively, using the above features for which the
values have been min-max-normalized to allow for displaying multiple features
in one plot. The graphs show for both predictions that they are higher than
the ones obtained with lower values of sek_usd and higher values of eurefi

(Euro refinancing rate) and sv3mssvx (three-month rate in Sweden). The second
prediction is lower than what is output by the model for all but high values values
of nexf (Swedish export), while it is higher than what would be output for high
values for the exchange rate of the Swedish Krona to Japanese yen (sek_jpy).

In an ICE plot, we can see how a prediction would be affected by replac-
ing some specific feature value with all possible (previously observed) values.
However, some feature values may be extreme and occur very infrequently. In
addition, the values may also not have appeared for a long time, and hence may
be of little relevance when reasoning about the current prediction. To allow for
reasoning about the feature effect in a temporal context, we also take a look at
the proposed ICE-T plots (Eq. 3), to study how the feature effect varies when
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Fig. 9. ICE plot for 2010-01-01

Fig. 10. ICE plot for 2014-07-01
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selecting values in the order they have been observed. As a complement to the
ICE plots, we present the corresponding ICE-T plots for the predictions at Jan-
uary 1, 2010 and July 1, 2014 in Fig. 11 and Fig. 12, respectively. For the first
plot, we can see that the feature sv3mssvx (three-month rate in Sweden) only
has an impact if considering feature values that occurred more than a decade
before the time of prediction. Moreover, the effect of sek_usd is (very) high, only
if considering relatively recent values, and this feature has hardly any effect if
considering values observed earlier. In the second plot, one may observe that the
prediction is lower than what is obtained when using values for nexf (Swedish
export) that were observed more than 12 quarters earlier, which explains why the
effect of this feature was not visible for the same date when calculating feature
effect using the time constraint, as shown in Fig. 8.

Fig. 11. ICE-T plot for 2010-01-01
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Fig. 12. ICE-T plot for 2014-07-01

5 Concluding Remarks

We have investigated ways to explain multivariate time-series forecasting models,
by measuring and presenting the feature effect. In addition to calculating the
aggregated feature effect, measured with or without a time constraint, we have
presented an approach to visualize the feature effect on individual predictions,
called the ICE-T plot, which complements the ICE plot by showing the feature
effect over time. We have presented an application of these techniques to the
task of predicting the Swedish GDP. In addition to demonstrating the use of the
techniques, the empirical investigation has also highlighted the impact of target
variable transformation and forecast horizon on the feature effect.

The work has focused on explaining predictions of a black-box model by ana-
lyzing the feature effect, i.e., how the output of the model changes when changing
the input. For retrospective analysis, all the techniques considered in this work
can be straightforwardly adapted to instead calculate feature importance, i.e.,
how the predictive performance, such as absolute error, is affected by changing
the input. However, in a real prediction scenario, one does not have access to
the correct target (for the prediction at hand), and hence the latter option is
not available.

A natural extension of the current work is to consider the effect of changing
multiple features simultaneously. In contrast to PDP and ICE plots, which need
one axis per feature included in the combination, the ICE-T plots would remain
two-dimensional, since the time points, rather than feature values, are used to
align the predictions.

In the current study, we have only considered one specific type of black-
box model (generated by gradient boosting), and a direction for future work is
to study how the choice of black-box model (including various hyperparameter
settings) affects what features are considered to have an impact. Finally, there
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are several alternatives to using feature effect to explain predictions and the
application and adaptation of these techniques to the specific requirements that
multivariate time-series forecasting models provide could be a fruitful area of
research.
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