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Abstract. Abstract Argumentation Frameworks represent arguments
and their relationships like attack and support in a graph. Their simple
structure makes them easily interpretable and therefore a potentially in-
teresting tool for explainable machine learning. We discuss some ideas for
modeling and solving classification problems as abstract argumentation
problems. As opposed to previous approaches that built argumentation
frameworks on top of the result of machine learning algorithms, our clas-
sifiers can be learnt in an end-to-end fashion. Our research is still in an
early stage, but, hopefully, this position paper will inspire interesting
discussions at the workshop.

1 Introduction

Abstract argumentation frameworks model arguments and their relationships
in a graphical structure. The computational problem is to decide which argu-
ments can be accepted. Dung’s original framework [7] considered only attack
relations, but has been extended in different directions. Perhaps the most inter-
esting directions for our purpose are bipolar and quantitative extensions. Bipolar
argumentation frameworks [2] add support relations. This extension seems vital
for classification tasks since the decision about the final label should not only be
based on contra arguments, but also on pro arguments. Quantitative argumen-
tation frameworks measure the degree of acceptance by a numerical scale. For
example, in probabilistic epistemic argumentation [11] arguments are interpreted
by probabilities that reflect degrees of belief. In gradual argumentation [4, 23,
1], more general numerical values are considered. However, the intuition remains
the same: The classical notion of acceptance usually corresponds to the largest
value and the classical notion of rejection to the minimal value. By considering
a numerical scale, we get a fine-grained distinction between these two extremes.
In this paper, we will discuss some ideas for how to apply this technology for
solving classification problems in a transparent and explainable way.

2 Background on Abstract Argumentation

Our understanding of an argument in this work follows Dung’s notion of ab-
stract argumentation: ”an argument is an abstract entity whose role is solely
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Fig. 1. Example BAG.

determined by its relations to other arguments” [7]. In particular, we abstract
from the content of an argument and are only interested in its acceptability de-
pendent on the acceptability of its attackers and supporters. We consider bipolar
argumentation graphs (BAGs) of the form (A,Att,Sup), where A is a finite set of
arguments, Att ⊆ A×A is the attack relation and Sup ⊆ A×A is the support re-
lation. With a slight abuse of notation, we let Att(A) = {B ∈ A | (B,A) ∈ Att}
denote the attackers of A and let Sup(A) denote its supporters. Graphically, we
denote attack relations by solid and support relations by dashed edges. Figure
1 illustrates the definition. The BAG models part of a decision problem from
[17], where we want to decide whether to buy new or to sell existing stocks of a
company. A1 corresponds to the statement of an expert that recommends selling.
A2 and A3 correspond to statements by experts who contradict A1’s premises
and recommend buying. Since we do not want to accept both the selling and the
buying decision, the corresponding decision arguments attack each other.

We will not talk about the classical interpretation of bipolar argumentation
frameworks and move directly to quantitative approaches. Our focus is on two
bipolar approaches that seem interesting for classification tasks. Both share a
BAG as a common data structure. They enhance the BAG in different ways in
order to derive numerical degrees of acceptance.

2.1 Probabilistic Epistemic Argumentation

Probabilistic epistemic argumentation [11] builds up on basic probability theory.
Probabilities are assigned to arguments by means of probability functions P :
2A → [0, 1] such that

∑
w∈2A P (w) = 1. Each w ∈ 2A can be seen as one possible

world, in which the arguments in w are accepted and the remaining ones are
rejected. The probability of an argument A ∈ A under P is then defined by
adding the probabilities of all worlds in which A is accepted, that is, P (A) =∑
w∈2A,A∈w P (w). In order to restrict the set of all probability functions to those

that respect the BAG, different constraints have been introduced [11]. We give
a few examples here:

COH: P is called coherent if for all A,B ∈ A with (A,B) ∈ Att, we have
P (B) ≤ 1− P (A).

SFOU: P is called semi-founded if P (A) ≥ 0.5 for all A ∈ A with Att(A) = ∅.



SOPT: P is called semi-optimistic if P (A) ≥ 1−
∑
B∈Att(A) P (B) for all A ∈ A

with Att(A) 6= ∅.

Coherence encodes one possible meaning of attack relations: if A attacks B,
then the probability of A bounds the probability of B from above (and vice
versa). The intuition behind the definition is that we do not want to accept both
an argument and its attacker. Semi-foundedness encodes the intuition that an
argument should not be rejected if there is no reason for doing so. Formally,
this means that the degree of belief in this argument should not be lower than
0.5. Semi-optimism gives another lower bound for the degree of belief. If there
are no attackers, the argument must be accepted (probability 1). Attackers will
decrease the lower bound based on their own degree of belief. These constraints
have been defined for attack-only graphs, but they can be easily extended to
bipolar graphs. For example, dual to coherence, we could define a lower bound
for support edges as follows.

S-COH: P is called s-coherent if for all A,B ∈ A with (A,B) ∈ Sup, we have
P (B) ≥ P (A).

The previous examples are all special cases of linear atomic constraints [19] that
are generally written in the normalized form

n∑
i=1

ci · π(Ai) ≤ c0,

where Ai ∈ A , ci ∈ R and π is a syntactic symbol for the probability of an
argument. A probability function P satisfies such a linear atomic constraint iff∑n
i=1 ci · P (Ai) ≤ c0. Note that all constraints above can be brought into this

form. For example, the Coherence constraint can be rewritten as 1 · π(A) + 1 ·
π(B) ≤ 1 and the S-Coherence constraint as 1 · π(A) + (−1) · π(B) ≤ 0. In
general, we can also consider more general epistemic constraints that allow non-
linear combinations of probabilities and probabilities of complex formulas over
arguments [10]. However, in order to keep things simple, we do not discuss the
most general form. For future reference, we define a P-BAG as follows.

Definition 1. A P-BAG is a tuple (A,Att,Sup, C), where (A,Att,Sup) is a
BAG and C is a set of epistemic constraints over the BAG.

Given a P-BAG (A,Att,Sup, C), we are interested in solving the following en-
tailment problem: compute tight upper and lower bounds on the probability of an
argument A ∈ A among all probability distributions that satisfy the constraints
in C. If we restrict to linear atomic constraints, this problem can be solved in
polynomial time [19]. To illustrate the entailment problem, consider again the
BAG in Figure 1. We consider a new constraint that we call Balance.

BAL: P is called balanced if P (A) = 1
2 +

∑
B∈Sup(A) P (B)−

∑
B∈Att(A) P (B)

1+max{|Sup(A)|,|Att(A)|} for all

A ∈ A.



Fig. 2. Entailment results for BAL constraints (left) and SFOU, COH and S-COH
constraints (right).

To improve readability, we do not present Balance in the normal form of lin-
ear atomic constraints. Based on our previous discussion, the reader hopefully
recognizes that Balance can indeed be written in this form. Note, in particular,
that an equality can be represented by two inequalities (x = y iff x ≤ y and
y ≤ x). Intuitively, Balance enforces probability 0.5 if attackers and supporters
are equally strong and moves the probability towards 0 (1) if the attackers are
stronger (weaker) than the supporters. The entailment results are shown in Fig-
ure 2 on the left. In general, we may get interval probabilities rather than point
probabilities. To illustrate this, we can replace BAL with the constraints SFOU,
COH and S-COH that we discussed before. The entailed probabilities are shown
in Figure 2 on the right.

A polynomial-time implementation for solving the entailment problem for
linear atomic constraints can be found in the Java library Probabble1.

2.2 Gradual Argumentation

Gradual argumentation frameworks evaluate arguments by numerical strength
values. We will focus on bipolar frameworks that use the interval [0, 1] to give a
uniform presentation. A discussion of more general frameworks can be found in
[3]. The basic building block is again a BAG. Now, additionally, every argument
has an initial weight that can be seen as an apriori belief in the argument when
ignoring all the others. For future reference, we define a G-BAG as follows.

Definition 2. A G-BAG is a tuple (A,Att,Sup, w), where (A,Att,Sup) is a
BAG and w : A → [0, 1] is a weight function.

The main computational problem is again to assign acceptance values to argu-
ments. In this context, they are often called strength values. Strength values are
often computed by applying an update function to the G-BAG repeatedly until
the values converge. The update function often has a simple modular structure
consisting of an aggregation and an influence function [14]. The aggregation
function takes the strength values of all parents and combines them to a nu-
merical value. Intuitively, an attacker should decrease the value based on its
strength, whereas a supporter should increase the value based on its strength.

1 https://sourceforge.net/projects/probabble/



The influence function then adapts the initial weight based on the aggregate.
For example, the aggregation function of the DF-QuAD algorithm uses multi-
plication [23]. While it has some nice properties, its particular definition has the
disadvantage that the aggregate is necessarily (close to) 0 if both an attacker and
a supporter have strength (close to) 1. The Euler-based semantics introduced in
[1], uses addition instead of multiplication to overcome this problem. However,
its influence function is not symmetric about 0, which causes a counterintuitive
imbalance between attacks and supports. The quadratic-energy model from [16]
uses a symmetric influence function in order to overcome this problem. Its ag-
gregation function is defined by

α(A) =
∑

B∈Sup(A)

s(B)−
∑

B∈Att(A)

s(B),

where s : A → [0, 1] assigns the current strength value to every argument. Its
influence function is defined by

ι(A) = w(A)− w(A) · h(−α(A)) + (1− w(A)) · h(α(A)),

where h(x) = max{0,x}2
1+max{0,x}2 squashes its input to the interval [0, 1]. Intuitively, a

positive aggregate will move the weight towards 1, while a negative aggregate will
move the weight towards 0. The strength values are initialized with the initial
weights. Then the aggregation and influence function are applied repeatedly until
the values converge.

Figure 3 shows, at the top, possible initial weights for the example BAG on
the left and the resulting final strength values on the right. At the bottom of
Figure 3, the left graph shows how the final strength values evolve over time.
For acyclic graphs, they can be computed in linear time by a single forward
pass [16]. In acyclic BAGs, the convergence theory is actually not complete.
[14] gave some examples for cyclic G-BAGs where the strength values under
different approaches start cycling and do not converge. In the known cases,
these convergence problems can be overcome by continuizing the discrete update
approach [16] as illustrated in the right graph at the bottom in Figure 3. In all
cases, where convergence guarantees are known, it is actually guaranteed that
the discrete and continuized algorithm will converge to the same strength values
[18]. Empirically, the continuous algorithm still converges in subquadratic time
[16]. The plots of the evolution of strength values may also add transparency
and explainability to gradual argumentation frameworks.

Implementations for computing strength values with different gradual argu-
mentation approaches and plotting the evolution of their strength values can be
found in the Java library Attractor2.

3 Abstract Argumentation Classifiers

We will now look at how classification problems can be solved by means of argu-
mentation frameworks. The goal of classification is to map inputs x to outputs y.

2 https://sourceforge.net/projects/attractorproject/



Fig. 3. Top: Initial weights (left) and final strength values (right). Bottom: evolution
of strength values for A1 (blue), A2 (green), A3 (red), Buy (violet) and Sell (yellow)
under discrete (left) and continuous (right) quadratic-energy semantics.

We think of the inputs as feature tuples x = (x1, . . . , xk), where the i-th value is
taken from some domain Di. The output y is taken from a finite set of class labels
L. A classification problem P = ((D1, . . . , Dk), L,E) consists of the domains, the
class labels and a set of training examples E = {(xi, yi) | 1 ≤ i ≤ N}.

By a numerical classifier, we mean a function c :
(×k

i=1
Di

)
× L → R that

assigns to every pair (x, y) a numerical value. An important special case is a

probabilistic classifier p :
(×k

i=1
Di

)
×L→ [0, 1] where

∑|L|
j=1 p(x, yi) = 1. Then

p(x, y) ∈ [0, 1] can be understood as the confidence of the classifier that an
example with features x belongs to the class y. Let us note that every numerical
classifier c can be turned into a probabilistic classifier pc by normalizing the label

outputs by a softmax function. That is, pc(x, y) = exp(c(x,yi))∑|L|
j=1 exp(c(x,yj))

.

Figure 4 shows the high-level architecture of our classifiers. The input is first
encoded in a BAG that models the classification problem. If the resulting model
is not a probabilistic classifier, the acceptance degrees of arguments correspond-
ing to the labels are then normalized by a softmax function. We will discuss
these steps in more detail in the following sections.



Fig. 4. High-level Architecture of Argumentation Classifiers.

3.1 Input and Output Arguments

In order to solve a classification problem P = ((D1, . . . , Dk), L,E) with ar-
gumentation technology, we first transform the domains and class labels into
arguments. A categorical feature with domain D = {d1, . . . , dl} can be trans-
formed into l arguments AD,1, . . . , AD,l. Intuitively, we can identify the value
di with accepting AD,i and rejecting the remaining arguments AD,j , j 6= i, of
the feature. A continuous feature with domain D ⊆ R can be discretized by
partitioning D into l intervals that can then be treated like discrete features. We
denote the resulting input arguments by Ain.

We proceed analogously for the class labels. For multiclass classification prob-
lems, we create one argument for every label analogous to discrete features.
However, if the classification problem is binary, L = {c0, c1}, we create a single
output argument. We denote the resulting output argument(s) by Aout.

To illustrate the idea, we consider a small toy classification problem inspired
by the Census dataset from the UCL machine learning repository3. We consider
three features that correspond to age (continuous), education (3 categories) and
work class (3 categories) and two class labels that correspond to an ’average or
below’ or ’above average’ salary. Figure 5 shows one potential BAG built up from
the corresponding input (bottom) and output (top) arguments. For simplicity, we
chose a coarse discretization into three bins. Of course, determining the number
and boundaries of the bins can also be made part of the learning process with
the usual advantages (flexibility) and disadvantages (learning complexity).

3.2 Abstract Argumentation Classifiers

The most straightforward way to build a classifier is to take the input arguments
and output arguments and to connect them via edges in such a way that a good
classification performance on the examples is obtained.

Definition 3 (Naive Classification BAG). A Naive Classification BAG for
a classification problem P = ((D1, . . . , Dk), L,E) is a BAG (A,Att,Sup) such
that A = Ain ∪Aout is the set of input and output arguments for P , Att,Sup ⊆
Ain ×Aout and Att ∩ Sup = ∅.

Figure 5 shows one possible naive classification BAG for our census example.
While a naive classification BAG is easy to interpret, it may not have suffi-
cient degrees of freedom to capture more complicated relationships. In order

3 https://archive.ics.uci.edu/ml/datasets/Census+Income



Fig. 5. Hypothetical naive classification BAG for census example.

Fig. 6. Hypothetical deep classification BAG for census example.

to overcome the problem, we propose adding hidden layers of arguments be-
tween the input and the output layer inspired by the architecture of feedforward
neural networks [8]. Similar to the intuition of deep feedforward neural net-
works, the hope is that deeper layers will form more sophisticated patterns from
the patterns detected in earlier layers. Interpretability will probably suffer with
increasing depth. However, due to the simple mechanics of the introduced ar-
gumentation approaches, a deep abstract argumentation classifier may still be
easier to interpret than ’black box approaches’ like neural networks or support
vector machines. Figure 6 shows a possible deep classification BAG for our census
example. The meaning of hidden arguments in early layers can still be intuitively
explained. For example, H1,1 can be roughly interpreted as saying that an above
average salary is unlikely in the age group from 20 to 60 and if the education
category is 1 unless the person is in working class 3.

Definition 4 (Deep Classification BAG). A Deep Classification BAG with
k layers for a classification problem P = ((D1, . . . , Dk), L,E) is a BAG (A,Att,Sup)

such that A =
⋃k+1
i=0 A〈i〉 consists of the input arguments A〈0〉 = Ain and

output arguments A〈k+1〉 = Aout for P and additional layers of arguments
A〈i〉 such that A〈i〉 ∩ A〈j〉 = ∅ for i 6= j. Furthermore, Att ∩ Sup = ∅ and

Att,Sup ⊆
⋃k
i=0

⋃k+1
j=i+1

(
A〈i〉×A〈j〉

)
, that is, edges can only be directed towards

deeper layers.

In order to classify an example with a classification BAG, we have to specify
how to generate an output label from the input features. We will discuss some
ideas for P-BAGs and G-Bags in the next sections.

3.3 Classification P-BAGs

In order to solve the classification problem with a P-BAG, we have to add a set
of constraints to our classification BAG. We divide the constraints into



Classification Constraints: encode the meaning of support and attack edges.
Instance Constraints: encode the input features of an example.

The classification constraints are example independent, whereas the instance
constraints change for every example (they correspond to the input transfor-
mation in Figure 4). We start discussing the instance constraints. The idea is
simple: for every feature, we constrain the probability of the input argument
that corresponds to the input value to 1 and the probability of the remaining
input arguments for this feature to 0. For example, if Di = {di,1, . . . , di,l} and
xi = di,2, we add the constraints π(Ai,2) = 1 and π(Ai,j) = 0 for j 6= 2.

There are various ways to define the classification constraints. Defining them
could even be made part of the learning process. However, this would complicate
the learning problem further. We therefore discuss some concrete options. Our
initial proposal is a variation of the Balance constraint that we discussed before.
We slightly generalize it by adding weights to edges. We will consider these
weights as parameters that have to be learnt. For every argument A ∈ A \ Ain

that is not an input argument, we introduce one constraint of the form

π(A) =
1

2
+

∑
B∈Sup(A) θB,A · π(B)−

∑
B∈Att(A) θB,A · π(B)

2
, (1)

where we demand 0 < θB,A,
∑
B∈Sup(A) θB,A = 1 and

∑
B∈Att(A) θB,A = 1.

Let us note that, due to the simple structure of the BAG, the probabilities of
the arguments can be computed in a single forward pass in linear time. The
probabilities of the input arguments can be set immediately according to the
instance constraints. We then go to the next layer. Since edges can only be
directed towards deeper layers, all probabilities in this layer are determined by
the probabilities of the previous layer. We can continue in this way until we set
the probabilities in the output layer.

However, we note that the resulting classifier is necessarily a linear classifier.
By induction, we can see that the probability at every argument is just a linear
combination of the inputs: For the first layer, this is obvious. For the subsequent
layers, it follows by induction, since a linear combination of linear combinations
is a linear combination again. Therefore, the output probability is a linear func-
tion of the inputs. As a consequence, the classifier is only able to learn linearly
separable functions. For example, it is not possible to learn to classify the XOR
(exclusive or) function correctly when using the linear balance constraints in (1).

Fortunately, if we keep the structure sufficiently simple, we can still deal with
non-linear constraints efficiently by performing a single forward pass through the
BAG as before. We therefore propose the following non-linear variant of Balance.

π(A) =θA

+ (1− θA) ·max{
∑

B∈Sup(A)

θB,A · π(B)−
∑

B∈Att(A)

θB,A · π(B), 0}

− θA ·max{
∑

B∈Att(A)

θB,A · π(B)−
∑

B∈Sup(A)

θB,A · π(B), 0} (2)



Fig. 7. Classification P-BAG for XOR (left): Edges and non-input arguments are an-
notated with their weights. For example, θY = 0, θX1=0,H1,1 = 1. Classification of a
positive example (right): Arguments are annotated with the entailed probabilities.

where again 0 < θB,A ,
∑
B∈Sup(A) θB,A = 1,

∑
B∈Att(A) θB,A = 1 and further-

more 0 ≤ θA ≤ 1. The new parameter θA replaces 0.5 and allows learning a
bias for the probability of this argument. The first term moves the probability
towards 1 if the supporters are stronger, the second term moves the probability
towards 0 if the attackers are stronger. To illustrate that this is sufficient to
capture non-linear relationships, Figure 7 shows, on the left, a P-BAG for the
XOR function. The graph on the right illustrates the classification process for a
positive example. The output is 0.75 (the positive label is accepted). By going
backward through the graph, the result can be explained. Y is accepted because
its supporter H1,1 is accepted. H1,1, in turn, is accepted because X1 = 0 and
X2 6= 0 (the inputs differ). When using the BAG in Figure 8 with edge weights
N = 1, the XOR function will actually be perfectly reproduced. That is, in the
table in Figure 7, we will have 1 instead of 0.75 and 0 instead of 0.25. However,
the P-BAG in Figure 7 also classifies every example correctly (when the decision
threshold for a positive example is 0.5) and is easier to interpret.

3.4 Classification G-BAGs

For G-BAGs, we have to decide how to define the initial weights and which
update function we use. For the update function, we propose a variant of the
quadratic energy model that we explained before. Our variant again adds edge
weights that are supposed to be learnt during the training process. The aggre-
gation function is defined by

α(A) =
∑

B∈Sup(A)

θB,A · s(B)−
∑

B∈Att(A)

θB,A · s(B),

where s : A → [0, 1] assigns the current strength value to every argument as
before. The influence function is defined by

ι(A) = θA − θA · h(−α(A)) + (1− θA) · h(α(A)),

with h(x) = max{0,x}2
1+max{0,x}2 . We demand 0 < θB,A and 0 ≤ θA ≤ 1.



Fig. 8. Classification G-BAG for XOR. Edges and non-input arguments are annotated
with their weights, where N = 100.

The weights of the input arguments can again be set based on the input. Since
they do not have any ingoing edges, this weight will also be their final strength.
For setting the weights, we proceed similar as before. For every feature, we set
the weight of the argument corresponding to the input value to 1 and the weight
of the remaining input arguments for this feature to 0.

Due to the acyclicity of the classification BAG, the final strength values can
again be computed by a single forward pass through the graph in linear time.
The result is guaranteed to be equal to the result of the iterative and continuous
update approach [16]. Figure 8 shows a G-BAG for the XOR function. The more
compact BAG in Figure 7 could also used for a G-BAG for XOR. In particular,
as we increase the parameter values at the edges from 1 to ∞, the outputs for
positive (negative) examples will move to 1 (0). We will come back to the BAG in
Figure 8 later because it illustrates an idea to classify arbitrary discrete functions
with classification BAGs.

4 Learning

We finally discuss some ideas for learning classification BAGs from data. We di-
vide the learning problem into parameter and structure learning. For parameter
learning, we suppose that the classification BAG is already given and we only
have to learn the weights. For structure learning, both the classification BAG
(hidden arguments, edges) and the parameters have to be learnt.

4.1 Parameter Learning

One common way to learn the parameters of a model is to minimize a loss func-
tion that measures the discrepancy between the desired label and the output of
the classifier. Recall from Figure 4 that our classifiers are probabilistic classi-
fiers (if not by default, then due to the softmax normalization). A standard loss
function for such classifiers is the logistic loss (a.k.a. cross-entropy loss). Given a
classifier cΘ with parameter vector Θ and examples E = {(xi, yi) | 1 ≤ i ≤ N},



the logistic loss of the current parameters is L(Θ) = − 1
N

∑N
i=1 log cΘ(xi, yi). In-

tuitively, it simply takes the negative logarithm of the classifier’s confidence for
the right label for every example. If the confidence for the right label is 1 (and,
thus, the confidence for the wrong labels is 0), the loss is 0. As the confidence
goes to 0 the loss goes to infinity. If we do not use the softmax normalization,
we have to be careful that the output for the desired label is non-zero, but this
can be guaranteed by some modifications of the actual implementation.

The loss is often minimized by using optimized variants of gradient descent.
In general, the loss function for classification BAGs may be non-differentiable.
However, due to the simple structure of our proposed models, we can guarantee
differentiability in several cases. The key observation is that the degrees of ac-
ceptance can be computed by a simple forward pass for both the P-BAGs and
G-BAGs that we discussed. Therefore, the acceptance degree at the label argu-
ments is just a composed function of the inputs. If the involved functions are
differentiable, the loss functions are differentiable and the gradient can be com-
puted by automatic differentiation as implemented in libraries like Tensorflow.
For our proposed P-BAGs, the loss function is non-differentiable at some points
due to the use of the maximum. This may actually not cause any problems, but
we could also make the loss function differentiable by replacing the maximum in
our constraints with a squared maximum. For our G-BAGs, the loss function is
already differentiable.

In general, we cannot apply gradient methods naively because our parameter
ranges are constrained. However, the constraints are rather simple and can be
dealt with by doing the following after every update step:

1. If a parameter θ exceeds a threshold b, set the parameter to θ0+b
2 , where θ0

is the previous value of the parameter.

2. Normalize parameters that have to be normalized (attack and support pa-
rameters for P-BAGs).

For the classification BAGs that we introduced here, we can actually get rid of the
non-negativity constraint by considering edges with negative weights as attacks
and edges with positive weights as supports. This is also beneficial because it
allows to learn the nature of an edge (attack or support) from data. However,
for other instantiations, like a G-BAG with product for aggregation, this may
not be possible as easily. Furthermore, for more general classification BAGs, it
may not be possible to obtain a differentiable loss functions. We are planning to
look at two strategies for these cases:

Heuristic Gradients: compute a heuristic gradient of the loss function by re-
placing the partial derivative for the i-th parameter with the approximation
L(Θ′)−L(Θ)

ε , where Θ′ is obtained from Θ by increasing the i-th parameter
by a small constant ε > 0.

Meta-heuristics: apply meta-heuristics for solving numerical optimization prob-
lems that do not require gradient information like Differential Evolution or
Particle Swarm Optimization [6].



4.2 Structure Learning

In principle, we could just build a huge classifier BAG and apply a parameter
learning algorithm in order to solve a classification problem. Similar to the idea
of the approximation theorems for neural networks [8], a classification BAG
with a single hidden layer can learn to approximate arbitrary discrete functions.
The intuitive explanation is that we can just generate one hidden argument
for every possible input (or region of input values) that is supported by the
input arguments that agree with this input and attacked by the remaining input
arguments. This argument then supports the desired label and attacks all other
labels. The classification BAG for XOR in Figures 8 illustrates the idea (we
eliminated some redundancy, though). However, of course, this is not a very
meaningful model and will probably overfit the noisy dataset after training. It
will also be very difficult to interpret such a model.

Since interpretability is our main motivation, we want to learn a sparse clas-
sification BAG. The situation is similar for Bayesian networks, where one usually
wants to learn a compact network with as few spurious edges as possible [13].
Bayesian networks have some local decomposition properties that we cannot ex-
ploit. However, there are some general learning ideas that we can immediately
apply. One way to learn the structure of Bayesian networks is by means of a
local search prodedure that starts from some random graph and then repeatedly

1. creates a neighborhood of the graph by means of search operators,
2. evaluates (a subset of) the graphs in the neighborhood by minimizing the

loss function for this graph,
3. picks the best neighbor for the next iteration

until the graph cannot be improved anymore [13]. Step 2 can be easier for
Bayesian networks because often closed-form solutions for the optimal parame-
ters exist. We will usually have to perform a parameter search instead and may
end up with parameters that are only locally optimal. An interesting question is
therefore if we can set up classification BAGs such that we obtain closed-form
solutions or, at least, loss minimization problems with a unique minimum. For
example, for P-BAGs with the linear constraints from (1), this may be possible.

Common search operators for Bayesian networks are adding, deleting and
reversing edges. Reversing edges currently does not play a role for us, but may be
interesting in order to obtain more expressive classifiers. Turning an attack edge
into a support edge may be another useful operator. We also want to add hidden
arguments. Since just adding arguments without any edges cannot change the
classification outcome, operators may introduce new arguments between existing
connections and summarize these connections.

The search can be guided by local search heuristics like simulated annealing
or beam search [6]. In order to simplify the search process, to avoid overfitting
and to improve interpretability, it is reasonable to restrict the possible struc-
tures. In addition to the forward structure that we assumed throughout this
paper, it seems also reasonable to restrict the number of layers, the number
of arguments per layer and the number of ingoing and outgoing edges. We are
currently working on an implementation to evaluate different strategies.



5 Related Work

There has been growing interest in combining argumentation technology and
machine learning in recent years. [25] proposed some ideas for solving classifi-
cation problems by means of structured argumentation. As opposed to abstract
argumentation, structured argumentation explicitly takes the structure of ar-
guments like their premises and conclusion into account. The idea in [25] is to
apply a rule mining algorithm first in order to learn structured arguments. A
structured argumentation solver can then be applied in order to derive a label
for given inputs and to explain the outcome. While this is a very interesting idea
for explainable classification, it relies very much on the success of the underlying
rule mining algorithm. In particular, it is currently unclear how to train such a
model in an end-to-end fashion such that the rule mining process is guided by
the classification outcome of the reasoner.

Gradual argumentation frameworks have been combined successfully with
machine learning methods in order to add explainability to problems like prod-
uct recommendation [22] or review aggregation [5]. However, the argumenta-
tion framework and the machine learning method are again not trained in an
end-to-end fashion. Instead, a machine learning method is applied first and the
argumentation framework is applied on top of the result.

[9] recently proposed some ideas for learning epistemic constraints for P-
BAGs from data. The constraints are more general than what we considered here
and have the form of rules. The premise of these rules consists of a conjunction
of atomic probability statements and the conclusion is an atomic probability
statement as well. Using a constraint learning algorithm like that may be an
alternative to learn the structure of a classification BAG without repeatedly
calling a parameter learning algorithm.

There also has been some work on learning classical argumentation frame-
works from sets of accepted arguments [24, 12]. However, the motivation is very
different from our motivation. While argumentation usually asks, given an argu-
mentation graph, which arguments can be accepted, the authors in these works
ask, given arguments accepted by users, what is the underlying argumentation
graph? Therefore, these approaches do not allow for a distinction between in-
put and output arguments and the investigated frameworks are restricted to
attack-relations only. In particular, the training procedure is currently based on
argumentation rationales, rather than based on a classification outcome.

In principle, we could also instantiate classification BAGs with classical bipo-
lar frameworks [2, 15, 20]. The degree of acceptance at an argument can then be
defined as the relative frequency of labellings that accept the argument, where
we restrict to such labellings that accept the input arguments. The resulting
loss function will be non-differentiable, however, and computing all labellings
can be very expensive. It is interesting to note, though, that the relative fre-
quencies can often be computed by encoding the argumentation problems as a
Markov network [21]. This relationship may also be helpful to apply learning
algorithms for Markov networks for learning classical classification BAGs and
other probabilistic classification BAGs discussed in [21].



6 Conclusion

We presented some conceptual ideas for solving classification problem by means
of abstract argumentation technology. One important difference to previous com-
binations of argumentation and machine learning is that our framework can be
trained in an end-to-end fashion.

Our classification BAGs are structurally similar to feedforward neural net-
works and Bayesian networks and we took a lot of inspiration from these fields.
Naive classification BAGs are to deep classification BAGs as logistic regression
is to deep multilayer perceptrons and as a naive Bayes classifier is to complex
Bayesian networks. As we argued before, from a classification perspective, deep
classification BAGs can be seen as universal function approximators that can
theoretically approximate arbitrary discrete functions.

Our hope is that Classification BAGs can offer better transparency and ex-
plainability than other numerical classifiers. For example, for deep neural net-
works, transparency is often lost due to the deep and dense structure of the net-
work. Bayesian networks look very intuitive, but are frequently misinterpreted.
For example, practitioners often assume that edges encode causal relationships,
while the actual theory only assumes that missing edges encode independen-
cies [13]. Classification BAGs are less susceptible to misinterpretations because
the meaning of attack and support edges is very intuitive. The calculations of
degrees of acceptance seem also easier to grasp than the marginal probability
computations that underlie Bayesian networks.

Of course, the applicability of classification BAGs will depend on the avail-
ability of reliable learning algorithms and an experimental evaluation is necessary
in order to evaluate their performance. We are currently implementing different
methods in a Python library and will start an experimental evaluation soon.
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