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Abstract. How to choose the appropriate explainer module for a deep
network for interpretability of learned features through visualization?
Are the selection criteria specific to a task or can they be generalised?
We investigate a set of criteria by which to evaluate and select explainer
modules for deep learning based classification. This is of great importance
for applications with high human consequence like healthcare, where it
is of utmost importance for the automated decision making process to
be aligned with clinical expert knowledge. We choose skin lesion clas-
sification as the representative classification task. and select three off-
the-shelf popular explainer-visualizer modules: LIME, Grad-CAM and
Kernel SHAP. We compare these modules on a baseline vanilla CNN
model and evaluate them based on several criteria like consistency, fi-
delity, sensitivity and relevance. The results bring out several interesting
insights and are presented with detailed illustrative diagrams. 1
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1 Introduction

Deep learning based vision systems have made giant strides in automated med-
ical image analysis in recent years, due to smarter algorithms, faster computing
and increased memory resources. Though the performance of these systems have
improved by leaps and bounds over a short span of years, the associated increase
in the design complexity of these models have made it difficult even for their de-
signers to explain the decision making process. The need for interpretability in
deep learning is crucial for such methods to be trusted in application of high con-
sequence like medicine and healthcare. While recent research in medical imaging
[4] has delved into the open problem of transparency of deep networks, there is
yet to be a standard set of criteria and tools that a machine learning engineer
might refer to while using off-the-shelf explainer modules. This is exceptionally
important since the absence of a benchmark in interpretability will further ob-
fuscate the goal of explainability. In fact, it might make the situation worse, if
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the results of explainer modules [20] are at odds, or at least it is unknown why
they might differ under varying circumstances.

A case in hand is automated skin cancer classification from visual data.
According to the world health organisation [1], between 2 and 3 million non-
melanoma skin cancers and 132,000 melanoma skin cancers occur globally each
year, which is one in every three cancers diagnosed. However, the European
Union’s General Data Protection Regulation (GDPR) and the UK’s related Data
Protection Bill both require a “right to explanation” for any automated decision-
making algorithms [18]. Although this right is not legally binding, automated
diagnostic systems being developed are likely to face more scrutiny over their
explainability. Indeed, for people to put their trust into an automated diagnosis,
there is a need for an explanation as the consequence of a misdiagnosis can be
catastrophic [15].

The contribution of this paper is that it formalises the criteria on which
to choose explainer modules for different scenarios and for the first time ex-
perimentally demonstrates the effects choosing skin lesion classification as the
representative application [9]. This will help a machine learning practitioner to
confidently select available explainer modules and interpret the results better,
which is the call of the hour in interpretable machine learning.

2 Experimental Setup

In this section, we introduce the dataset and deep architecture used in this work.
We also describe the data preparation process and training protocol.

2.1 Dataset and data preparation

HAM10000 dataset [16] is used in this work since it is the most commonly
used benchmark dataset by the research community for skin lesion classification.
The dataset contains, a total of 10015 RGB dermoscopic images of dimensions
3× 450× 600 distributed over 7 classes namely: melanoma (Mel, 1113 samples),
melanocytic nevi (NV, 6705 samples), basal cell carcinoma (BCC, 514 samples),
actinic keratosis and intraepithelial carcinoma (AKIEC, 327 samples), benign
keratosis (BKL, 1099 samples), dermatofibroma (DF, 115 samples) and vascu-
lar lesions (VASC, 142 samples). The main challenges of this dataset are class
imbalance and the presence of artifacts like dark patches, skin hair, etc.

(a) akiec (b) bcc (c) bkl (d) df (e) mel (f) nv (g) vasc

Fig. 1: Examples of 7 classes of pigmented lesions in the HAM10000 dataset



Fig. 2: CNN Architecture.

The data is first split in a ratio of
90:10 into the training and test data.
The training data is further split in
a ratio 90:10 in to training and val-
idation data. It is worth noting that
the validation and test set both have
the same proportion of each class as
the original dataset. Then the images
are resized to 224 x 224 pixels, and
RGB values are normalised between
0 and 1. All classes except nv are
augmented by rotation, flipping, shift-
ing and zooming to yield 2500 images
in each training class. This yields al-
most double the number of training
data examples (19389 images). The
HAM10000 has multiple images from
different angles and lighting of the
same lesion, which are all kept out of
the validation and test set to avoid
false high accuracy due to data leak-

age. No colour constancy or hair removal algorithms were used since they will
make the training images more homogeneous and defeat the purpose of discov-
ering whether CNNs ignored these features that can cause spurious correlations.

2.2 Deep Network

The CNN model is constructed loosely based on a baseline vanilla CNN network
described in [9]. The basic structure is two convolutional layers followed by a
max-pooling layer. The first two layers contain less filters to reduce the training
time. The network here also includes more dropout layers, less fully connected
neurons to combat the overfitting present when replicating the original network.
Furthermore, it is modified for a seven class classification instead of a two class
one. Every layer uses an ReLU activation function except for the last dense layer
which uses the softmax activation. The resulting architecture is as shown in Fig-
ure 2. The number of trainable parameters is around 6.5 million. For comparison,
the VGG16 network contains 41.5 million and ResNet50 26.7 million.

2.3 Training

The training loss is weighted inversely proportional to the number of images
in each class in order to further compensate for the highly unbalanced training
data. The model is trained using the Adam optimiser [7] for 100 epochs with
an initial learning rate of 0.001. The learning rate is halved when the validation
accuracy did not improve for three epochs.



Fig. 3: Training accuracy (a) and validation loss (b) over 100 epochs.

Fig. 4: Class confusion matrix.

As shown in Figure 3, validation
loss and training loss both plateaued
around the same number of epochs
where the training accuracy is consis-
tently higher than the validation ac-
curacy. The training loss did not im-
prove at a faster rate than the val-
idation loss beyond the 60th epoch.
Note that the higher overall training
loss is due to the fact that the loss
is weighted but not normalised. The
model which yields the lowest valida-
tion loss is saved during training.

3 Explainer Modules

In this Section, we briefly describe
the three explainer modules (LIME,
Grad-CAM and Kernel SHAP) that
we have selected to compare in this work, based on their popularity in relevant
literature.

3.1 LIME

LIME (local interpretable model-agnostic explanations) [11] aims to strike a
balance between interpretability and model fidelity by minimising the following
equation:

ξ(x) = argmin
g∈G

L(f, g, πx) +Ω(g) (1)

where f is the black box model; g is the explainable model used, in this case
a ridge regression model; and Ω(g) is a measure of complexity of the explainable



model; πx is the kernel function that transforms an array of distances into an
array of proximity values between input x and sampled instances in Z:

πx(z) =

√
e
−d2
σ2 (2)

where d is the distance between the sampled instance and the input and σ is a
parameter for the width of the kernel. The kernel function is then used to weight
the loss function between the original model and the linear model:

L(f, g, πx) =
∑

z,z′∈Z

πx(z)(f(z)− g(z
′
))2 (3)

To put it more intuitively, in order to approximate a non-linear model without
making any assumptions about it, the algorithm takes samples of perturbed
instances z and z

′ ∈ Z around input x and its explaninable version x
′
. Then

use the original CNN model to generate a prediction target f(z) to train the
explainable model g(z

′
) using the weighted loss function from equation 3.

When applied to a CNN model, LIME regards an explainable version of an
image to be a binary vector containing zeros and ones. The image is first seg-
mented into superpixels, which are groups of pixels with common characteristics
like intensity or colour. Hence zero means that the superpixel is ”switched off”
and one means that it is ”switched on”. The perturbed instances are obtained
by using a fair coin toss to generate sets of zeros and ones, resulting in images
with different missing patches. The features (i.e. superpixels) with the highest
positive coefficients in the linear model contributes the most to the predicted
class and vice versa.

As a demonstration, Figure 5 is generated using the open source LIME imple-
mentation with its default parameters. Some drawbacks can be quickly spotted.
First there is no indication of the degree of influence that a superpixel can have
on the final prediction. If the third image is directly displayed, one cannot be cer-
tain that the green patch covering the lesion contributed the most. The number
of superpixels included in the explanation is also arbitrary, dependent on the size
of the lesion. Moreover, there are the many parameters that need to be chosen
heuristically, like the segmentation method, kernel width and distance metric.
The default setting here seems to give a reasonable coverage of the lesion, but
further investigation is needed on lesions with more complicated pigmentation
networks.

3.2 Grad-CAM

Grad-CAM (gradient class activation mapping) [12] is a generalised version of
CAM. In CAM, the method is designed for a specific type of CNN architec-
ture where the global average pooling layer directly feeds into a softmax layer.
Whereas in Grad-CAM, any convolution layer can be examined by first calcu-
lating the gradient using back propagation then using global average pooling to
assign weights to each feature map output in that layer (Eq. 4).



Fig. 5: LIME with 1, 2 and 3 superpixels. Green means positive contribution.
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In the above equation, Z is the number of pixels, yc is the class score and
Ak

ij is the feature map activation of feature map k. The feature map outputs
can now be weighted and summed before being passed through a ReLU function
(Eq. 5). The ReLU function makes sure that only positive contributions to the
class are displayed. The level of detail in these saliency maps are determined
by the convolutional layer examined (figure 6). The closer the layer is to the
fully-connected layers, the more accurate these maps are, but also more blurred.

Fig. 6: Grad-CAM from the three max pooling layers in the network.

3.3 Kernel SHAP

Kernel SHAP [8] is LIME plus “Shapley additive explanations”. Here, “kernel”
refers to the kernel function πx in equation 3. The difference being that here it
is modified to retrieve Shapley values [13] (equation 6) and used to weight the
same loss function in equation 3.



Ω(g) = 0,

πx(z) =
M − 1(

M
|z′ |
)
|z′ | (M − |z′ |)

. (6)

Here M is the number of simplified features obtained using a debiased LASSO
[10]. The rest of the algorithm works mostly the same as LIME. The theoretical
benefits of using Shapley values are extensively explained in the original paper
[13]. For this particular application, the immediate improvement from LIME is
that there are significantly fewer parameters to fine tune; and the explanation
covers the whole image with clear indication of degree of influence. Both char-
acteristics make it easier to compare different explanations against one another
(Figure 7). The main downside is that calculating Shapley values are expensive
and slow: with the same number of samples taken, kernel SHAP on average took
twice as long as LIME.

Fig. 7: Kernel SHAP for the top three predictions, taking 1000 samples.

4 Evaluation

There has been mention in recent literature regarding the importance of in-
vestigating fidelity, consistency, and sensitivity of deep learned features [19][3].
However, there are currently no standardised metrics to evaluate explainability
of deep networks. Furthermore, for medical applications, the clinical relevance
of such methods are arguably equally important. In addition, given the model-
agnostic and post-hoc nature of the three explainer modules chosen in the current
work, they can be examined through grouping similar instances together to gain
an intuition regarding their behaviour.

4.1 Consistency

Consistency means that the results can be reproduced under same experimental
conditions. LIME and kernel SHAP are both sampling based methods and have



multiple parameters that need to be determined depending on the data and
the application. These parameters have the most effect on the consistency of
the explanations and subsequently the ability to accurately test the fidelity and
sensitivity in later sections.

The original open source implementation of LIME has a number of parame-
ters that the user can toggle to best suit the application, while kernel SHAP has
a more rigid implementation. Ideally, LIME parameters will match kernel SHAP
as close as possible. For example, both methods use segmented superpixels as
features. In LIME, the default segmentation algorithm is quickshift [17], while
kernel SHAP uses SLIC [2]. In order to compare the two methods, they have
to use the same set of features generated by the same segmentation algorithm.
However, as findings in [14] show that for LIME, the SLIC segmentation resulted
in the lowest weights compared to quickshift and Felzenszwalb [5] when images
are segmented into the same number of superpixels. This can create problems
in terms of consistency since lower weights are more sensitive to small changes
between two sampling sessions. When quickshift is used, the saliency maps gen-
erated did not change when repeated multiple times with 1000 samples. But
when SLIC is used, the superpixel explanations changed during multiple runs
even when 5000 samples were taken (Figure 8).

Fig. 8: LIME saliency maps using 100 SLIC superpixels with 5000 samples.

Fig. 9: Kernel SHAP saliency maps using 100 SLIC superpixels, 5000 samples.

This is the same for kernel SHAP (Figure 9), though visually the change is
less noticeable. Regions within the pigmented lesion with high Shapley values do



not go from having a positive value to a negative one. Regions in the surrounding
skin area with low weights do change. Of course the number of samples taken can
be increased even higher to reduce the inaccuracies of the linear approximation
but that would increase the computational cost. Nevertheless, making the size
of the superpixels larger can also guarantee a more stable result. This is because
smaller superpixels do not cover enough area in the lesion for them to capture
much useful information for classification. As a result, the weights assigned to
them become small. Reducing the SLIC segments to 50 in this case have shown
to improve consistency when taking 5000 samples for both LIME and kernel
SHAP while preserving enough details in pigmentation, shape, etc (Figure 10).

Fig. 10: LIME and kernel SHAP saliency
maps generated using 50 SLIC superpix-
els with 5000 samples.

The other important parameter to
set is the feature selection method
used. The default method used in
LIME so far is referred to as “highest
weights”. It selects the highest prod-
uct of absolute weight times original
data point when learning with all the
features. It is quite obvious that this
method is not ideal for lesion classifi-
cation because it will give a massive
weight boost for light, non-pigmented
superpixels with high values for data
points and therefore potentially skew
the result. LIME can match kernel
SHAP and use LASSO feature selec-
tion [10] but it negatively impacted
the consistency when all other param-
eters are kept the same. This is due to the fact that LIME fits the features to a
ridge regression model for approximation, which already has built-in regularisa-
tion. An extra step of feature selection will reduce the weights even lower and
make them unstable. Kernel SHAP uses a weighted least square loss function
and hence the feature selection beforehand is necessary. Other options include
“forward selection”, in which features are added iteratively until the addition of
a new feature does not decrease the loss. However, this process is order sensitive
and hence inconsistencies are still present in repeated runs. Thus, all features
are selected when LIME is used to ensure maximum stability of the result. A
larger feature set supposedly will increase the computational cost but the in-
crease observed is far less than the cost of increasing the samples taken.

Various distance metric can also be tested for LIME. In the original paper,
the authors suggested using cosine distance for textual data and Euclidean (L2)
distance for images. When tested, cosine distance generated far more consistent
results than euclidean distance. Euclidean distance might have performed well
for low dimensional datasets but in this case with 50 features, this no longer holds
true. As shown in Figure 16 cosine distances also gives slightly higher feature
weights overall and ensures more stability. Lastly, inconsistencies can still occur



using these optimised parameters. In those cases, the inconsistency itself signals
that a larger area in the image is contributing to the classification (e.g. a large
lesion). When this happens, selecting a suitably larger number of superpixels
included in the explanation becomes more important.

(a) LIME saliency maps with 5 superpixels
and sampled 5000 times.

(b) Grad-CAM saliency maps from the last
max pooling layer.

(c) Kernel SHAP saliency maps with 50 superpixels and sampled 5000 times.

Fig. 11: Examples of saliency maps generated in classes with high accuracies and
images with high prediction confidence in order to test the fidelity.



4.2 Fidelity

Fidelity commonly refers to the ability of an explanation method to approx-
imate the black box model correctly. It is usually tested by perturbing the
model through random initialisation of weights and checking how the expla-
nation changes with it. This is true for all three methods that are being exam-
ined. However, it is an insufficient confirmation on the fidelity of these methods.
When an explanation is generated, there are three possible reasons for its qual-
ity: whether the method used is truthful to the model; whether the model has a
high accuracy; or a combination of the two.

Low accuracy means that the model has not learned the underlying data
representation properly and the associated explanations will thus be less mean-
ingful and harder to understand. This model has a balanced accuracy of 0.64,
but individually some classes have a higher accuracy and some are lower. Av-
erage model performance can be artificially increased if only classes with high
accuracy are chosen. Among these classes, predictions with high confidence are
used to generate saliency maps, to ensure that the chosen instances are highly
representative of what the model believes to have the characteristics driving its
prediction. Then the only variable in the quality of these explanation is the fi-
delity of the methods. Therefore, any test on these methods in this section will
prioritise images belonging to class df, nv and vasc with at least 99% prediction
confidence. Since all the methods are tested on the same model, the explanations
across all three methods will be similar if they are indeed accurate approxima-
tions. Explanations from the same class should also be similar. Because if the
prediction does not change over small input variations, yet the explanations
change drastically, it is very likely the explanation method is inaccurate.

An initial inspection of Figure 11a and 11c shows that LIME and kernel
SHAP are visually similar simply because the same image segmentation method
is used. A closer look reveals that 3 out of the 9 examples do not agree with each
other: two from the class df and one from class vasc. When both methods are
run repeatedly on these images, the results are very inconsistent, indicating low
weights over the entire map. This implies that many features (i.e. superpixels)
are equally important for the prediction. The images in class df support this
idea as the lesions have light pigmentation and span a large area in the images.
Partial feature overlap between methods during repeated runs also back up this
intuition. However, this is not the case for the image in class vasc. Multiple
kernel SHAP results all included a singular patch on the oval shaped pigmented
lesion (similar to the other instances in this class), despite small changes in
the surrounding skin area. However, among multiple LIME results, the same
superpixel is only activated half of the time (Figure 12). The inconsistency of
LIME explanations might be the reason for this behaviour. The fact that a ring-
shaped superpixel (not present in other LIME explanations of the same class)
is just as likely to be activated shows that the inconsistency is hampering the
ability to approximate the black box model accurately.

Grad-CAM is a gradient-based method commonly used for localising points
of interest in a CNN when making a prediction. It is shown to be successful



Fig. 12: LIME saliency maps generated 5 more times for image ISIC 0025612.jpg.

in 8 out of 9 images in the examples, highlighting correctly the lesion areas.
However, Grad-CAM failed to generate a saliency map for one of the presented
images in the figure. The gradient from the last dense layer into the final con-
volutional layer has become zero because the softmax activation function has
become completely saturated. Another cause for concern is that the Grad-CAM
saliency maps seem to activate in areas where both LIME and kernel SHAP has
deemed to be negatively contributing to the prediction.

(a) Saliency maps generated for predicted
class nv and correct class vasc.

(b) Saliency maps generated for predicted
class df and correct class nv.

Fig. 13: Examples of saliency maps for misclassified images in order to test the
sensitivity of the explanantion methods to change in class labels.

4.3 Sensitivity

Explanations for different instances should be different under the same model,
using the same explanation method. If a method offers the same explanation
when the user changes either the input image or its predictive class, then the
explanation can be considered useless for decision support. For example, image
in Fig. 13(a) was misclassified as class nv with a confidence of 0.75, followed by
the correct class vasc with confidence 0.24. Its saliency maps (Figure 13a) shows
that all three methods generated different looking maps when asked to explain
the top prediction and the correct one. LIME changed the location and the color



of the superpixels while the other two generated saliency maps that showed a
higher activation for the correct class. Again, LIME and kernel SHAP agrees in
terms of the superpixels supporting and rejecting the classification. Grad-CAM
also shifted its most activated region from the upper right towards the bottom,
overlapping the regions covered by the other two methods.

However, if the image is misclassified with a high confidence, like in Frg.
13(b), where the correct class nv is ranked 4th on prediction confidence (0.002)
while the top prediction, class df, has a confidence of 0.95, the saliency maps are
less helpful. As shown in figure 13b, the Grad-CAM maps are extremely similar
and for kernel SHAP the weights on the superpixels are too close to zero for the
correct class to provide any useful insight. Only LIME is able to give a distinctly
different explanation for class nv.

Fig. 14: ABCD features used in diagnosis of skin lesions in dermatology.

4.4 Clinical relevance

Dermatologists consider certain clinical features during the classification of ma-
lignant or benign skin lesions. A popular example is the ABCDE features set [6]
presented in Fig. 14. In this approach, Asymmetry, Border irregularity, Color
variation, Diameter and Evolving or changing of a lesion region are taken into
consideration for determining its malignancy. We expect some of these criteria
to manifest themselves in saliency map explanations. In HAM10000, class mel
and bcc are cancerous and akiec can develop into a cancerous lesion, the rest are
all benign.

Recall the confusion matrix (Figure 4), 42% of class mel and 37% of class bcc
is misclassified as benign lesions respectively. As the ABCD rule is most com-
monly used for seperating benign and cancerous lesions, especially melanoma,
the instances where class mel is misclassified as class nv are examined to identify
how each methods can or cannot reveal potential reasons for failure in the model.

For LIME and kernel SHAP, the image segmentation algorithm dictates the
appearance of the explanations. The SLIC segmentation has a parameter that



can be chosen to prioritise colour proximity over spatial proximity. Hence the
explanation will automatically be made up of uniform coloured patches. As a
consequence, the borders of lesions and their overall shape will also be marked
out, making it easier to compare to the ABCD rule.

Interestingly, LIME and Kernel SHAP are no longer producing similar results
here. There are direct contradictions in Figure 15a, most prominently featured
in the explanations for class mel. The observations so far have suggested that
LIME and kernel SHAP offer similar level of fidelity with LIME being more
inconsistent.

(a) (b)

Fig. 15: Saliency maps for images from class mel misclassified as class nv, with
prediction confidence above 90%.

However, by comparing the kernel value in terms of number of features in
a sampled instance for the two methods (figure 16), it becomes obvious that
kernel SHAP is not the best for local accuracy in this application. The Shap-
ley kernel assigns high values both when there are very few and when there
are many features in a sample. The logic behind it being that when a single
feature is studied in isolation its contribution to the model can be best mea-
sured. To put in context, samples containing only individual superpixels will be
regarded just as important as samples containing all but one superpixel. Given
that the size of the superpixels are no larger than the whole lesion, the target
class used to train the linear approximation is most likely inaccurate because
the original model is only fed a partial lesion region. But under kernel SHAP
these instances are given the most weight. For figure 15a, the red region marked
out by kernel SHAP was fed through the original CNN model and the classifier
outcome decided against class mel. Both LIME and kernel SHAP do not account
for feature dependence, which makes it impossible for them to capture colour
inconsistency and asymmetry when features are examined separately. Therefore,
it is no surprise that explanations generated using LIME with activated super-
pixels covering the entirety or the majority of the lesion region correlate to the
correct class mel.



Fig. 16: Comparison of kernel value
against the size of the feature set in a
sampled instance [8].

Clearly the CNN has learned the
correct representation of class mel and
class nv, if the explanation method is
telling the practitioner that the model
produces the right outcome when the
whole area of the lesion is accounted
for. However, the model eventually
made its decision based on partial in-
formation. It signals that a larger re-
ceptive field is needed and hence a
deeper network can be more effective.
On the other hand, image augmenta-
tion by zooming and cropping can also
have an impact.

Grad-CAM is proven to be hard
to interpret. A sweeping generalisa-
tion can be made that its saliency maps either fall in to the category of a spotty
activation pattern over the lesion region, or a more even activation pattern with
continuous edges. However, the extent of clinical relevance halts here as the last
max pooling layer is a fairly coarse representation of the original image. This
will only be magnified when deeper networks are used. But if layers closer to the
input is chosen to generate the saliency map, then Grad-CAM will be reduced
to a glorified edge detector. There is also no correlation between activation level
and different class labels. The lack of sensitivity (figure 15b) to different class
labels also hampers its ability to provide useful information.

5 Conclusion

In this work, we compare and evaluate several explanation-visualization modules
against a set of criterion to serve as guideline for machine learning practition-
ers who wish to add interpretability to deep learning tasks. Experiments were
performed using a baseline CNN trained on the benchmark HAM10000 dataset
for automated skin lesion classification task. For the first time, detailed experi-
mental results are presented to formalize several criteria like fidelity, consistency,
sensitivity and clinical relevance. The authors are of the opinion that the results
obtained will be of immediate relevance to readers who value the critical role of
explainability in deep learning, particularly in areas of high social consequence
like healthcare.

References

1. Skin cancers, Oct 2017. Available at https://www.who.int/uv/faq/skincancer/en/index1.html,
accessed on 12.11.2019.

2. Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi, Pascal Fua,
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