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Abstract. TED has been proposed as a simple framework for using any
supervised classification approach to create Explainable AI models [3].
It requires manual annotation of training data with explanations. The
authors of TED report that it yields results as good or better than con-
ventional supervised learning. This paper shows that one possible reason
for this is that the extension of training data can introduce bias by
changing the class distribution. Experiments on the Iris dataset and a
synthetic dataset show that TED performs significantly worse than ini-
tially reported when using class weights during training to offset class
imbalance in training data.
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1 Introduction

Explainable Artificial Intelligence as a field of research is becoming more popular.
While black-box approaches like deep learning have been very successful, good
performance alone is not always enough. As AI becomes more widely used it also
becomes more important to understand what it is actually doing. A decision may
be good if it is correct, but it is better if it is correct and understandable.

There are good, old-fashioned AI approaches, like Inductive Logic Program-
ming (ILP), which are inherently white-box and thus interpretable. This can,
for example, be used to generate human-readable representations of the deci-
sion making of a system. Dare2Del [6] is an ILP-based companion system which
learns rules that are directly interpretable and can be presented to end users as
explanations for suggested actions.

LIME [5] is a technique proposed with the goal of adding explainability to
arbitrary classifiers. This has become a popular idea (Google Scholar lists over
2,400 citations at the time of this writing). For example, this can be used to gain
insight into black-box approaches like deep neural networks.
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Another approach has a similar goal, but a very different design: TED (Teach-
ing Explanations for Decisions) is a simple, high-level framework . The basic idea
is to use any supervised classification approach to learn not only labels, but also
explanations. This approach depends heavily on the quality of the training data.
The authors explicitly state the importance of good explanations provided by
domain experts [3].

Its high-level, semi-manual nature makes this approach very flexible. The
explanations are part of the training data, therefore they can be adapted to a
variety of domains and target groups. The authors argue that the requirement
to manually create training data with explanations can also help reduce bias,
since adding a biased example would be hard to justify [3].

However, bias is not always obvious when considering single examples. Class
imbalance is one type of bias that can occur in training data. When classes are
not equally distributed, trained classifiers may inadvertently favor more frequent
classes when making predictions.

This paper investigates this problem in the context of TED. In section 2 the
design of the TED framework is described and the original evaluation by [3] is
summarized. Section 3 shortly explains how class imbalance can become an issue
when using TED. Section 4 presents experiments that make the issue apparent.
Finally, section 5 provides a conclusion.

2 Related Work

TED, unlike traditional classification approaches, learns class labels and expla-
nations from examples [3]. Any supervised classification approach can be used
with TED. The training data consists of:

X a set of features
Y a class label for X
E an explanation for Y

The form and content of explanations are not specified and may contain arbitrary
values. The only constraint is that they must be enumerable.

Because explanations are meant to be provided as part of the training data,
the application of TED is extremely simple. Instead of learning only labels from
examples (X → Y ), TED learns labels and explanations (X → Y E). The Carte-
sian product instantiation described in [3] simply encodes labels and explanations
as Y E before training. Then the trained model predicts Y E which is decoded
into a separate label and explanation.

The Cartesian product instantiation of TED has been evaluated on two
datasets. The Tic-Tac-Toe example is based on the game of tic-tac-toe. The
legal non-terminal board positions are labeled with the optimal move to make
and an explanation based on a small set of rules for playing the game. For any
move, the explanation can be (in order of preference):

1. win (if the game is won with the move)
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2. block (if the move prevents the other player from winning)
3. threat (if the game could be won with the following move)
4. empty (otherwise).

This results in a dataset of 4,520 examples. There are 36 possible combinations
of label and explanation, since each rule can apply to 9 different moves.

The Loan Repayment example contains 10,000 applications for credit with
two labels (good or bad payment performance). Explanations are not included in
the original dataset. In [3] explanations were generated by applying a small rule
set on the data. Two rules consisting of three literals each were used to classify
the data. The labels of examples that were not consistent with these rules were
changed. For positive examples, the rule itself was used as the explanation.
For negative examples, the explanation was determined by the rule whose first
literal matched, combined with which of the other literals that did not match.
This resulted in 8 explanations.

Table 1 shows the accuracy in the Tic-Tac-Toe and Loan Repayment exam-
ples reported in [3]. The results appear promising, though they are unexpected.
The performance for label prediction is reported to be as good or better than
that of the equivalent models without the TED framework. In the evaluation of
the Tic-Tac-Toe example in [3] the authors point out that, “[g]iven the increase
in number of classes, one might expect the accuracy to decrease.” They also
admit that the accuracy in the Loan Repayment example “may be artificially
high due to the data generation method” [3].

Table 1. Accuracy for predicting Y and E in Tic-Tac-Toe and Loan Repayment

Training input Accuracy (%)
Tic-Tac-Toe Loan Repayment

Y E Y E

X, Y 96.5 99.2
X, Y, E 97.4 94.3 99.6 99.4

3 Potential Problems

Adding explanations to the training data and learning the explanations in addi-
tion to the labels results in a larger output space. Each class may have multiple
possible explanations. The authors of TED describe this as an implicit 2-level
hierarchy in the data that could potentially be exploited [3].

In the Cartesian product instantiation the result is simply a larger number
of classes and therefore a smaller number of examples per class compared to
the same dataset without added explanations. This means that the underlying
classifier in a simple TED instance has to learn more from less. Intuitively there
should be a decrease in performance.
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The addition of explanations to an existing dataset can change the effective
class balance. Even if the original class labels are left untouched, it is possible to
have a different number of explanations for each class. In that case the combined
Y E learned by the classifier will not have the same distribution of classes as the
original dataset without explanations. This can introduce or change existing bias
in the training data.

It seems plausible that the improved performance which TED shows (in com-
parison to an equivalent classifier trained without explanations) is at least par-
tially due to this altered class balance. Section 4 attempts to test this idea.

4 Experiments

In this section TED is evaluated on two additional datasets: the well-known Iris
flower dataset [2] (included in scikit-learn) and the Proactive Retention dataset
(included in the TED source code). The performance of different classifiers is
compared in different configurations:

– with/without TED (i. e. with/without explanations)
– with/without balanced class weights for the underlying classifiers

TED is included in IBM AIX360 [1] which is implemented using scikit-
learn [4]. scikit-learn provides a parameter class weight which can be used to
balance classes. When this parameter is set to “balanced”, each sample is given
a weight that is inversely proportional to the class frequency in the training data.
This prevents the classifier from being biased toward a certain class simply be-
cause it has the most examples.

Three classifiers were chosen for these experiments: a Support Vector Ma-
chine (SVM) classifier, a Decision Tree classifier, and a DummyClassifier. The
DummyClassifier is used with the strategy parameter set to “stratified”. It makes
predictions by choosing a label randomly, considering the class distribution of
the training data. This makes bias through class imbalance obvious, since the
DummyClassifier does not have any other biases.

All experiments in this section were executed using AIX360 version 0.2 and
scikit-learn version 0.21.

4.1 Iris Dataset

The Iris flower dataset consists of 150 examples of 3 types of flowers (iris se-
tosa, iris versicolor, iris viginica). The 3 classes are equally distributed, i. e.
there are 50 examples per class. There are 4 real-valued features for petal/sepal
length/width.

Proper manual annotation would require domain knowledge. Since this re-
quirement could not be fulfilled for this paper, a decision tree (standard parame-
ters, no maximum depth) was trained on the full dataset. This overfitted decision
tree perfectly predicts every example in the dataset. The leaves (identified by
the node number) of this tree were used as explanations (see figure 1).

This results in a total of 9 explanations:
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– 1 for iris setosa

– 3 for iris versicolor

– 5 for iris virginia

These are also all possible Y E combinations.

node #0
petal width (cm) <= 0.8

samples = 150
value = [50, 50, 50]

class = setosa

node #1
samples = 50

value = [50, 0, 0]
class = setosa

True

node #2
petal width (cm) <= 1.75

samples = 100
value = [0, 50, 50]
class = versicolor

False

node #3
petal length (cm) <= 4.95

samples = 54
value = [0, 49, 5]
class = versicolor

node #12
petal length (cm) <= 4.85

samples = 46
value = [0, 1, 45]
class = virginica

node #4
petal width (cm) <= 1.65

samples = 48
value = [0, 47, 1]
class = versicolor

node #7
petal width (cm) <= 1.55

samples = 6
value = [0, 2, 4]
class = virginica

node #5
samples = 47

value = [0, 47, 0]
class = versicolor

node #6
samples = 1

value = [0, 0, 1]
class = virginica

node #8
samples = 3

value = [0, 0, 3]
class = virginica

node #9
petal length (cm) <= 5.45

samples = 3
value = [0, 2, 1]

class = versicolor

node #10
samples = 2

value = [0, 2, 0]
class = versicolor

node #11
samples = 1

value = [0, 0, 1]
class = virginica

node #13
sepal width (cm) <= 3.1

samples = 3
value = [0, 1, 2]
class = virginica

node #16
samples = 43

value = [0, 0, 43]
class = virginica

node #14
samples = 2

value = [0, 0, 2]
class = virginica

node #15
samples = 1

value = [0, 1, 0]
class = versicolor

Fig. 1. The overfitted decision tree for the Iris dataset. value shows the number of
setosa, versicolor, and virginica samples in the sub-tree.

Unlike the labels, the combined labels and explanations are not equally dis-
tributed (see table 2).

An SVM classifier (default parameters), a decision tree (maximum depth of
2 to prevent overfitting), and a DummyClassifier were trained using a 33% test
data split (i. e. 100 training examples). The results of the classifiers without bal-
anced class weights can be seen in table 3. The accuracy of the SVM and decision
tree are consistent with the evaluation in [3]. Performance on label prediction
is either as good (SVM) or even better (a 4 percentage point increase for deci-
sion tree) when explanations are included in the training data. The prediction
accuracy on explanations is also quite high.

The DummyClassifier shows a surprising increase in accuracy. Without ex-
planations, labels are predicted with 34% accuracy, which is to be expected
from a classifier that chooses randomly from 3 equally distributed labels. With
explanations, however, the performance increases by over 10 percentage points.



K. Volkert

Table 2. Label/explanation distribution for the complete annotated Iris dataset

Label Explanation Count Percentage (%)

Iris setosa 1 50 33.33
Iris versicolor 5 47 31.33

10 2 1.33
15 1 0.67

Iris virginica 6 1 0.67
8 3 2.00
11 1 0.67
14 2 1.33
16 43 28.67

Table 3. Accuracy for classifiers on the Iris dataset without class weights

Classifier Training input Accuracy (%)
Y E

SVM X, Y 98
X, Y, E 98 92

Decision tree X, Y 92
X, Y, E 96 92

DummyClassifier X, Y 34
X, Y, E 46 40

With balanced class weights, the SVM and decision tree yield noticably dif-
ferent results (see table 4). Accuracy without explanations is the same. With
explanations the prediction performance for both labels and explanations de-
creases significantly. Label accuracy drops by 12–30 percentage points, and the
prediction of explanations is only about two-thirds as good.

Table 4. Accuracy for classifiers on the Iris dataset with balanced class weights

Classifier Training input Accuracy (%)
Y E

SVM X, Y 98
X, Y, E 86 64

Decision tree X, Y 92
X, Y, E 62 60

The Iris dataset is admittedly quite small. The next section repeats the same
experiments on a larger, synthetic dataset.

4.2 Proactive Retention Dataset

The TED source code in the IBM AIX360 repository (https://github.com/IBM
/AIX360/) includes a synthetic dataset that is used in the Proactive Retention
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tutorial. The intended use case is finding employees who are at risk of leaving a
company.

The data is generated according to distribution functions. There are 8 fea-
tures:

– Position in the company
– Organization
– Potential
– Rating
– Rating slope
– Salary competitiveness
– Tenure (number of months employed)
– Position tenure (number of months at current position)

Each feature has a non-uniform distribution from which the values are randomly
sampled.

There are two labels, Yes and No, expressing whether proactive retention is
necessary for a given employee or not. Explanations are generated by applying
25 rules based on the features. If any of these rules applies to an example, it is
labeled Yes with the rule number as explanation. If no rule applies, the example
is labeled No. The dataset in the TED source code contains 10,000 examples of
which 33.8% are labeled Yes.

The SVM classifier was trained with default parameters. The decision tree
was trained with a maximum depth of 5.

The results are similar to the ones in section 4.1 with regard to class bal-
ance (see table 5), but more in line with the expectation stated in section 3.
Without balanced class weights, the TED-augmented versions of the classifiers
perform worse than their counterparts without explanations by about 6 percent-
age points. The DummyClassifier improves very slightly in label prediction. The
accuracy for explanations is at roughly the same level as for labels.

Table 5. Accuracy for classifiers on the Proactive Retention dataset without class
weights

Classifier Training input Accuracy (%)
Y E

SVM X, Y 86.15
X, Y, E 80.5 77.1

Decision tree X, Y 91.2
X, Y, E 85.55 81.25

DummyClassifier X, Y 54.3
X, Y, E 54.75 43.85

With balanced class weights, however, both the SVM and the decision tree
again perform much worse. Label prediction performance decreases by 18–40
percentage points.
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Table 6. Accuracy for classifiers on the Proactive Retention dataset with balanced
class weights

Classifier Training input Accuracy (%)
Y E

SVM X, Y 86.5
X, Y, E 68.75 59.9

Decision tree X, Y 92.25
X, Y, E 48.35 37.4

5 Conclusion

This paper performs additional experiments based on the work by [3] and at-
tempts to investigate the unexpected performance gains that arise from making
a machine learning problem harder.

The experiments show that class imbalance can be a problem. If training data,
especially small datasets, is not carefully created or extended, the distribution of
classes can become an issue. The simple Cartesian product instantiation of TED
can be very sensitive to training data. Especially when augmenting existing data
with explanations to make it compatible with TED, it can be easy to overlook
the introduced or changed bias.

Using balanced class weights to counteract the bias in the class distribution of
the training data results in a large decrease in performance in both experiments
(see section 4). This shows that at least some of the accuracy increases in label
prediction that TED achieves compared to equivalent classifiers trained without
explanations may be based on the aforementioned bias.

Since manual work on datasets is time-consuming, methods that automat-
ically generate explanations for existing datasets or create synthetic datasets
from scratch are very appealing. Such methods have been used in the original
work by [3] as well as in this paper. It would, however, be more interesting to
see how TED performs on a more realistic, representative dataset.
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Raghavendra, R., Richards, J., Sattigeri, P., Shanmugam, K., Singh, M., Varsh-
ney, K.R., Wei, D., Zhang, Y.: One Explanation Does Not Fit All: A Toolkit and
Taxonomy of AI Explainability Techniques. arXiv:1909.03012 [cs, stat] (Sep 2019)



Teaching AI to Explain its Decisions Can Affect Class Balance

2. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics 7(2), 179–188 (1936). https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

3. Hind, M., Wei, D., Campbell, M., Codella, N.C.F., Dhurandhar, A., Mojsilović,
A., Natesan Ramamurthy, K., Varshney, K.R.: TED: Teaching AI to Explain its
Decisions. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society. pp. 123–129. ACM (Jan 2019). https://doi.org/10.1145/3306618.3314273

4. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

5. Ribeiro, M.T., Singh, S., Guestrin, C.: ”Why Should I Trust You?”: Explaining the
Predictions of Any Classifier. arXiv:1602.04938 [cs, stat] (Aug 2016)

6. Siebers, M., Schmid, U.: Please delete that! Why should I?: Explaining learned
irrelevance classifications of digital objects. KI - Künstliche Intelligenz 33(1), 35–44
(Mar 2019). https://doi.org/10.1007/s13218-018-0565-5


