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Abstract. With the continuous growth of data represented as knowl-
edge graphs, advanced access techniques are in great demand. Keyword
search is a convenient and simple method to retrieve information. It can
be used as an alternative to structured query languages, since it does not
require technical expertise. In the context of knowledge graphs, keyword
search aims to find candidate subgraphs that connect the query keywords
and thus answer user queries. Efficiently finding candidates and ranking
them effectively is still a challenging task. The goal of this work is to
automatically find appropriate subgraphs. The focus is particularly on
enhancing the accuracy of subgraph ranking by leveraging semantic in-
formation combined with other factors. Preliminary results demonstrate
that the combination of importance-based and semantics-based metrics
is promising compared to purely structural techniques.
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1 Problem statement

Knowledge graphs (KGs) have become useful resources to enhance search. In the
context of keyword search, query elements are generally associated with entities
from the graph. They are not considered as mere literals anymore but acquire
their semantic identity including relations with other graph entities. KGs are
often available in form of RDF triples. Queries using SPARQL require not only
the construction of complex queries but also the knowledge of underlying data
and schema. Those drawbacks make it not suitable for most end-users.

Keyword search is a common and user-friendly paradigm for querying text
and structured data. It could be used and adapted to enable non-expert users
to explore RDF data. Users enter terms to describe their information need and
the system returns items deemed relevant. A possible answer is usually a sub-
graph that connects nodes corresponding to the input query keywords. Those
answers (bindings) are directly retrieved or fetched using a generated query that
corresponds to a conceptual answer subgraph (subgraph template).

The main challenges in both approaches are: (i) accurate mapping of key-
words to graph elements, (ii) developing efficient approaches that scale to large
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KGs to retrieve candidate subgraphs (bindings or subgraph templates), and
(iii) providing strategies to rank the candidates with respect to their relevance
to the query. Many research efforts addressed the scaling aspect, whereas candi-
dates ranking is still not exhaustively studied in the literature. Existing ranking
factors are mostly based on structural (e.g., number of nodes), statistical (e.g.,
edge frequency), or textual (e.g., node literal description) graph properties. They
do not leverage the semantic nature of KGs. However, the relationships between
different concepts can provide valuable insights for the ranking of candidates.

For this work, we assume that keyword-graph element mappings and the type
of entities to retrieve, referred to as target, are determined beforehand. Gener-
ating such mappings and answer type prediction are considered out of scope for
now. The initial aim is not performing a Google-like generic search, but allow-
ing domain specific lookups where possible targets are predefined by the system
administrator (e.g., a product (target) search engine, where other entities like
vendors should not appear as results of a query). Instead, we focus on the sec-
ond as well as the third challenge and aim at (1) automatically finding candidate
subgraph templates and thus their bindings, (2) studying how semantic, struc-
tural, statistical, and textual properties of a a template and its bindings could
be combined to better judge its relevance and (3) determining to which extent
lower ranked templates still add relevant results without loosening the relation
between search query and results. Thus, we attempt to improve the effectiveness
of keyword search systems by incorporating ranking criteria that also leverage
information that can be inferred from the semantics of the subgraphs.

2 Importance

By providing techniques that efficiently retrieve good quality results with respect
to the user query, we allow end-users to access, explore and analyze semantic web
resources. Furthermore, we make use of KGs to implicitly trying to understand
what the query as a whole actually means and thereby achieve at least a modest
progress in interpreting user intention. By using keyword search as an easy, quick
and familiar query method, the time and effort needed to analyze the underlying
structure of the data and to learn new technologies will be reduced.

3 Related Work

Keyword search over structured data. We consider efforts from keyword
search over both relational databases and KGs relevant, as both perceive data as
a graph. For KGs, the definition of the graph structure is straightforward. For re-
lational databases, nodes are tuples and edges are given by foreign key relations.
Graph-based methods [1–3] apply graph traversal algorithms on the whole data
graph (instance level) to directly find final answer subgraphs, whereas schema-
based approaches [4–6] operate either on an existing schema, or generate a graph
summary using available instance level data. They retrieve generic subgraph tem-
plates whose instance level bindings represent the final answer subgraphs. Both
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(b) Subgraphs with bindings

Fig. 1: Example RDF graph and possible answer subgraph templates to the query
Q = {French (keyword), cities (target)} together with some bindings.

categories use heuristic algorithms to find the top-k connected structures. While
graph-based methods mostly focus on on how to speed up exploration and do
not rely on a schema, schema-based approaches construct a summary graph to
improve scalability. However, the price is being schema-dependent and there is
a risk of losing important relations during summarization.

Ranking criteria for subgraphs. We classify the approaches used to rank
candidate subgraphs as follows: Compactness-based [4,5] consider the size of sub-
graphs as a quality criterion and their scores are given by the number of nodes
or edges. However, they fail to distinguish between subgraphs having the same
number of elements. Importance-based methods assign an importance score to
graph elements based on different criteria. In [6] the importance of nodes/edges is
defined by the total number of entities/edges clustered to a class node/summary
graph edge. Others use PageRank [7] assigning higher scores to graph elements
referenced by many other important elements. [1] assigns weights to nodes con-
sidering that nodes that have more pointers (in-degree) get higher scores. Info-
Rank [8], a weighted variant of PageRank, calculates edge weights as the sum of
informativeness of the respective subject and object. Informativeness is defined
as the number of owned literals. One of the shortcomings of importance-based
approaches is that relations appearing frequently or having more pointers are
not necessarily more semantically relevant. Textual-based methods usually use
matches between the textual content of subgraphs and keyword query terms
often adapting TF/IDF to graphs. The different approaches vary in what they
consider as a document (e.g., text of tuple in [9]). Those methods try also to
include the structural information of the subgraph by dividing by the number
of nodes. Virtual document-based approaches [10, 11] extract a set of subgraphs
from the original graph, map each subgraph to a document (e.g., node text), and
finally perform a keyword search. Profile-based methods [12] use user profiles to
reduce the search space and provide results closer to the user intent.
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Running example. We illustrate the difference among existing approaches
using the sample graph given in Figure 1a. It features five concepts (e.g., Person),
their instances (e.g., P1 ), and relations. Figure 1b shows two possible answer
subgraph templates (Sub1 and Sub2 ) to the query Q = {French (keyword), cities
(target)}, that are found using a schema-based method, where the most intuitive
information need is Cities located in a French-speaking country. Sub1 retrieves
cities that are place of birth of a person whose native language is French, whereas
Sub2 retrieves cities that are located in a province within a French-speaking
country. Each template has a list of possible bindings (e.g., Bind1A).

Compactness-based methods will rank Sub1 over Sub2, since they primarily
rely on the size of the subgraph. However, Sub1 will also return cities located in
non-French speaking countries (e.g., Cologne in Bind1A). Textual-based and Vir-
tual document-based approaches rely on the textual content of the subgraphs. In
graphs, textual information is usually rather scarce. Classes descriptions are also
quite generic, so using them does not allow to distinguish sufficiently between
Sub1 and Sub2. Instance level bindings provide a more nuanced picture though,
so aggregated scores of bindings could rank the templates themselves. Yet, Sub1
will likely be ranked over Sub2, as the term French appears quite often in the
descriptions of Person-instances. Importance-based methods depend for example
on the number of occurrences of nodes/edges. Our example contains more in-
stances of Person and their relations than Countries and Provinces. This places
a higher importance on relations like place of birth and thus ranks Sub1 over
Sub2. In general, all mentioned approaches omit the semantics of relations. To
the best of our knowledge, semantic metrics for judging subgraphs relevance are
not considered by existing methods. To address the mentioned limitations, we
propose a ranking method that takes advantage from the semantics of relations.

4 Research Questions

From the previous discussion, we identify the following research questions:
RQ1. How to automatically find non-redundant, concise subgraph templates

and thus bindings connecting the query keywords in a reasonable time that
permits live user interaction?

RQ2. How to measure the quality of the candidates by leveraging semantic
information to rank them by relevance to the user query?

RQ3. How many templates are required to meaningfully answer the query?
In order to answer those questions, we establish the following assumptions:

(RQ1) ASM1.1. A mapping between keywords and graph elements already
exists. Each keyword is assigned to one corresponding element in the data graph.

(RQ1) ASM1.2. A target class for the search is given for each query.
(RQ1) ASM1.3. Heuristic algorithms can approximate the set of relevant

subgraph templates. A pruning phase should reject subgraphs with superfluous
parts (e.g., edge can be removed without disconnecting keywords and target) and
perform a redundancy check. This prevents replacing other relevant subgraphs
that may contribute better to the completeness of the final query result.
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Fig. 2: Overall overview of the proposed approach.

(RQ2) ASM2. Combining metrics to exploit the semantic relations between
entities with other factors such as structural, statistical, or textual characteris-
tics can achieve a good relevance ranking. One example is the pairwise semantic
relatedness between graph nodes under the intuition that jumping to a semanti-
cally related node could increase the possibility to lead to highly relevant results.

(RQ3) ASM3. Expanding the list of used templates may contribute new
suitable results. We generate more complete results by considering not just the
most relevant templates, but also others with high relevance. Evaluations using
real-world datasets and suitable gold standards are needed to identify which and
how many templates should be considered to add relevant items to the result.

5 Preliminary results

Methodology. To address the research questions, we propose the approach de-
picted in Figure 2. The workflow is divided into two phases: off-line and runtime.
The off-line phase takes the original RDF graph, summarizes it, and assigns costs
to its edges based on query-independent cost functions. Our work pertains to the
schema-based category. We assume that the input data is available in form of
triples together with rdf:type relations and the summary graph is created using
them. Instances of the same type are clustered into a node in the summary graph
together with their relations. Entity-literal and rdf:type relations are excluded.
The former are always leaf nodes and thus do not contribute to the exploration.

The runtime phase takes the weighted summary graph, user keywords (classes
or instances given by IRIs), and the target. The first step is to retrieve the cor-
responding node in the summary graph for each keyword. Afterwards, the graph
exploration automatically attempts to find paths that connect keywords and
target. We use an adapted and improved version of the backward search based
on [6]. The basic algorithm has the drawback of generating redundant subgraphs,
as different connecting nodes can result in the same subgraph being found. Thus,
we add a redundancy check after finding a connecting node (connects keywords
and target). Another shortcoming is that some generated subgraphs have su-
perfluous parts. We believe that those subgraphs could sometimes be higher
ranked and thus prevent more informative subgraphs to appear within the top-
k. To cope with this problem, after finding a connecting node we first check if
the subgraph contains superfluous parts, if yes we remove them and perform a
redundancy check before adding it to the candidates list.
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Fig. 3: Possible relevant subgraphs to Q = {French (keyword), cities (target)}.
Each subgraph edge has a CostFreqEdgeAB (round brackets), CostRelEdgeAB

(square brackets), and #triplesEdgeAB (braces).

The exploration returns a list of subgraph templates that serve as input for
the query generation step that consists of translating templates to queries (e.g.,
SPARQL). Query results for each template correspond to a collection of bindings
that could be again ranked based on query-dependent functions (e.g., textual).
The system’s final output is a list of entities to be displayed to the user. The
described workflow allows to automatically generate candidate subgraphs given
a target and a set of keywords and thus approaches RQ1.

Results. To address RQ2, we run our pipeline using different cost functions,
and investigate how the returned templates are rated. First, an importance-based
cost, CostFreqEdgeAB = 1− tripleFreqEdgeAB where tripleFreqEdgeAB is given
by Equation 1. Here frequent triples are more important, therefore they are given
lower cost and will be preferred during the exploration.

tripleFreqEdgeAB = #triplesEdgeAB −MinTripleCount

MaxTripleCount−MinTripleCount
(1)

Second, a semantics-based cost given by CostRelEdgeAB = 1 − SemRel(A,B)
where SemRel(A,B) is the pairwise semantic relatedness of two connected nodes
A and B in the subgraph.

We concretely use the semantic relatedness defined in [13] calculated over
WordNet [14] and the graph in Figure 1a with triple counts. With this, we want
to verify (RQ2) ASM2 under the intuition that jumping to a semantically
related node could increase the possibility to lead to highly relevant results.

Figure 3 shows two generated possible relevant subgraph templates (Sub1
and Sub2 ) to a given query Q. We analyze subgraph total costs (sum of edges
costs) using the previous metrics. Since the overall intention is not allowing
discovery by assigning higher scores (lower costs) to less predictable results, we
expect that Sub2 should have lower cost in comparison to Sub1. Consequently,
we deduce that the frequency of appearance is not a good indicator of relevance
and semantic relatedness seems more promising. However, semantic relatedness
still cannot distinguish between subgraphs having the same nodes, but different
edges (e.g., in Figure 1a there are two relations between city and province).

For this issue, we propose a new cost function combining semantic related-
ness and triple frequency. This function favors frequent edges in cases of equal
semantic relatedness and is given by Equation 2, where 0 < β ≤ 1 is a fac-
tor to adjust the effect of tripleFreqEdgeAB on SemRel(A,B). Instead of a
cost of 0.212 using semantic relatedness alone, this new cost function results in
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Costlocatedin = 0.482 and Costcapital = 0.598 (with #triplesCapital = 1720 and
β = 0.5) and thus allows to differentiate between both subgraphs.

CostEdgeAB = 1 − SemRel(A,B) · (β1−tripleF reqEdgeAB ) (2)

6 Evaluation
To evaluate the effectiveness of the current approach (RQ2), we need a test col-
lection including a KG, a set of queries, and human relevance judgments. This
test collection should provide mappings between possible result entities and the
KG and at best a known target for each query. Determining the ground truth
based on the automatic generation of a single SPARQL query (one template)
like in QALD-23 is not suitable, since our approach uses multiple subgraph tem-
plates and thus queries. One suitable benchmark could be [15], which provides a
large number of queries over DBpedia together with their relevance judgments
collected via crowd sourcing. Another possible benchmark is [16] which uses
three datasets and provides 50 queries for each dataset. The used datasets are
available in form of relational databases and have to be converted to RDF. Both
test collections could be fitted to our requirements, but still should contain at
least some queries that are complex enough in the sense of requiring subgraphs
that go beyond direct relations. Another direction is to think of new ways of
evaluation that are more adapted to retrieving subgraphs and not only the fi-
nal generated entities. By analyzing relevant results, we expect to verify that
expanded subgraph templates also contribute meaningful results (RQ3). The
following metrics could be used to compare the result set returned by our sys-
tem with the ground truth: Precision, Precision@k, Recall, F-measure, Mean
average precision and Reciprocal rank. We plan also to verify that our system
scales with real-world datasets with a response time that allows comfortable user
interaction (RQ1) by measuring its execution time and memory consumption.

7 Discussion and future work
The current preliminary results indicate that semantics (e.g., semantic related-
ness) are a good indicator of results relevance compared with structural metrics
(e.g., triple frequency). We introduced a new ranking metric by combining im-
portance and semantics-based criteria. Current results are promising, but still
need evaluation using other datasets and queries against an appropriate ground
truth. Furthermore, we need to investigate how to include other aspects in result
quality assessment. The current approach requires some conditions that are not
necessary available in all scenarios (rdf:type relations, known target, and exist-
ing keyword-graph element mappings). Therefore we could think of solutions to
make the approach more unbounded. Potential questions that still need to be in-
vestigated in further studies could be: How to deal with entities without type by
summary graph generation? How user intention (target) could be automatically
identified? How to leverage domain knowledge to improve result accuracy?
3 https://github.com/ag-sc/QALD/tree/master/2
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