
Programming Project in an Undergraduate Software Engineering

in the New Normal: Challenges and Proposed Solutions

Rex Bringula
a
, Sheila Geronimo

b
and Ariel Aviles

c

aUniversity of the East, 2219 CM Recto, Manila, Philippines
bUniversity of the East, 2219 CM Recto, Manila, Philippines
cUniversity of the East, 2219 CM Recto, Manila, Philippines

Abstract

This paper reports the practices of two faculty members

of a software engineering course in one university in

Manila in terms of programming project requirements

during face-to-face sessions (i.e., before the COVID-19

pandemic) and the pandemic. It presents the challenges

of implementing this course requirement in the time of

the pandemic as well as the proposed solutions to

address these issues. It concludes that the activities

relating to the software project can still be pursued with

modifications and with the teaching styles of the

teachers. Future research directions are also offered.

1. The Undergraduate Software Engineering Course before the Pandemic

 The undergraduate Software Engineering course (subsequently referred to as SE) is a 3-unit

course offered in one university in Manila. This is one of the major courses in Computer Science,

Information Technology, and Information Systems degree programs. The course requires 54 contact

hours that are split into a 36-hour lecture and 18-hour laboratory sessions. In the lecture sessions,

teachers use different teaching-learning strategies (e.g., discussions, group activity, role-playing, etc.)

and assessment tasks (e.g., seat works, quizzes, exams, case analysis, group discussions, etc.) [1].

During the laboratory sessions, students develop the software they choose. Both sessions are

conducted in a face-to-face setting which requires the presence of the teacher. The course syllabus

entails discussions of introduction to SE, process models, Agile software process development,

project scheduling, requirements engineering, requirements modeling, design concepts, quality

concepts, configuration management, and risk management. The course requires students to analyze,

design, develop, and test system models. Students are also expected to develop team collaboration and

management skills as well as communication skills. To achieve these goals, the students are required

to present their developed systems.

 A team of four to five members develops software based on the client's needs (Table 1). The

team is composed of a team leader, programmer, user-interface designer, systems tester, and

document analyst. The team leader oversees the overall progress of the project and the performance of

the team. The programmer does the actual coding while the user-interface designer ensures the ease of

using the interfaces of the system and the usability of the system as a whole. The primary function of

the systems tester is to examine all possible loopholes of the software and to recommend

improvements of the software to the programmer. Finally, the document analyst generates and

compiles all records, and develops a systems manual. Throughout these activities, they are required to

sub mit a progress report to the team leader who, in turn, submits it to the teacher.

Joint Proceedings of SEED & NLPaSE co-located with APSEC 2020, 01-Dec, 2020, Singapore
EMAIL: rexbringula@gmail.com (A. 1); ariel.aviles@ue.edu.ph (A. 2); sheila.geronimo@ue.edu.ph (A. 3)

© ️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

 Figure 1: Individual Participation Rubric (Adapted from [5])

The team members are graded individually (Figure 1) as well as a group (Figure 2). For the first

rubric (Figure 1), a student may acquire a minimum of 7 points and a maximum score of 28 points.

The lowest score that a team can receive is 20 points and the highest possible score is 80 points

(Figure 2). The rubric in Figure 3 is used for individual assignments or activities (e.g., investigation of

related systems or software).

The current COVID-19 pandemic challenged the current practice of development and presentation

of the application of a real-world system (e.g., [15]). Before the pandemic, students were required to

develop and implement an application system for a client. This practice is no longer feasible because

of the current lockdown. Furthermore, the course will be implemented in a fully online environment.

Therefore, the delivery of the content will also be challenging since this is the first time that the

course will be implemented online. This paper reports the practices of two male faculty members

handling Software Engineering course in one university in Manila before the COVID-19 pandemic. It

also presents the challenges in the SE project brought by the pandemic and the proposed solutions in

addressing these challenges.

Figure 2: Group Presentation Rubric (Adapted from [17])

Figure 3: Rubric for Research Activity (Adapted from [18])

2. Software Engineering Programming Project in an Online Learning Setup

According to McCombs and Vakili [14], e-learning follows psychological principles. One of

these principles is setting standards and assessments. This principle aims to assess the learners in their

learning progress. Another principle states that learners may experience constraints on learning. Thus,

the curriculum must be customized based to allow learners to see the progress they are making in the

course. In other words, the curriculum must be flexible and dynamic which is based on the needs

and/or constraint considerations.

Edwards [7] shared his teaching strategies in an online graduate Software Engineering program at

Virginia Tech. The learning activities include reading assignments, class discussions, homework

assignments, group project assignments, and final examination. The first group project assignment

entails small group projects where a team of students with 3-4 members collaborates to develop a

realistic application. The instructor provides synchronous (e.g., chat sessions) and asynchronous (e.g.,

email and discussion board) support Students may meet face-to-face or online in performing the

assigned tasks. The second group project involved testing the developed system of the other groups.

The preliminary evaluation of this course delivery technique showed that the students enjoyed the

course and understood the course materials.

The study of Jacobsen et al. [9] reported their experience with two distance graduate courses in

software engineering. They utilized WebCT, electronic mail, a list server, and NetMeeting in the

implementation of the course. They recommended that there should be mechanisms and support

systems that will allow iterative development and assessment of distance learning. They also reported

that time lags, unexpected barriers, and longer course development periods in teaching the course

online. Some features of WebCT are not used because they are not applicable in graduate distance

learning. It was shown that distance learning requires well-structured and well-indexed web materials

and resources to be established. Recently, mobile applications are gaining popularity as a resource for

software engineering materials [13, 20].

Edwards and Sridhar [6] investigated the effectiveness of global virtual teams in software

engineering projects. Specifically, the study determined the relationship between the independent

variables (e.g., ease of use, the structure of project tasks, the effect of the time difference, trust

between teams, academic orientation, cultural orientation, and size of the team) and the dependent

variables (e.g., learning effectiveness, quality of projects, team project experience, and software

engineering process). The participants of the study are master’s degree students in India and Canada

with 3-6 members in a team. It was revealed that ease of use of technology, trust between the teams,

and well-defined tasks structure were related to learning effectiveness, project experience, and

software engineering process. The study concluded that ease of use of technology, trust between the

team members, and well-defined task structure were the factors that have a positive relationship with

the efficiency, effectiveness, and satisfaction level of global virtual teams.

Leung [11] compared the effectiveness of e-learning and traditional courses delivery of a graduate

course in software engineering. The e-learning course is supported by online teaching materials,

assessment tools, online tutorials via audio conferencing, and bulletin board discussions. The class

formed a team consisting of 3-4 members for a group project. The project involved a survey of a

particular testing method or a detailed proposal to implement a certain testing method. The traditional

model involved 13 weeks of face-to-face lectures and tutorials with the same course requirements. It

was found that the e-learning mode is as effective as the traditional mode of teaching.

Bouillon et al. [2] that communication, coordination, and collaboration were the challenges in

implementing software engineering projects. A software engineering project is a major requirement of

the course. Students should develop a project of realistic scope using realistic software development

tools. To achieve this goal, the researchers used software named ECLIPSE which allowed distance

learning students to collaborate in a team to produce a large software system. The study found that the

system facilitated communication among the team members. However, it failed to define clearly the

tasks and responsibilities of group members.

Demir [4] investigated the difficulties faced by 78 software practitioners in managing a software

project. The author found that the top 10 challenges software engineers face are in the areas of scope

management, requirements management, project planning/estimation, communication, staff/hiring,

project monitoring/control, risk control, technical complexity, stakeholder involvement, and

leadership. The author also found that the project is more difficult to manage when the team is

relatively large (with 11-100 members).

3. Methodology

This qualitative study interviewed two faculty members in one university in Manila. Both faculty

members have at least 20 years of teaching experience and have international certification in Scrum

Methodology. Telephone interview sessions with the two were conducted to gather data. They were

asked about the nature of the SE programming project, their teaching practices before the pandemic,

the challenges brought by the pandemic in terms of executing the software project development, and

the proposed solutions to these challenges.

Responses (subsequently referred to as text) were analyzed through the grounded theory approach

to determine the emerging themes. The themes were categorized based on the activities in the

development of the project (Table 1). The activities are based on the practice of the informants. The

approach includes open, axial, and selective coding, and constant comparative methods [1]. Using a

word processor, the first researcher coded the texts independently. The codes were guided by the

questions “What keyword/s, phrase, or sentence that could capture the idea of the informants’

response with the question?” and “How can these codes be valuable in explaining their response?”.

Open codes were identified through the keywords, phrases, or sentences that could represent the

responses of the informants were identified in the text.

The open codes were verified through consultation with the second researcher. The first researcher

presented the codes to the second researcher. The purpose of the presentation is to determine whether

the second researcher would agree. In case of disagreements, the researchers deliberated until a

consensus was achieved (i.e., at least 2 researchers have the same views on the issue being resolve).

These steps were repeated until all open codes were analyzed. The texts are then combined to

determine if the texts are relevant to the themes.

To maintain the accuracy of this report, these writers sent the paper to the informants (i.e.,

respondents of the interviews) and sought their comments and suggestions. The paper was revised

until the authors and the informants reached a consensus.

4. Programming Project during the COVID-19 Pandemic, Key Challenges, and
Proposed Solutions

 Table 1 shows the summary of activities for the programming project requirements before the

pandemic and the key challenges during the pandemic. The grounded theory approached identified 13

key challenges.

(Key Challenge 1) Attainment of Course Outcome, (2) Determination of Scope of Work, (5) Digital

Collection of Software Projects, (6) Topics Duplication, (7) Beneficiaries of the System, (8) Project

Scope Definition, and (12) Systems Implementation

All activities leading to the completion of the project resembled a virtual team since all members

who were distributed geographically, collaborated online [12,16]. The primary challenge brought by

the pandemic was to relax the course requirements without sacrificing the need to meet the course

outcomes. The previous practice of selecting a topic and defining the scope of the project involved a

frequent visit to the library and a series of personal interviews with the stakeholders, clients, or

customers. These prior activities are no longer feasible because of the lockdown. The key issue

involving topic selection and scope definition is that the library's digital collection of previous

projects is not available online. Students' prior works are submitted as hard copies and are not

digitized. Therefore, there is a need to limit the scope of the programming project, at least for SE,

since students are not able to physically visit the library and a company, to interview key personnel,

and to gather insights from a company that could serve as their client. Even if the lockdown is lifted,

the threat of being infected by the virus is still high because the number of infections is still rising.

Table 1. Summary of Activities for Programming Project before COVID-19 Pandemic, Key

Challenges, and Proposed Solution
Activities Before the

Pandemic

Key Challenges Proposed Solution Basis

Description of the

project requirement
 Students are required

to submit a fully

functional system

1. Attainment of the course

outcome
 Submission of a

prototype system

 McCombs and

Vakili [14]

Determination of

Team size and

composition

 4 to 5 students per

group

2. Determination of the

scope of work of each

team member

 Retention of the team size

and composition

 Re-definition of tasks

 Edwards [7],

Edwards and

Sridhar [6];

Bouillon et al.

[2]

Member inclusion  After a few face-to-

face meetings,

students select their

team members during

class sessions.

3. Students, not knowing

who is officially

enrolled in the course

4. Difficulty in

determining if the team

reached the maximum

number of members

 Distribution of the class

list thru the Learning

Management System

(LMS) and selection of

members by the students

 Use of the LMS

Grouping function

 Jacobsen et al.

[9]

Topic selection  Students may visit the

library for hard copies

of existing systems

 Stakeholders/clients/c

ustomers can be

consulted

5. Non-digitized copies of

software projects

6. Duplication of topics

7. The difficulty of finding

possible

stakeholders/clients/cust

omers (i.e., beneficiaries

of the system)

 Proposal of a "generic"

prototype system instead

of a fully functional

software

 Bouillon et al.

[2]

 Mahatanankoon,

et al. [13],

Vollmer [20]

Scope definition  Students may visit the

library for hard copies

of existing systems

 Stakeholders/clients/c

ustomers can be

consulted

8. Not well-defined project

scope
 Use of the library digital

collection and Google

Scholar for review of

related systems

 Jacob et al.

[2000], Demir

[4]

Actual coding  Independent and

group work

9. Systems integration

since they are working

remotely/ independently

 Proposal of a "generic"

prototype system will be

proposed instead of a

fully functional software

 Bouillon et al.

[2], Demir [4]

Monitoring  Progress is reported

during class sessions

(i.e., group reporting)

10. The difficulty of taking

turns through real-time

meeting applications

11. Intermittent Internet

connection

 Progress report during

synchronous or

asynchronous sessions

 Jacob et al.

[2000],

Implementation  Students implement

the software to the

company

12. Implementation not

feasible because of

lockdown

 Proposals of web-based

or mobile-based systems.

 Alternative redefinition

of the course

requirement.

 Jacob et al.

[2000]

Presentation  A working system

together with its

documentation is

presented during class

sessions

13. Intermittent power

supply to some areas

Intermittent Internet

connection

 Presentation and

documentation during

synchronous sessions

 Submission ahead of the

presentation

 Provision of ample time

for the presentation

 Pre-recording of the

presentation

 Jacob et al.

[2000]

(3) Member Inclusion and (4) Team Size

Another activity is the determination of member inclusion. Because students work as a group, the

inclusion of a member with a tendency not to perform well has an impact on the overall project and

the team [19]. In a classroom setup, a teacher may require a series of group work and individual

activities so that students can easily identify who among their classmates they are comfortable to

work with. This group dynamics may not be observed during online sessions. Furthermore, it is easier

to determine whether a team reached the required number of members by simply asking the team one

by one. This has become a challenge in an online setup since students do not know who is officially

enrolled in the class and how to initiate forming a team. The proposed solution for the issue is to send

the official class list to the students through the Learning Management System. Afterward, teachers

may use the Group Discussion function of the LMS. This LMS functionality allows teachers to set a

virtual space for the teams. The virtual space is partitioned into several groups and each group has a

specified number of members (e.g., 4-5 members per group). Students of the same team will occupy

one virtual space. Students will not be able to occupy multiple virtual spaces. Team composition is

retained since the team size in this study is consistent with prior studies [2, 6, 7].

(9) Systems Integration, (10) Monitoring Teams’ Progress

 While a particular student may be designated as a programmer, all members of the team may play

this role. Students collaborate in developing the software; sometimes, they schedule sleepover

sessions to finish the project. In other words, before the pandemic, the software is built in a

cooperative environment. In this period of a public health crisis, students are compelled to write the

program all by themselves because assistance and feedback from their teammates may not be easily

available. The team may work independently on different modules and later integrate them to build

the software. However, this poses a challenge to the team since each of them may have different

programming level skills, styles [3], and personalities [10].

 The progress of a project is tracked through the Gantt chart and it is presented during classroom

sessions in a periodic manner. Each member of the team presents their accomplishments on their

tasks. They are rated accordingly using the rubrics shown in Figures 1 to 3. Progress report activity

and the use of the same rubrics are practiced in an online class since this is an integral of the syllabus.

The key challenge in this activity is the intermittent Internet connection which, in turn, leads to the

difficulty of taking turns in the presentation. To address this, a flexible form of presentation can be

done either through synchronous or asynchronous sessions. During the asynchronous sessions,

students may record their presentations and upload them to the LMS. This practice is similar to that of

Edwards [7].

 It was found that both informants agreed that the monitoring of progress is favorable to the

teachers and students. Unlike in a classroom setup which is very rigid in terms of class attendance,

asynchronous learning sessions allow students to work without pressure. Two-thirds (or 36 hours) of

the total class hours allotted to asynchronous sessions are sufficient to develop the prototype system.

From the teachers' perspective, these asynchronous sessions can be used to check the progress of the

students and check other course requirements. The interview also revealed that the implementation of

the completed software may not be viable during this pandemic. One of the proposed solutions is to

shift all proposals to web- or mobile-based systems. However, this may not be feasible since students

may not have taken yet the skills in the development of these kinds of systems. An alternative solution

is to re-define the course requirement, i.e., a prototype of these systems may be presented instead of a

fully functional system.

(11) Intermittent Internet Connection and (13) Intermittent Power Supply

 Finally, the primary concern of teachers is the intermittent Internet connection during project

presentation. This finding is consistent with the findings of Fabito and his colleagues [8]. The

informants agreed that this can be resolved through early submissions of the documentation and the

pre-recording of the presentation. Teachers may read the documentation and list all the questions

ahead of the presentation. A 15-minute video presentation will be presented through the LMS

conference system or any online meeting application. Teachers may then ask questions after the

presentation. One of the informants said that some students also experienced intermittent power

supply. Therefore, teachers must account for these situations in the timetable of the project

presentation.

 The two informants further pointed out that in an asynchronous setup, students are forced to

practice self-regulated learning strategies. Here, students heavily rely on the lectures, videos, and

presentations of the faculty. Students are reinforced to plan for their learning assignments, monitor

their performance, and evaluate the outcomes. The asynchronous learning sessions also pushed them

to create their learning environment in a convenient time and space. Overall, the study found 13 key

challenges in teaching SE in this time of pandemic (Table 1).

The course requirement is changed in terms of the nature of the system. This is consistent with

McCombs and Vakili [14] considering the constraints in the implementation of the prior requirement.

Nonetheless, even though the nature of the project is changed, students are still required to develop a

generic prototype of the system and undergo the process of software development. Changing the

nature of the system did not entirely change the process of software development. To retain the

learning outcomes, all projects must be a prototype of web-based systems (e.g., e-commerce websites,

online billing systems, hotel reservation systems, etc.) or mobile applications. As mentioned in the

literature review section, there is a growing body of research on mobile and web-based application

systems. Thus, students will find it easier to analyze similar systems and formulate their software

projects. With these types of systems, students can still simulate the analysis, design, development,

and testing of system models. Team collaboration, management skills, and communication skills can

still be achieved since the current LMS, instant messaging tools, and online meeting tools (e.g.,

Zoom, Google Meet, etc.) can facilitate collaboration, communication, and coordination. The

requirement of the course in terms of presentation is achievable through the proposed solutions. With

the use of online meeting applications, students can still present their projects and can be graded

accordingly using the rubrics. Individual performance tasks are monitored and assessed since the

work definition of each student is clearly defined. Therefore, the proposed solutions can still achieve

the desired learning outcomes of the course. The above recommendations are in agreement with the

studies of Bouillon et al. [2], Edwards [7], Edwards, and Sridhar [6], Jacobsen et al. [9], and Leung

[11].

14. Conclusion and Future Research

 This workshop paper reports the practices of two SE faculty members in one university in Manila

in terms of managing the final requirement of the course (i.e., software project). While it is obvious

that the COVID-19 pandemic disrupted the classroom practices of software programming, it found

that the teachers think of ways to address the key issues and willingly share their proposed solutions

to address the identified 13 key challenges in teaching a software project. Of these challenges, the

faculty members could not directly address the issue of Internet connection and power supply. It is

worth noting that all activities and the rubrics are retained because of the creativity and flexibility of

the faculty. Thus, it can be concluded that the software engineering programming project can be

pursued during the pandemic.

 At the end of the semester, the two informants plan to evaluate the effectiveness of the proposed

solutions in terms of appreciation of course content. Feedback may be elicited from the students to

identify improvements in the proposed solutions.

15. Acknowledgement

This paper is partly funded by the University of the East. The authors are indebted to the

informants of the study and Dr. Mila Arias.

16. References

[1] R. Bringula, R Elon, L. Melosantos, J. R. Tarrosa, Teaching Agile Methodology through Role-
Playing: What to Expect and What to Watch Out, Proceedings of the 2019 3rd International
Conference on Education and Multimedia Technology, 2019, pp. 355-359.

[2] P. Bouillon, J. Krinke, S. Lukosch, Software engineering projects in distant teaching, in:
Proceedings of the 18th Conference on Software Engineering Education & Training
(CSEET'05), IEEE, 2005, pp. 147-154.

[3] F. Q. Da Silva, C. Costa, A. C. C. Franca, R. Prikladinicki, Challenges and solutions in distributed
software development project management: A systematic literature review, 5th IEEE
International Conference on Global Software Engineering, 2010, pp. 87-96.

[4] K. A. Demir, A Survey on Challenges of Software Project Management. Software engineering
research and practice, 2009:579-585.

[5] District 186 Springfield Public Schools, Teammate participation rubric, available at
https://www.sps186.org/downloads/basic/285671/Teammate?fbclid=IwAR3QAhWc_7Vt-
i0C25Ty2i8fEirj_YrEjIL71VMvpfKuAWHzbReLxAPWBfg

[6] H. K. Edwards, V. Sridhar, Analysis of the effectiveness of global virtual teams in software
engineering projects, in: Proceedings of the 36th Annual Hawaii International Conference on
System Sciences, IEEE, 2003, pp. 9-17.

[7] S. Edwards, Can quality graduate software engineering courses really be delivered asynchronously
on-line?, in: Proceedings of the 22nd international conference on Software engineering, ACM
Press, New York, NY, 2000, pp. 676-679.

[8] B. S. Fabito, A. O. Trillanes, J. R. Sarmiento, Barriers and challenges of computing students in
an online learning environment: Insights from one private university in the Philippines,
International Journal of Computing Sciences Research, 5(2021): 451-458.
https://dx.doi.org/10.25147/ijcsr.2017.001.1.51

[9] M. Jacobsen, R. Kremer, M. L. Shaw, Experiments with distance learning in software engineering
graduate courses. ACM SIGCSE Bulletin, 32.2(2000): 56-59.

[10] J. S. Karn, S. Syed-Abdullah, A. J. Cowling, M. Holcombe, A study into the effects of
personality type and methodology on cohesion in software engineering teams, Behaviour &
Information Technology 26(2007): 99-111.

[11] H. K. Leung, Evaluating the effectiveness of e-learning, Computer Science
Education, 13.2(2003): 123-136.

[12] S. C. Lilian, Virtual teams: Opportunities and challenges for e-leaders, Procedia-Social and
Behavioral Sciences 110 (2014):1251-1261.

[13] P. Mahatanankoon, H. J. Wen, B. Lim, Consumer-based m-commerce: exploring consumer
perception of mobile applications. Computer standards & interfaces, 27(2005): 347-357.

[14] B. L. McCombs, D. Vakili, A learner-centered framework for e-learning. Teachers college
record, 107(2005): 1582-1600.

[15] G. C. Ng, A Study of an Agile methodology with scrum approach to the Filipino company-
sponsored I.T. capstone program. International Journal of Computing Sciences Research,
2.2(2018): 68-88. doi:10.25147/ijcsr.2017.001.1.25

[16] G. Paré, L. Dubé, L. Virtual teams: An exploratory study of key challenges and strategies,
in: ICIS 1999 Proceedings, 2019, p. 50. Available at http://aisel.aisnet.org/icis1999/50

[17] PBL 101, Workshop Resources, available at
https://pbl101.weebly.com/uploads/3/1/3/1/31318861/group_presentation_rubric.pdf

[18]RCampus, iRubric: ENG/LA 7 Research Activity rubric, available at
https://www.rcampus.com/rubricshowc.cfm?code=RX69A79&sp=yes&

[19] R. N. C. Recario, M. B. B. de Robles, K. E. P. Bautista, J. P. Pabico, Social Loafing Among
Members of Undergraduate Software Engineering Groups: Persistence of Perception Seven
Years After, arXiv preprint arXiv:1509.05338, 2015.

[20] T. Vollmer, There’s an App for That. Libraries and mobile technology: An introduction to public
policy considerations. USA: ALA, Office for Information Technology Policy, 2010.

