
Recording Software Design Decisions on the Fly
Fabian Gilsona, Sam Annanda and Jack Steela

aUniversity of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

Abstract
A common trend in the software engineering field shows developers are not documenting their design
decisions as much as they believe they should be. Part of the reason for this is that developers consider
the design decision documentation process to be cumbersome. However documentation of design deci-
sions proves to be a crucial aspect of software maintenance and enhance teams’ shared understanding
of a product. With the recent emergence of instant messaging in software teams (e.g., Slack, Microsoft
Teams), our goal is to leverage their platform coupled to chat bots and natural language processing tech-
nologies to record design decisions as they arise. In doing so we place the system for recording design
decisions into an environment that is already common place for software teams, dramatically reducing
the barriers involved with recording design decisions as a separate task. We therefore propose a general
framework composed of a chatbot, a natural language processing engine and exporting API to wikis
to record and search design decisions enabling teams to focus on their day-to-day work with minimal
disruptions in their workflow, but still keeping a project documentation up to date.

Keywords
agile software development, design decisions, architecture knowledge, documentation, instant messag-
ing, chatbot, natural language processing

1. Introduction

A software architecture is commonly depicted as a set of design decisions [1]. Design decisions
have been considered by researchers as first-class citizens for decades [2] and they are subject
of noticeable research interest [3, 4]. However, current evidence shows that such decisions
are scarcely documented [5] despite their critical usefulness to understand a software’s code
base [6]. Dedicated tools have been proposed across the years [7, 8], but their practical usage in
industrial context remains limited both for decision-making or traceability purposes [9, 4].

Decision-making in software architecture and development tends to be unstructured [10],
the industry generally favouring ad-hoc techniques [11, 12] where tailored approaches are
often preferred over universal ones [13]. Within an increasingly collaborative decision-making
process in software architecture [14, 15], where the Agile Software Development (ASD) cul-
ture even empowers individuals with a decision-making ability [16, 17], it has been observed
that important discussions take place on instant messaging platforms [18], strengthening a
participatory culture in software development teams [19].

Joint Proceedings of SEED & NLPaSE co-located with APSEC 2020, 01-Dec, 2020, Singapore
" fabian.gilson@canterbury.ac.nz (F. Gilson); sga111@uclive.ac.nz (S. Annand); mail@jacksteel.co.nz (J. Steel)
~ https://fabgilson.github.io/ (F. Gilson)
� 0000-0002-1465-3315 (F. Gilson)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:fabian.gilson@canterbury.ac.nz
mailto:sga111@uclive.ac.nz
mailto:mail@jacksteel.co.nz
https://fabgilson.github.io/
https://orcid.org/0000-0002-1465-3315
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Ralph and Tempero found out from interviews that software developers are taking design
decisions, both consciously and unconsciously, regarding many aspects of a software, including
its scope and architecture [20]. Furthermore, in an ASD context, decisions may occur at any
time during a typical “sprint” lifecycle [21]. However, remembering those decisions post hoc is
rarely possible [20] and ASD teams are neglecting to record their design decisions too [22].

Alternatively to structured decisions and rationale documentation tools, retrospective tech-
niques to retrieve architectural knowledge from artefacts [23], code versioning [24] and issue
trackers [25] have been proposed. But such tools either require a significant forensic effort or a
manual screening and evaluation of automatically extracted data. In this paper, we attempt to
get closer to Kruchten et al.’s expectation to automatically capture design decisions [26].

In current work, we propose to bring the recording of design decisions and rationale closer
to when discussions happen on messaging platforms. Our contribution is composed of a
combination of (a) a bot embedded in an instant messaging tool (i.e. Slack 1), (b) a Natural
Language Processing (NLP) engine, (c) a structured architecture knowledge representation
and (d) an API to serialise decisions in textual forms into wikis. Our bot is also able to look
into previously recorded decisions to help developers, as well as any involved stakeholders
remember previously recorded decisions. We advocate that this lightweight setup will increase
the tendency to record decisions as they occur and will serve the basis for a just-in-time
management of software architecture and to some extent, domain knowledge.

In the following, we address relevant related work in Section 2. We present our technique in
Section 3 where we depict our metamodel for design decisions and explain our approach. We
describe the prototype in Section 4 by showing how the setup, recording and searching features
work. We evaluate the usability of the proposed system in Section 5 and discuss the limitations
and future development before concluding in Section 6.

2. Related Work

We grouped existing works in two categories: (a) (meta) models for recording architectural de-
sign decision and their tools and (b) analysing and mining techniques to reconstruct architectural
knowledge.

Design Decisions Models and Tools: According to Bhat et al. [4], techniques to capture
design decisions and their rationale trace back to 1980 where an existing solution (i.e. the
antecedent) was replaced by an updated desired effect (i.e. consequent) [27]. Many formalisation
or metamodels have been proposed since, including Kruchten’s seminal 4+1 view model [28] and
taxonomy [26], and Tyree and Akerman description template [29]. Many other formal models
have appeared since (e.g., [1, 30, 31, 32]. In this research, we reuse Zdun et al. “(wh)y”
template [33] for its simple, yet comprehensive template and suitability in a conversational
environment (i.e. chat-oriented bot).

Design patterns have also been studies under the lens of design decisions. Harrison et al.
propose to use patterns as documentation mean for design decisions [34]. That et al. embed
decisions into their architecture description language [35]. Farshidi et al. intend to create a

1See https://slack.com.

https://slack.com

knowledge base of architectural patterns to help in decision-making process of practitioners [36].
In our work, we do not specifically emphasise on patterns but are more flexible on what
needs to be recorded with a looser semantics (e.g., decision, alternatives, effects) that can be
applied to a broader range of decisions (e.g., technologies, APIs, user interfaces).

More formal approaches [37, 38, 39] proposed to consider incremental changes in software
models as design decisions where each refinement contains their design rationale, creating a
graph of models with their decisions. In this work, we target a lightweight framework
that does not require formal models or transformations for easier adoption by practitioners.

Reconstruction and Mining Techniques: Some effort has been put to reconstruct archi-
tectural knowledge and decisions from tangible artefacts. Rooted in Basili and Mills [40]
retro-engineering and correctness evaluation of legacy code, Rugater et al. describe a manual
approach to document design decisions from code [41]. Jansen et al. propose a technique based
on the (mostly manual) analysis of architecture deltas between subsequent releases [23]. We
consider after-the-fact manual retrieval of architecture knowledge is impractical in
the long run, or at least put too much burden on the development team to be effective.

Astudillo et al. compare a manual and automated retrieval of decisions and rationale from
project textual documentation [42]. Van der Ven and Bosch propose an automated mining
process to classify decisions, rationale and alternatives from version control history [43]. Bhat
et al. trained machine learning models to retrieve design decisions from issue trackers [25].
Shahbazian et al. propose a tool combining data from issue trackers, source code and version
control history to map low-level changes in the code to items in the issue tracker [24]. However
these works still require lots of training data and a validation phase that must be carried
manually, often dealing with too many, too detailed or false positive output where we target a
just-in-time solution that can be used straightaway.

3. Recording Decisions on-the-Fly

In present work, we advocate for a lightweight just-in-time recording of design decisions
and rationale. As discussed above, dedicated complex tools are scarcely used despite their
advantages and extraction methods from various sources (e.g., source code, version control,
textual documents) put a significant manual burden on the development team to make sense of
the mined data. Therefore, leveraging recent advances in software bots [44], we propose a new
documentation framework composed of a design decision metamodel, a bot integrated into an
instant messaging tool and an exporting API.

3.1. Design Decision model

Following Zdun et al. “(wh)y” decision template [33], we propose to document design decisions
with the same concepts (see bold-faced terms in Figure 1):

DesignDecision A design decision is the focal point of our recording framework and is
composed by all elements of the (wh)y template. All parts of the template are optional

Figure 1: Zdun et al. “(wh)y” template of a design decision, schematised from [33].

Figure 2: Metamodel of a design decision, including its metadata and links to users.

except the Context and the selected Option. An inputText field is used to recompose
the full sentence using Zdun’s template for exporting and search performance purposes.

Context A decision applies into the context of a use case (or user story) and/or software
component. This allows involved parties to remember what part of a software system the
decision refers to or what functional purpose the decision serves.

NonFunctionalConcern Often, architectural decisions are addressing non functional re-
quirements (e.g., response time under certain threshold). These concerns are actual needs
from the system expressed within its Context.

Option Options are of two types: neglected and chosen. They are free text fields express-
ing what solution has been selected in the current Context, possibly to answer the
NonFunctionalConcern. Only the chosen option is compulsory as it is a crucial part
of a design decision to trace back what concrete strategy has been applied.

QualityAttribute Attributes are non-functional requirements that are not context-specific.
Quality attributes are well established characteristics a software system should satisfy.
Example of such qualities can be found in the ISO/IEC 25010:2011 quality models [45]
and are often referred to as the “ilities” of a system.

Consequence This item expresses any drawbacks a particular Option would cause to the
architecture (e.g., increased development time, increased technical debt). This part of the
decision may be invaluable to make sure involved parties are evaluating all aspects of
their decisions thoroughly so that known shortcomings are made explicit.

The metamodel for above concepts is given in Figure 2 where additional data are collected in
order to enhance design decisions with situational details:

MetaData Since the decision is recorded using an instant messaging platform, additional
details can be collected to improve the traceability of design decisions over time. We
therefore keep a reference to the original messageId (together with the channelId)
that triggered the recording of the decision to allow later references to the conversation
and keep decisions channel-specific.

User Even with the best recording mechanism, lots of information may remain in the head of
involved parties. Therefore, we keep a link to the User that recorded the decision as well
as all other persons belonging to the chat channel at the time of that decision.

We persist a structured representation of a design decision together with the details of the
persons involved in that decision to allow both technical and organisational aspects to be
recorded for later reference.

3.2. Bot Integrated in Instant Messaging

The first technical feature of our solution is a bot integrated into an instant messaging tool. As
mentioned in Sections 1 and 2, many discussions take place on messaging platforms and our
objective is to get closer to where decisions are taken. We therefore propose to record decisions
in a conversation-oriented chat with a bot activated on users’ demand and that will request the
different parts of a decision, complying to the metamodel discussed in Section 3.1. Alternatively,
a full decision will be passed in one-shot, strictly following the template in that case. Figure 3
depicts the interaction flow between the user and the system and is composed of the following
steps:

1. A user issues a dedicated command within the instant messaging chat room to initiate a
transaction.

2. The bot will ask for at least the Context and selected Option elements.

Figure 3: Interaction between a user and the system (numbers correspond to the five steps described
in Section 3.2).

3. Each time any user belonging to the same channel submits some details (specifying what
item of the decision template it is), the bot will augment its temporary decision model
with the supplied details. Thus every participant in a channel may contribute elements to
the design decision.

4. When the user confirms, the decision is persisted into the database for later retrieval
(each decision is then channel-specific).

5. Using an exporting API, a textual representation (in Markdown syntax) is pushed into a
wiki that has been set up by the user when configuring the bot for the first time.

The bot can also be used to search existing decisions from within the instant messaging
platform. Search queries can be composed of none or multiple keywords that will be searched
for in past decisions.

3.3. Exporting API to Wikis

As visible in step 5 of Figure 3, decisions are exported to a wiki in Markdown syntax. We decided
to use wikis for the following reasons:

• wikis can be manipulated the same way as the source code with full version control.
In other words, every time a new decision is pushed, a commit is generated so that a
historical record of design decisions is kept with no additional effort required;

• wikis are using simple, yet visually distinguishable syntax that can be interpreted by a
wide range of tools, including text-only terminals;

• modern wikis are able to interpret PlantUML diagrams2 for users to model technical
aspects of a system (e.g., class diagrams, use cases, components) in a textual, yet readable
syntax.

2PlantUML is a Domain-Specific Language to describe UML models in a concise textual syntax. See https:
//plantuml.com.

https://plantuml.com
https://plantuml.com

4. Description of Prototype

A prototype for Slack has been developed and its sources are openly available3. As a sub-optimal
solution, the discussion with the bot is emulated through an internal state machine and separate
commands (using dedicated "/" notation for custom commands in Slack) instead of a fully
bidirectional interaction. In the following, we describe the technical aspects of the setup, the
recording mechanism, the search feature and the export to wikis.

4.1. Setting up the Bot

After downloading the bot into a workspace, users will be able to register separate wiki pages
for each channel where they want to track decisions from such that each channel will have its
independent set of decisions. To this end, users issue a /setup command and specify the main
url for the wiki, the relative path to the page where the decisions will be collected, a (technical)
user name and the access token for that user.

4.2. Recording Decisions

A recording transaction starts with a /record-decisions command and can be interrupted
at any time using /abort. All parts but /context and selected /option are optional and
can be passed in any order by any user in the channel. After each command, the bot will
acknowledge and let the user know what parts are not filled yet. A decision is persisted when a
user /confirm. The available commands are:

/context records the use case and optionally a component if a second part is passed to the
command (separated with an "and");

/option records the selected Option;

/neglected records the neglected Options. As for context, we create separate Option
instances by cutting around conjunctions and commas;

/concern multiple concerns are separated around commas to record multiple NonFunctional-
Requirement;

/quality multiple QualityAttributes can be passed as comma-separated keywords;

/consequence as for the /concern command, Consequences are split around commas.

Additionally, a "one-shot" /record-decision (singular) command allows users to enter a
decision following the (wh)y template where the NLP engine cuts each part to fill in the decision
model. This command currently requires all parts of the decision to be passed.

3See https://bitbucket.org/mde4asd/ddextractionbot.

https://bitbucket.org/mde4asd/ddextractionbot

Figure 4: Screen capture of a search query and its results.

4.3. Search Decisions

Since all decisions are persisted in database, users can search for decisions that have been
taken in a channel by passing a list of comma-separated keywords, similarly to common search
engines. Figure 4 depicts the usage of the /search-decisions command and its results. As
can be seen, additional metadata are given to contextualise a decision and therefore helps users
remember by whom and when a decision has been taken.

4.4. Export to Wiki

After confirming a decision, it will be exported to the configured wiki page. Each channel has
its own page to keep decisions organised per channels as the later may be project-specific.
Simple Markdown syntax has been used for easy access on web-based interfaces, local graphical
client editors and terminal-only machines. A simple example of a recorded decision is given in
Listing 1.

1 ## Context
2 Sign in to the system
3 ### Chosen option
4 Single signon with Google
5 ### Neglected options
6 * email sign in
7 ### Quality attribute achieved
8 * confidentiality
9 * integrity

10 ### Consequences
11 * depending on google SSO API
12 ### Initial text
13 In the context of Sign in to the system we chose Single signon with Google and neglected email sign

in to achieve confidentiality and integrity accepting downside depending on google SSO API.

Listing 1: Markdown representation of a decision.

As can been seen in Listing 1, a full template-compliant sentence is generated from the parts
passed to the bot through separate commands. These reconstructed sentences are used to speed
up the search feature and may be useful to generate a summary of all decisions.

5. Discussion

5.1. Evaluation of Usability

In order to evaluate the usability of our framework, we use Nielsen’s heuristics [46]. These
heuristics are composed of 10 rules of thumb tailored for user interfaces and interactions. We
selected Nielsen’s heuristics for their popularity, flexibility and applicability to hybrid systems
such as our proposal.

Simple and natural dialogue: The first heuristic is about aesthetic and minimalist design,
presenting the user with what information they need when they need it. By designing our
recording system in the form of a discussion, the user is asked to supply separately and in a
logical order each bit of a design decision. Search results are presented in a descriptive, yet
compact textual fashion. The process is not fully transparent to users (i.e. they still need to
follow the template), but there is no need to go into a separate system any more. Still, more
work should be put into organising the decisions in the wiki where all decisions are simply
listed without any form of grouping.

Speak the users’ language: There needs to be a match between the real world and the
system. Our prototype has been designed to get closer to real world interactions between
developers and stakeholders in the large, where valuable discussions and decisions are taken on
instant messaging platforms. Furthermore, the required details to record a decision have been
identified from the literature, often rooted in empirical studies involving the industry. Still, the
bot brings a disruption in the natural discussion flow, but it is kept to its minimum.

Minimise user memory load: We should not rely on the ability of users to recall everything
in order to use the system effectively. In a prior attempt, we expected users to remember
the fully-descriptive template, putting a significant cognitive load on them when asking to
record decisions. The recording is now handled through a bot-driven conversation where
users are required to know the initiating command only, all parts of the decision being asked
incrementally.

Consistency: We need to consider two types of consistency: internal and external. The
wording of each of the messages displayed is standardised and consistent across commands as
well as with the domain model for internal consistency (see Section 3.1). The designed system is
very simple, triggered by reserved commands following Slack standard for user-defined actions.
Interactions with chatbots are usually designed as simple question & answer discussions and our
system relatively follows this convention for external consistency. Additionally, the serialised
output exported from the API is also following the same naming convention for domain concepts.

Feedback: This is about giving users a visibility of the current state of the system as well as
appropriate feedback. This principle drove the design of the recording command discussed in
Section 4.2. By design, the bot is interactive, giving feedback after each interaction (e.g., missing

elements from the decision, errors, successful recording). It also summarises what parts have
been supplied and what other commands can be passed.

Clearly marked exits: Users are not free from making mistakes, so the system must offer
“emergency exits”. Within a discussion with the bot, a user can always abort and the decision is
recorded only when confirmed at the end of a transaction. Similarly, users can overwrite parts
of a decision when a transaction is running. However, a full “undo-redo”, including the ability
to amend or delete decisions will be considered in future works.

Shortcuts: This heuristic concerns the flexibility of the system and the efficiency of use
where more advanced users are able to perform the same actions using “accelerators” (e.g.,
keyboard shortcuts). Currently, the system has a step-by-step and a relatively rigid one-shot
way of interaction with the bot.

Good error messages: Users should be able to recognise, diagnose and recover from errors.
The chat-based discussion is designed to discover errors as they occur and poke users for
updated answers if necessary, therefore descriptive error messages have been specified at each
stage to help users diagnose their mistakes.

Prevent errors: Similarly to appropriate user feedback, preventing errors in first place is
important. A decision is eventually recorded after an explicit confirmation by the user. However,
more advanced NLP of some parts of answers would help increase the quality of recorded
decisions (e.g., detection of synonyms, duplicates). Additionally, unfinished transactions need
to be picked up by the bot too.

Help and documentation: In order to make a system usable, it must be accompanied by
meaningful documentation. As mentioned in Section 4, the sources of the tool are available
and are accompanied with a README file where available commands and the general setup
are explained. Furthermore, all commands are self-descriptive by displaying help messages to
guide users during the recording process.

5.2. Limitations of Current Prototype

The prototype provides a limited set of features and it is currently not possible to amend existing
decisions. Editing decisions on the wiki would result in inconsistencies between the knowledge
database held by the bot and what is visible on the wiki.

Current implementation suffers from a few limitations regarding the NLP features. We are
able to separate some concepts (e.g., QualityAttribute) using conjunctions or commas, but
other potentially more complex sentences are kept as-is. Additionally, we are not performing
any detection of synonyms or basic typos to reconcile identical or similar elements in the
database (e.g., components). Last, extraction of domain concepts is limited to dedicated parts of
the template.

The organisation of decisions within the wiki is mostly flat. Similarly to the possibility to
amend existing decisions, an intuitive feature should be implemented to sort and/or group
decisions directly using the bot. A longer term goal would be to create advanced visualisations
(e.g., timeline of decisions, domain knowledge).

Last and more importantly, even if we systematically discussed the usability of the current
prototype, it has been evaluated by potential end users in a limited and non-empirical manner. A
more in-depth user study should be carried out to evaluate its usability from users’ perspective
as well as conduct a deeper analysis of the perceived usefulness of its features.

6. Conclusion and Future Work

In this paper, we introduced a design decision recording framework composed of a bot integrated
into an instant messaging channel, a simple Natural Language Processing engine and an
exporting API to wikis. Our goal is to remove barriers preventing software development teams
and project’s stakeholders to document their design decisions. By bringing the recording
of decisions inside practitioners’ day-to-day tools, we postulate that more decisions will be
recorded and the quality of documentation will increase. We evaluated the usability of the
prototype using Nielsen’s state-of-the-art heuristics.

To tackle the aforementioned shortcomings, we plan to extend the framework with a mon-
itoring bot looking after discussions taking place on the chat channels. The current bot is
dedicated to create a knowledge base of domain and design decisions taken during the course
of a (software development) project. Based on the accumulated knowledge, the monitoring bot
will notify users when it identifies changes in recorded decisions, potentially in real time with
appropriate NLP features. Following this step-by-step process, we intend to explore how we can
turn the bot into a fully transparent tool that will silently record decisions.

References

[1] A. Jansen, J. Bosch, Software architecture as a set of architectural design decisions, in:
Proc. of the 5th Working Conference on Software Architecture, WICSA, IEEE, 2005, pp.
109–120. doi:10.1109/WICSA.2005.61.

[2] D. E. Perry, A. L. Wolf, Foundations for the study of software architecture, SIGSOFT
Software Engineering Notes 17 (1992) 40–52. doi:10.1145/141874.141884.

[3] D. Tofan, M. Galster, P. Avgeriou, W. Schuitema, Past and future of software architectural
decisions – a systematic mapping study, Information and Software Technology 56 (2014)
850 – 872. doi:10.1016/j.infsof.2014.03.009.

[4] M. Bhat, K. Shumaiev, U. Hohenstein, A. Biesdorf, F. Matthes, The evolution of architectural
decision making as a key focus area of software architecture research: A semi-systematic
literature study, in: 2020 IEEE International Conference on Software Architecture (ICSA),
2020, pp. 69–80. doi:10.1109/ICSA47634.2020.00015.

[5] R. Weinreich, I. Groher, C. Miesbauer, An expert survey on kinds, influence factors and
documentation of design decisions in practice, Future Generation Computer Systems 47
(2015) 145 – 160. doi:10.1016/j.future.2014.12.002.

http://dx.doi.org/10.1109/WICSA.2005.61
http://dx.doi.org/10.1145/141874.141884
http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://dx.doi.org/10.1109/ICSA47634.2020.00015
http://dx.doi.org/10.1016/j.future.2014.12.002

[6] P. Kruchten, P. Lago, H. Vliet, Building up and reasoning about architectural knowledge, in:
C. Hofmeister, I. Crnkovic, R. Reussner (Eds.), Quality of Software Architectures, volume
4214 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006, pp. 43–58.
doi:10.1007/11921998_8.

[7] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, A. Babar, A comparative study of architecture
knowledge management tools, Journal of Systems and Software 83 (2010) 352 – 370.
doi:10.1016/j.jss.2009.08.032.

[8] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, M. A. Babar, 10 years of software architecture
knowledge management: Practice and future, Journal of Systems and Software 116 (2016)
191 – 205. doi:10.1016/j.jss.2015.08.054.

[9] Z. Alexeeva, D. Perez-Palacin, R. Mirandola, Design decision documentation: A literature
overview, in: B. Tekinerdogan, U. Zdun, A. Babar (Eds.), Software Architecture, Springer,
2016, pp. 84–101. doi:10.1007/978-3-319-48992-6_6.

[10] H. van Vliet, A. Tang, Decision making in software architecture, Journal of Systems and
Software 117 (2016) 638 – 644. doi:10.1016/j.jss.2016.01.017.

[11] M. Anvaari, R. Conradi, L. Jaccheri, Architectural decision-making in enterprises: Pre-
liminary findings from an exploratory study in norwegian electricity industry, in:
K. Drira (Ed.), Software Architecture, Springer Berlin Heidelberg, 2013, pp. 162–175.
doi:10.1007/978-3-642-39031-9_14.

[12] S. Dasanayake, J. Markkula, S. Aaramaa, M. Oivo, Software architecture decision-making
practices and challenges: An industrial case study, in: Proc. of the 24th Australasian
Software Engineering Conference, 2015, pp. 88–97. doi:10.1109/ASWEC.2015.20.

[13] D. Falessi, G. Cantone, R. Kazman, P. Kruchten, Decision-making techniques for software
architecture design: A comparative survey, ACM Comput. Surv. 43 (2011). doi:10.1145/
1978802.1978812.

[14] D. Tofan, M. Galster, P. Avgeriou, Difficulty of architectural decisions – a survey with
professional architects, in: K. Drira (Ed.), Software Architecture, Springer, 2013, pp.
192–199. doi:10.1007/978-3-642-39031-9_17.

[15] S. R. V, H. Muccini, Group decision-making in software architecture: A study on industrial
practices, Information and Software Technology 101 (2018) 51 – 63. doi:10.1016/j.
infsof.2018.04.009.

[16] C. Zannier, F. Maurer, Comparing decision making in agile and non-agile software
organizations, in: G. Concas, E. Damiani, M. Scotto, G. Succi (Eds.), Agile Processes in
Software Engineering and Extreme Programming, Springer, 2007, pp. 1–8. doi:10.1007/
978-3-540-73101-6_1.

[17] N. B. Moe, A. Aurum, T. Dybå, Challenges of shared decision-making: A multiple case
study of agile software development, Information and Software Technology 54 (2012) 853
– 865. doi:10.1016/j.infsof.2011.11.006.

[18] B. Lin, A. Zagalsky, M. Storey, A. Serebrenik, Why developers are slacking off: Under-
standing how software teams use slack, in: Proceedings of the 19th ACM Conference on
Computer Supported Cooperative Work and Social Computing Companion, CSCW ’16
Companion, ACM, 2016, pp. 333–336. doi:10.1145/2818052.2869117.

[19] M. Storey, A. Zagalsky, F. F. Filho, L. Singer, D. M. German, How social and communication
channels shape and challenge a participatory culture in software development, IEEE Trans-

http://dx.doi.org/10.1007/11921998_8
http://dx.doi.org/10.1016/j.jss.2009.08.032
http://dx.doi.org/10.1016/j.jss.2015.08.054
http://dx.doi.org/10.1007/978-3-319-48992-6_6
http://dx.doi.org/10.1016/j.jss.2016.01.017
http://dx.doi.org/10.1007/978-3-642-39031-9_14
http://dx.doi.org/10.1109/ASWEC.2015.20
http://dx.doi.org/10.1145/1978802.1978812
http://dx.doi.org/10.1145/1978802.1978812
http://dx.doi.org/10.1007/978-3-642-39031-9_17
http://dx.doi.org/10.1016/j.infsof.2018.04.009
http://dx.doi.org/10.1016/j.infsof.2018.04.009
http://dx.doi.org/10.1007/978-3-540-73101-6_1
http://dx.doi.org/10.1007/978-3-540-73101-6_1
http://dx.doi.org/10.1016/j.infsof.2011.11.006
http://dx.doi.org/10.1145/2818052.2869117

actions on Software Engineering 43 (2017) 185–204. doi:10.1109/TSE.2016.2584053.
[20] P. Ralph, E. Tempero, Characteristics of decision-making during coding, in: Proceedings of

the 20th International Conference on Evaluation and Assessment in Software Engineering,
EASE ’16, ACM, 2016, pp. 1–10. doi:10.1145/2915970.2915990.

[21] M. Drury, K. Conboy, K. Power, Obstacles to decision making in agile software development
teams, Journal of Systems and Software 85 (2012) 1239 – 1254. doi:10.1016/j.jss.2012.
01.058.

[22] C. J. Stettina, W. Heijstek, Necessary and neglected? an empirical study of internal
documentation in agile software development teams, in: Proceedings of the 29th ACM In-
ternational Conference on Design of Communication, SIGDOC ’11, ACM, 2011, p. 159–166.
doi:10.1145/2038476.2038509.

[23] A. Jansen, J. Bosch, P. Avgeriou, Documenting after the fact: Recovering architectural
design decisions, Journal of Systems and Software 81 (2008) 536 – 557. doi:10.1016/j.
jss.2007.08.025.

[24] A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, N. Medvidovic, Recovering architectural design
decisions, in: IEEE International Conference on Software Architecture (ICSA), 2018, pp.
95–9509. doi:10.1109/ICSA.2018.00019.

[25] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, F. Matthes, Automatic extraction of
design decisions from issue management systems: A machine learning based approach, in:
Software Architecture, Springer, 2017, pp. 138–154. doi:10.1007/978-3-319-65831-5_
10.

[26] P. Kruchten, P. Lago, H. Vliet, Building up and reasoning about architectural knowledge, in:
C. Hofmeister, I. Crnkovic, R. Reussner (Eds.), Quality of Software Architectures, volume
4214 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006, pp. 43–58.
doi:10.1007/11921998_8.

[27] M. Sintzoff, Suggestions for composing and specifying program design decisions, in:
B. Robinet (Ed.), International Symposium on Programming, Springer, 1980, pp. 311–326.
doi:10.1007/3-540-09981-6_22.

[28] P. Kruchten, The 4+1 view model of architecture, IEEE Software 12 (1995) 42–50. doi:10.
1109/52.469759.

[29] J. Tyree, A. Akerman, Architecture decisions: Demystifying architecture, IEEE Software
22 (2005) 19–27. doi:10.1109/MS.2005.27.

[30] M. Che, D. E. Perry, Scenario-based architectural design decisions documentation and
evolution, in: 2011 18th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems, 2011, pp. 216–225. doi:10.1109/ECBS.2011.16.

[31] M. Soliman, M. Riebisch, Modeling the interactions between decisions within software
architecture knowledge, in: P. Avgeriou, U. Zdun (Eds.), Software Architecture, Springer,
2014, pp. 33–40. doi:10.1007/978-3-319-09970-5_3.

[32] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, M. Hassel, F. Matthes, Meta-model
based framework for architectural knowledge management, in: Proccedings of the 10th
European Conference on Software Architecture Workshops, ECSAW ’16, ACM, 2016, pp.
1–7. doi:10.1145/2993412.3004848.

[33] U. Zdun, R. Capilla, H. Tran, O. Zimmermann, Sustainable architectural design decisions,
IEEE Software 30 (2013) 46–53. doi:10.1109/MS.2013.97.

http://dx.doi.org/10.1109/TSE.2016.2584053
http://dx.doi.org/10.1145/2915970.2915990
http://dx.doi.org/10.1016/j.jss.2012.01.058
http://dx.doi.org/10.1016/j.jss.2012.01.058
http://dx.doi.org/10.1145/2038476.2038509
http://dx.doi.org/10.1016/j.jss.2007.08.025
http://dx.doi.org/10.1016/j.jss.2007.08.025
http://dx.doi.org/10.1109/ICSA.2018.00019
http://dx.doi.org/10.1007/978-3-319-65831-5_10
http://dx.doi.org/10.1007/978-3-319-65831-5_10
http://dx.doi.org/10.1007/11921998_8
http://dx.doi.org/10.1007/3-540-09981-6_22
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/MS.2005.27
http://dx.doi.org/10.1109/ECBS.2011.16
http://dx.doi.org/10.1007/978-3-319-09970-5_3
http://dx.doi.org/10.1145/2993412.3004848
http://dx.doi.org/10.1109/MS.2013.97

[34] N. B. Harrison, P. Avgeriou, U. Zdun, Using patterns to capture architectural decisions,
IEEE Software 24 (2007) 38–45. doi:10.1109/MS.2007.124.

[35] M. T. T. That, S. Sadou, F. Oquendo, Using architectural patterns to define architec-
tural decisions, in: 2012 Joint Working IEEE/IFIP Conference on Software Architecture
and European Conference on Software Architecture, 2012, pp. 196–200. doi:10.1109/
WICSA-ECSA.212.28.

[36] S. Farshidi, S. Jansen, J. M. van der Werf, Capturing software architecture knowledge for
pattern-driven design, Journal of Systems and Software 169 (2020) 110714. doi:10.1016/
j.jss.2020.110714.

[37] A. Cimitile, F. Lanubile, G. Visaggio, Traceability based on design decisions, in: Proceedings
Conference on Software Maintenance 1992, 1992, pp. 309–317. doi:10.1109/ICSM.1992.
242530.

[38] D. Dermeval, J. Pimentel, C. Silva, J. Castro, E. Santos, G. Guedes, M. Lucena, A. Finkel-
stein, Stream-add - supporting the documentation of architectural design decisions in
an architecture derivation process, in: 2012 IEEE 36th Annual Computer Software and
Applications Conference, 2012, pp. 602–611. doi:10.1109/COMPSAC.2012.81.

[39] F. Gilson, V. Englebert, Transformation-wise design of software architectures, in: S. Ham-
moudi, L. Pires, J. Filipe, R. das Neves (Eds.), Communications in Computer and Information
Science, volume 506, 2015, pp. 49–65. doi:10.1007/978-3-319-25156-1_4.

[40] V. R. Basili, H. D. Mills, Understanding and documenting programs, IEEE Transactions on
Software Engineering SE-8 (1982) 270–283.

[41] S. Rugaber, S. B. Ornburn, R. J. LeBlanc, Recognizing design decisions in programs, IEEE
Software 7 (1990) 46–54. doi:10.1109/52.43049.

[42] H. Astudillo, G. Valdés, C. Becerra, Empirical measurement of automated recovery of
design decisions and structure, in: 2012 VI Andean Region International Conference, 2012,
pp. 105–108. doi:10.1109/Andescon.2012.33.

[43] J. S. van der Ven, J. Bosch, Making the right decision: Supporting architects with design
decision data, in: K. Drira (Ed.), Software Architecture, Springer, 2013, pp. 176–183.
doi:10.1007/978-3-642-39031-9_15.

[44] C. Lebeuf, M. Storey, A. Zagalsky, Software bots, IEEE Software 35 (2018) 18–23. doi:10.
1109/MS.2017.4541027.

[45] ISO/IEC, ISO/IEC 25010 System and software quality models, Technical Report, Internation
Organization for Standardization/International Electrotechnical Commission, 2010.

[46] J. Nielsen, Usability Engineering, Morgan Kaufmann Publishers Inc., 1993.

http://dx.doi.org/10.1109/MS.2007.124
http://dx.doi.org/10.1109/WICSA-ECSA.212.28
http://dx.doi.org/10.1109/WICSA-ECSA.212.28
http://dx.doi.org/10.1016/j.jss.2020.110714
http://dx.doi.org/10.1016/j.jss.2020.110714
http://dx.doi.org/10.1109/ICSM.1992.242530
http://dx.doi.org/10.1109/ICSM.1992.242530
http://dx.doi.org/10.1109/COMPSAC.2012.81
http://dx.doi.org/10.1007/978-3-319-25156-1_4
http://dx.doi.org/10.1109/52.43049
http://dx.doi.org/10.1109/Andescon.2012.33
http://dx.doi.org/10.1007/978-3-642-39031-9_15
http://dx.doi.org/10.1109/MS.2017.4541027
http://dx.doi.org/10.1109/MS.2017.4541027

	1 Introduction
	2 Related Work
	3 Recording Decisions on-the-Fly
	3.1 Design Decision model
	3.2 Bot Integrated in Instant Messaging
	3.3 Exporting API to Wikis

	4 Description of Prototype
	4.1 Setting up the Bot
	4.2 Recording Decisions
	4.3 Search Decisions
	4.4 Export to Wiki

	5 Discussion
	5.1 Evaluation of Usability
	5.2 Limitations of Current Prototype

	6 Conclusion and Future Work

