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Abstract

A common optimization technique in the OLAP
application domain is the use of summary
aggregate data. For an appropriate support of
analysis hot spots, we propose a query based
aggregate cache of ‘multidimensional objects’.
The major drawback of previous query caching
methods is that new queries must be completely
subsumed by a single cached object in order to
utilize it. Our solution is the introduction of ‘set-
derivability’ which allows the combination of
several aggregates to derive a single query. The set
of cached multidimensional objects is
dynamically determined using both users access
patterns and semantical knowledge of
dimensional structures. Experimental results
show that average cost reductions of over 50% are
easily reached while spending only 10% of
additional storage for summary data.

1 Introduction

Online Analytical Processing (OLAP) offers analysts an
efficient interactive access to consistent business data, typ-
ically stored in a data warehouse. From the physical data-
base design point of view, the two main obstacles to pro-
vide efficient multidimensional access to those data are to
choose the right partitioning scheme and the right selection
of summary tables. Whereas partitioning is a common con-
cept in physical database design, the generation of sum-
mary tables is specific to the OLAP application domain
with mostly read-only data access. Due to a limited storage
capacity not all possible aggregations may be precom-
puted. In this paper we present a dynamic caching strategy
for multidimensional data incorporating both partitioning

schemes and summary tables. Our strategy is easy to imple-
ment in relational OLAP servers and provides excellent
support of analysis hot spots. Experiments show that aver-
age cost reductions of over 50% are easily reached while
spending only 10% of additional storage for summary data.

Derivability

To speed up queries, multidimensional objects are cached
and reused during runtime. The framework of Multidimen-
sional Objects provide a consistent and formalized view to
database queries as well as to materialized summary data.
They may be visualized as a partition (restricted to certain
selection predicates) of an aggregated data cube (using
grouping attributes) specified by a regular star-query.

A necessary prerequisite for reuse is derivability
([Klug82], [Fink82]). Derivability in the context of parti-
tioned aggregates concerns the following two aspects:

• compatibility of grouping attributes:
The precomputed data from which a query may be
derived has to have an equal or finer granularity with
regard to the corresponding dimensional structures.*

• compatibility of selection predicates:
This condition for derivability states that the precom-
puted partition of summary data must not be more
restrictive than the query which is the subject of deri-
vation.
Since predicate comparison in general is NP-complete
([SuKN89]), recent work either does not consider par-
titioning at all ([HaRU96], [BaPT97]), is limited to test
for equality ([ShSV99]) or reduced to statically pre-
defined partitions (chunks; [DRSN98]).

Contribution

To overcome these limits and to provide a simple and pow-
erful strategy to select and release precomputed summary
data with limited scope, this paper contributes the follow-
ing:

• set-derivability: Our approach is not limited to derive
a single query from a single summary data table but
computes a nearly optimal construction plan for a

*. To illustrate these dependencies [HaRU96] intro-
duced to notion of an aggregation lattice.
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query based on aset of precomputed summary data
partitions (‘patch-working on multidimensional
objects’; section 4).

• use of dimensional structures: Since we allow parti-
tioning only with respect to classification hierarchies
(and not for dimensional attributes) algorithms to com-
pose a multidimensional aggregate of a set of cached
objects become feasible.

• dynamic caching policy: Sincestatic precomputation
of complete data cubesdoes not adequately support
data analysis hot spots, our approach decides ‘on-the-
fly’ which summary data partitions (multidimensional
objects) are worth to keep materialized. Moreover,
materialization of the same data cube partition at dif-
ferent aggregation levels is explicitly allowed and the
size of a partition is not a system parameter but implic-
itly determined by the user.

• easy to integrate: Since we perform algebraic optimi-
zation, our algorithm may be easily integrated into
relational OLAP-servers.

• high average cost reduction: As our experiments show,
we achieve high cost reductions with only very decent
storage overhead at almost no cost.

Structure of the Paper

In the next section, we give a comprehensive overview of
recent work which is related to selection and use of materi-
alized aggregates in the context of OLAP and data ware-
housing. The third section formally introduces the one- and
multidimensional structures of the considered multidimen-
sional model. Based on the notion of multidimensional
objects, section 4 defines the concept of set-derivability
using ‘patch-working’ and outlines the four different influ-
ence factors to compute the overall benefit of a single
cached multidimensional object. Finally, results of various
experiments are presented in section 5. The paper con-
cludes with a summary.

2 Related Work

The general idea of precomputing summary data is rooted
in the application area of ‘Statistical and Scientific Data-
bases’. Several proposals like [ChMM88] were made but
the idea became popular with the emergence of ‘Data
Warehousing’ together with ‘Online Analytical Process-
ing’ and the resulting need for an efficient and mostly read-
only access to aggregates in a multidimensional context
([ChSh95]).

Static versus Adaptive Precomputation and Caching
Schemes

A first classification of existing work may be specified
according to the flexibility of the scheme with regard to
user access behavior. Given a set of relational queries, the

algorithm of [YaKL97] computes the global query execu-
tion plan and selects the node of the resulting plan with the
highest number of references for precomputation. [Gupt97]
extends this procedure in the context of AND/OR-graphs
by considering alternative local query execution plans.
Based on the concept of an aggregation lattice, the algo-
rithm specified in [HaRU96] ([GHRU97] additionally con-
siders existing index structures) statically selects those
nodes of the lattice with the best cost saving ratio in relation
to the additional storage required by that node. Since this
approach shows a complexity of O(n3) with n as the num-
ber ofpossible nodesof an aggregation lattice, the work of
[BaPT97] introduces heuristics to reduce this number and
make the approach more applicable.

In opposite to these static algorithms, dynamic or adap-
tive strategies try to incrementally optimize the set of pre-
computed aggregates. On the relational level, [ShSV99]
materializes the results of arbitrary complex queries.
Unfortunately, by using hash codes they are able to reuse
materialized queries only in the case of an exact match.
This is not acceptable in a real OLAP scenario. In the case
of an exact match with regard to the group-by attributes, the
recent work of [DRSN98] proposes a chunk-based caching
strategy. The materialization of chunks (see below) is
resolved according to a classical CLOCK scheme, thus
directly reflecting the user access behavior. In [KoRo99] a
similar approach is presented. Again, a single query can
only be answered from a single materialized fragment.

Table-, Query-, Chunk-based Partitioning Schemes

The second classification criteria of existing strategies is
based on the unit of precomputation. Basically there are
three levels, namely table-, query-, and chunk-based strat-
egies.

Algorithms like [HaRU96], [GHRU97], and [BaPT97]
do not support partitioning and are therefore classified as
table-based strategies. Compatibility of selection predi-
cates has not to be checked since all summary tables are
defined on an unrestricted scope (the second condition of
derivability is trivial). However, this implies that analysis
hot spots like “the current period” are not reflected appro-
priately, because the algorithms materialize only summary
tables containingall periods.

On the opposite, chunk-based partitioning schemes like
[DRSN98] define relatively small aggregate partitions of a
fixed size (chunks). Queried chunks are cached and later
reused to answer new queries. On the one hand, [DRSN98]
reports very high cost saving ratios in their experiments. On
the other hand however, the implementation of special bit-
wise index structures to identify single chunks is extremely
expensive. Moreover, they use a special chunk-based file
system preventing a seamless integration into relational
OLAP servers. At last, the choice of the chunk size must be
statically determined and is crucial for the efficiency of the
whole system.
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The third class of different partitioning schemes is made
up by query-based partitioning schemes([SDJL96],
[ShSV99], [YaKL97], [GuHQ95]). Single user queries
reflect the unit of caching and make the selection of the
right partition size obsolete. Recent work reuses results of
former queries either byquery containmentor by exact
match ([SDJL96], [ShSV99]) where the incoming query
must be completely derivable from the materialized query.
Moreover, it is further argued against query-based parti-
tioning ([DRSN98]) that several materialized queries may
address a common part of a data cube. This would result in
a redundant storage of that part and decrease the utilization
of the additional storage.

3 The Multidimensional Model

The following section introduces the dimensional and mul-
tidimensional structures which build the formal representa-
tion of the multidimensional model. The description is
divided into the presentation of dimensions and multidi-
mensional objects both of which are necessary to define a
multidimensional database ([LeAW98]).

3.1 Dimensional Structures

Dimensional structures are defined in the conceptual
schema design phase of a database. The semantic informa-
tion coded into these structures is heavily used for cache
replacement.

Definition 1: A dimension Dof a multidimensional data-
base is a set of attributesD = { PA } ∪ { CA 1, ..., CAp
} ∪ { DA 1, ..., DAq } and the following set of function-
al dependencies between these attributes:

• ∀i (1≤i≤p): PA→CAi and∀i (1≤i≤q): PA→DAi
The primary attributePA of a dimension func-
tionally determines all other attributes of a single
dimension. The instances of the primary attribute
are calleddimensional elements.

• ∀i (1≤i≤p-1): CAi→ CAi+1
The classification attributesCAi of a dimension
are used to define a multi-level grouping of single
dimensional elements and are ordered according
to their functional dependencies. The aggregation
level or granularity i of a classification attribute
CAi is denoted asCAi. By definition, the primary
attribute has the aggregation level 0 (PA = CA0).

• ∀i,j i≠j (1≤i,j≤q): DAi DAj
The dimensional attributes DAi of a dimension
represent all attributes describing properties of the
dimensional elements.

Although the concept of dimensional attributes is more
complex ([LeAW98], [ABD+99]), dimensional attributes
may be seen as additional single-level hierarchies on a
dimension, which implies that they are functionally inde-
pendent of each other†.

Example 1:The set of dimensions of a typical OLAP sam-
ple scenario consists of a product, time, and shop di-
mension. Within the shop dimension for example, the
primary attribute corresponds to a unique shop identi-
fier. A regional classification may be defined by the se-
quence city→ state→ region→ country. The set of di-
mensional attributes may be defined as { shop-type,
purchase-class, selling-area, shop-window-size }. In
real OLAP scenarios, a single (usually a product or a
customer) dimension may easily have 20 different at-
tributes.

3.2 Multidimensional Structures

The basic data structure in the multidimensional context,
the notion of a multidimensional object, is of fundamental
importance. With regard to the caching algorithms
described in the following section, all incoming queries as
well as materialized results of former queries are internally
represented as multidimensional objects.

Definition 2:A multidimensional object(MO) is a tripleM
= (M, S, G) consisting of a measure M, an n-ary vector
of classes S = (s1, ..., sn) denoting the scope, and the
granularity specification G.
A measureis a tuple M = [N, A, O] where N is a re-
served name for the corresponding fact, A∈ { FLOW,
STOCK, VALUEperUNIT } is theaggregation type,
and O∈ { NONE, SUM, AVG, COUNT } is the ap-
plied aggregation function on that specific fact.
A granularity specificationis a tuple G = [L, P] where
L (‘aggregationLevel’) is an n-ary vector of classifica-
tion attributes of each dimension

(L ∈ { , ..., } ⊗ ...⊗ { , ..., } ),

and P (‘Properties’) is a set of dimensional attributes

(P∈ { , ..., } ∪ ...∪ { , ..., } ).

Example 2:The formal representation of a sales data cube
for video products in Germany would be as follows:
M = ( [ SALES , FLOW, SUM ],

( p.group = ‘Video’, s.country = ‘Germany’ ),
[ (p.family, s.region), { p.brand, s.shoptype } ] )

The aggregation type determines the set of applicable
operations on the numeric values to ensure correct summa-
rizability ([LeSh97]). For example, all aggregation opera-

→/ †. Moreover it is worth to mention that this definition
does not explicitly consider multiple hierarchies with
more than one level. Multiple hierarchies would
introduce a partial order on the classification
attributes (instead of a total order for the single clas-
sification hierarchy). This extension would not affect
any of the presented derivability or caching algo-
rithms but would complicate the presentation. There-
fore, we only consider a single classification
hierarchy.
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tions are applicable to sales figures (A = FLOW), whereas
the sum operation would not be allowed on figures denot-
ing the price of single articles (A = VALUEperUNIT). The
aggregation type STOCK prohibits summation in the tem-
poral dimension. Finally the size of a multidimensional
objectM at the instance level is denoted by |M |.

Relations and Operations on Multidimensional Objects

To formally define ‘derivability’ on multidimensional
objects, we need to introduce the ‘≤‘-relation for the gran-
ularity specification and the intersection of scopes of mul-
tidimensional objects. Moreover, we need intersection and
difference operators of multidimensional objects them-
selves.

Definition 3:A granularity specification G = [L, P] isfiner
than or equal to a granularity specification
G’ = [L’, P’], i.e. G ≤ G’, if and only if

• all aggregation levels of L are lower or equal than
the aggregation levels of L’

• P is a superset of dimensional attributes with
regard to P’, i.e. P’⊆ P

or

• G represents raw data, i.e. L = (PA1, ..., PAn).

Definition 4: The intersection of multidimensional scopes
is defined as the component-wise intersection of the
classes in each dimension, i.e. by the homomorphism
S ∩ S’ = (s1, ..., sn) ∩ (s’1, ..., s’n)

:= ( (s1 ∩ s’1), ..., (sn ∩ s’n) )
The intersection is empty if two classes si and s’i do
not show a parent-child relationship within the corre-
sponding classification hierarchy of dimension i.

It is important to note that the problem of intersecting
classes in a classification hierarchy may be solved by
checking the simple parent-child relationships. This con-
cept is fundamental for the applicability of the set-deriv-
ability mechanism.

Definition 5:The intersection of multidimensional objects
M = (M, S, G) andM’ = (M’,S’,G’), i.e. M ∩ M’ is de-
fined asM ∩ M’  = (M, S∩ S’, G) if and only if

• both objects refer to the same measure, i.e.
M = M’

• the intersection of the scopes is not empty, i.e. S∩
S’ ≠ ∅

• the granularity specification ofM is finer than or
equal to the granularity specification ofM’ , i.e.
G ≤ G’.

As seen in this definition the coarser multidimensional
objectM’  is implicitly refined to the granularity level G.

To be able to introduce the concept of set-derivability by
substitution (‘patch-working’; section 4), we need to define
the difference of two multidimensional objects. As illus-
trated in figure 1 for the two-dimensional case, the differ-

ence of two n-dimensional cubes would result in the worst
case in a set of 3n-1 convex residual cubes - assuming
exactly 3 classification nodes partitioning each dimension.

It can be shown
that intelligent
slicing can reduce
this number to 2n
residual cubes
([ChMM88],
proof of
proposition 4).
Informally, the
cube is cut itera-
tively for each
dimension into
maximal three slices; two slices are residual cubes and are
not considered any longer; the third slice contains the oper-
and and is sliced further in the remaining dimensions. For
n dimensions we obtain 2n residual cubes.

In the general case with dimensions consisting of an
arbitrary number of classification nodes for each dimension
i (1≤i≤n) the minimum number pi of partitioning classifica-
tion nodes including the operand to be subtracted has to be
determined. Then the number of residual cubes will be

, 1≤i≤n, because of the same argumentation as
above.For more detailed information refer to [AlGL99].

Definition 6: The difference of two multidimensional ob-
jectsM = (M, S, G) andM’ = (M’,S’,G’), i.e. M − M’
is defined as a set {(M, S1, G)1, ..., (M, Sk, G)k} where
k is the number of residual cubes and Si are the scopes
of residual objects obeying the following conditions:

 and .

Derivability of Multidimensional Objects

To reuse the results of former queries, derivability of mul-
tidimensional objects as the units of caching is a necessary
prerequisite. The following definition of the total derivabil-
ity will be relaxed in the next section to the partial deriv-
ability which is sufficient to define the set-derivability.

Definition 7:A measure M = (N, A, O)is derivablefrom a
measure M’= (N’, A’, O’) if and only if

• the measures refer to the same real world entity
(N = N’ and A = A’)

• the operations are compatible, i.e., O = O’ or
O’ = NONE

Note that semi-additive functions like AVG are split into
the additive and non-additive counterparts ({SUM,
COUNT} and division ). The additive operations build a
regular subject of the caching mechanism. Thus by materi-
alizing multidimensional objects with the applied opera-
tions SUM and COUNT, an AVG-query will never be
directly but only indirectly cached.

Figure 1: Difference of
multidimensional objects
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Definition 8: A multidimensional objectM = (M, S, G) is
totally derivable from a multidimensional object
M’ = (M’,S’,G’), if and only if

• the measure M inM is derivable from the measure
M’ in M’

• M’ containsM, i.e. S∩ S’ = S
• the granularity specification ofM’ is finer thanM,

i.e. G’ ≤ G

4 Set-Derivability using ‘Patch-Working’

Although derivabil-
ity is the fundamen-
tal concept for the
use of precomputed
aggregates, in many
cases definition 8 it
is too restrictive.
Consider the exam-
ple in figure 2. The
query objectMQ is
not derivable from
any of M1, M2, or M3 alone. However, it can be derived
from a combination ofM1, M2 andM3. The example illus-
trates the problem of previous query caching methods
([ShSV99], [SDJL96]) where a materialized aggregate can
only be accessed if the complete query is derivable from
this single cached object. This is because query contain-
ment can be checked with a relatively simple algorithm
where the determination of the overlapping regions for
arbitrary predicates is NP-complete ([SuKN89]). However,
in the context of multidimensional objects where the pred-
icates consist of scope definitions corresponding to classes
in a classification hierarchy this problem can be reduced to
the determination of ancestor and sibling relationships.

Definition 9: A multidimensional objectM = (M, S, G) is
partially derivable from a multidimensional object
M’ = ( M’, S’, G’), i.e. M’ „ M, if and only if

• the conditions (1) and (3) of the total derivability
hold forM andM’

• M andM’ are overlapping, i.e. S∩ S’ ≠ ∅
In this case,M’ is said to supportM, andM ∩ M’ is
called thesupport of M’  for M.

From the set of supporters, i.e. the potential candidates,
an appropriate set of partitions, orpatches, has to be
selected in order to answer a query. Such a set is called a
substitution for the query. .

Definition 10:A setS= { 〈M1, M1’ 〉,...,〈Mk, Mk’ 〉 } with
Mi = (Mi, Si, Gi) andMi’ = (Mi’, Si’, Gi’) is called a
substitutionfor a multidimensional objectMQ, if and
only if

• ∀i (1≤i≤k): Mi = MQ, Gi = GQ, and
• ∀i (1≤i≤k): Mi’ „ Mi,

• SQ = ∪i Si,
• ∀i, j (1≤i,j≤k) with i≠j: Si ∩ Sj = ∅.

In this caseM is said to beset-derivablefrom { M1’,
..., Mk’ }

Each patch inShas two components〈Mi, Mi’ 〉 denoting
that partitionMi of MQ is to be computed fromMi’ . All par-
titions must be disjoint and their union must result inMQ.

The Query Optimization Problem

In general, the cache contains several possibly overlapping
aggregates with different granularities which support a
query. Therefore, the problem of the multidimensional
query optimizer is to choose a substitution that allows the
computation of the query at minimal cost. This problem is
very similar to the well-known knapsack problem
([CoLR90]), where a thieve tries to select the most valuable
set of things with different values and weights. A common
method is to use a greedy strategy to approximate the opti-
mal solution for the NP-complete 0/1 knapsack problem. In
the case of the fractional knapsack problem where the
thieve may take arbitrary fractions of objects the greedy
approach actually yields the optimum. The problem of
finding an optimal substitution can be reduced to the frac-
tional knapsack, if the cost to compute a fraction of one
multidimensional object from another one is monotonous
in the size of the support.

Definition 11: A cost function Cost(M, M’ ) determining
the cost to compute the support of a multidimensional
objectM from M’ is monotonous, if for any two arbi-
trary multidimensional objectsM’ andM’’  holds:

| M ∩ M’ | < |M ∩ M’’ |
⇒ Cost(M, M’ ) < Cost(M, M’’ ).

In the case of a monotonous cost function, an algorithm
selecting the cheapest substitution for each data cell in the
multidimensional objectM automatically finds the optimal
substitution (‘Greedy-Choice property’; [CoLR90]). How-
ever, especially in the context of relational databases
monotony of the cost function may not be given. In a rela-
tional backend the computation of a multidimensional
object results in range queries on the affected tables repre-
senting the supporting multidimensional objects. In the
absence of indexes, range queries on relational tables usu-
ally result in full table scans destroying the property of
monotony.

In order to find a substitution for a query we use the
greedy strategy outlined in algorithm 1. The algorithm gets
the queryMQ and the setC of all materialized multidimen-
sional objects as input parameters. It returns a substitution
Sand the estimated cost to computeMQ. As long as there
are still uncomputed fragments remaining (line 5), the can-
didate with the least access cost per cell for each fragment
is selected (lines 9-21). After the selected patch is added to
the solutionS(line 24) it must be removed from the remain-
derR using the difference operator (line 28). SinceM may

Figure 2: Patch-Working

M1

M2

MQ M3
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only be partially derivable fromMbestthe uncovered differ-
enceM-Mbestmust remain inR. It is worth to mention here
that a solution is always possible ifC contains also the raw
data objects

Cache Replacement

The knowledge of the OLAP application domain provides
not only a lot of semantic information about the data model
but also about the users behavior. In order to incorporate
reference density as well as semantic knowledge the benefit
in our approach is defined by the four factors of the
weighted relative reference density, the absolute benefit,
the degree of relationship, and the reconstruction cost
([ADB+99]):

• Weighted Relative Reference Density DM
The weighted relative reference density is used to
approximate the traditional least reference density
(LRD) in the multidimensional context. A reference
counter is increased only by the fraction ofM that was
actually referenced.

• Absolute Benefit AM:
The absolute benefit is based on the size, the granular-
ity, and the scope of the multidimensional object and
therefore generalizes the benefit definitions from
[HaRU96] as well as [DRSN98].

• Degree of Relationship RM(MQ):
In the OLAP context, it is very likely that an object in
the cache that can be reached within a few navigational
operations will be used with a high probability. There-
fore, the number of navigation operations which are
necessary to transform the last queryMQ into a mate-
rialized, i.e. cached multidimensional objectM defines
the degree of relationship forM.

• Reconstruction Cost CM(MQ, C):
Since cached multidimensional objects may be com-
puted from the set of multidimensional objects being
currently an element of the cache, it may prove benefi-
cial if those multidimensional objects are replaced
which can be reconstructed most easily.

Since the factors have very different orders of magni-
tude, they are normalized by their average values before the
overall benefit BM(MQ, C) of a multidimensional objectM
for a cache configurationC after queryMQ is computed by
a linear combination. The overall benefit is used as the indi-
cator, whether there is a change of the set of cached multi-
dimensional objects or not.

5 Experimental Results

The following section illustrates the optimization potential
of the presented algorithms for caching multidimensional
objects. Our proposed dynamic caching strategy is ana-
lyzed according to different cache sizes and influence fac-
tors for the computation of the overall benefit. Further-
more, we compare our strategy with the static precomputa-
tion approach of [HaRU96].

Experimental Setup

The proposed data structures and algorithms are imple-
mented in the multidimensional OLAP serverCUBESTAR.
All query processing and cache management is based on
algebraic operations on multidimensional objects. How-
ever, multidimensional objects are physically stored in a
relational backend (Oracle 8.0.4; DEC Alpha 3000/800,
1CPU, 192MByte RAM) in a star-schema-like manner
(ROLAP system). For each patch in the optimal substitu-
tion for the query (algorithm 1), the query processor gener-

Algorithm: Substitution (Patch Working)

Input: set of existing multidimensional objectsC = {M1, ..., Mn}

multidimensional object representing the queryMQ,

Output: substitutionS for MQ

1 // initialize remainder, patch-work and cost
2 R := { MQ }; S := ∅; costtotal := 0
3
4 // iterate over all
5 While ( R ≠ ∅)
6 MBest := ∅; costrel := ∞;
7
8 // find cheapest substitution for each remaining patch
9 ForeachM ∈ R
10 // loop through all candidates
11 ForeachMcand∈ C
12 // next candidate if this one is not supportingM
13 If  ( Not ( Mcand„ M ) )
14 Next;
15 End If

16 // if relative cost of new candidate is less
17 If  ( costrel > Cost(M, Mcand) / |M ∩ Mcand| )
18 Mbest := Mcand;
19 costrel := Cost(M, Mcand) / |M ∩ Mcand|;
20 End If
21 End Foreach
22
23 // add the best patch to the result
24 S := S∪ { 〈M∩Mbest, Mbest〉 };
25 costtotal := costtotal+Cost(M, Mbest);
26
27 // remove the new patch from the remainder
28 R := R \ { M } ∪ (M-Mbest);
29 End Foreach
30 End While
31 Return (S, costtotal)
32 End

Algorithm 1: Substitution of a multidimensional object (‘patch-working’)
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ates an SQL statement, which are put together by UNION
ALL operations to yield the final result. We could not com-
pletely eliminate side-effects of the system, especially of
the database buffer, but multiple runs confirmed the follow-
ing results.

Multidimensional Database Schema and Query
Generation

The schema of the multidimensional database consists of
three dimensions with five, four and six levels, and a set of
up to 14 dimensional attributes, respectively. The corre-
sponding raw data cube was randomly filled with a sparsity
of 3% resulting in about 250.000 tuples in the relational
representation. To simulate the cache replacement behav-
ior, a new query is constructed from the previous query by
applying a single operation in a certain dimension with a
predefined probability. Since a typical OLAP user does not
switch very often between dimensions, in 80% of the cases
the operation was executed on the same dimension and in
20% of the cases the operation involved a different dimen-
sion as the previous one. The set of possible operations
included slice (scope changes to a child node), unslice
(scope changes to a parent node), drill-down (granularity
changes to the next lower level), roll-up (granularity
changes to the next higher level), split (add a dimensional
attribute) and merge (remove a dimensional attribute).

Performance Metric

Since in general the cache management aims at maximiz-
ing the cost saving ratio ([ShSV99], [DRSN98]), we
defined this metric in the context of multidimensional
objects. The cost saving ratio CSR on cached multidimen-
sional objects is defined by the division of the sum of the
costs of the queries using the cache content and the total
cost to compute the queries from the non-aggregated raw
data.

In the experimental scenario, two user traces, one simulat-
ing 1000 operations of single user and another one 1500
steps of five independent users, were used to investigate the
behavior of the cache for varying cache sizes and configu-
rations.

Influence of the Cache Parameters

The first set of graphs in figure 3 illustrates the impact of
the four cache parameters using a cache size of 20% of the
raw data volume. The figures show the development of the
cost saving ratios for the single and the multi user trace. If
all parameters are enabled, cost savings of about 56% in the
single user case and 50% in the multi user case were
obtained. By trying all possible combinations of parame-
ters it turned out that for both the single and the multi user
traces the usage of the relative reference density D and the
relationship degree R yields the best results of 60% and
52% respectively. On the contrary, the worst results of 35%
and 28%, respectively, were achieved using the absolute
benefit A and the reconstruction cost C.

It is interesting to note that the number of potential users
of a materialized aggregate, reflected by the absolute bene-
fit A, is not suitable for the determination the overall bene-
fit. Algorithms like [HaRU96] are based solely on this fac-
tor. Furthermore, it turns out that the general critics accord-
ing to query-based caching schemes namely the possibly
redundant storage of the same part of data cube in different
objects is of minor interest, because the influence factor of
the reconstruction cost also does very badly.

Influence of the Cache Size

The diagram in figure 4 shows the simulation results for
different cache sizes varying over 10.000, 25.000, 50.000,
100.000, and 500.000 tuples. Compared to the raw data
volume these values result in an additional storage over-
head of 4%, 10%, 20%, 40% and 200%, respectively. For
these simulations the best combination of cache parame-

Figure 3: Cost saving ratio for different combinations of cache parameters

a) single user, 1000 steps b) multiple users, 1500 steps

0%

10%

20%

30%

40%

50%

60%

70%

0 200 400 600 800 1000
0%

10%

20%

30%

40%

50%

60%

70%

0 200 400 600 800 1000 1200 1500

Parameters:

D and R
D, A, R and C
A and C
C alone

C
S

R

C
S

R



W. Lehner, J. Albrecht, W. Hümmer 2-8

Summary

ters, i.e. D and R, was used. As can be seen, already with a
relatively small cache of 4% of the raw data size, cost
reductions of over 50% in the single user mode and over
40% in the multi user mode are possible. However, the cost
savings in the single user mode do not increase much over
60% for any cache size beyond 50.000 tuples. The figure
illustrates that even for multiple users a cache of a fairly
small size yields cost reductions not much worse than for a
single user, i.e. above 50%.

Comparison to Static Precomputation of Aggregates

In order to compare our method to other materialization
methods of aggregations, we implemented a static precom-
putation algorithm based on [HaRU96]‡. This algorithm
computes a set of aggregates with an unrestricted scope
based on a benefit definition similar to the absolute benefit.
Figure 4 shows the cost saving ratio for different cache
sizes. If only 4% of additional storage are provided, there
is almost no cost reduction possible for the static algorithm
(therefore not in the figure), because the size of almost all
useful aggregates with an unrestricted scope is larger than
the cache size. Although with increasing cache size the cost
saving ratio of the static approach rises, the values for the
dynamic strategies remain unrivaled. Even for a cache size
twice as large as the raw data volume the cost saving ratios
for the single and multi user cases are only about 40% and
30%, respectively. Note that the dynamic strategy yields
over 50% with 1/50 of that cache size.

The reason for the bad results of the static approach is
that the size of the aggregation lattice grows exponentially
in the number of possible group-by combinations. In most
application scenarios this number is high, because several
evaluation criteria on a single dimension are used, like
dimensional attributes or multiple hierarchies. Using a rea-
sonable amount of additional storage, static methods can

only supply an insufficient number of aggregates. More-
over, because general static approaches do not take into
account specific partitions, i.e. regions of interest or hot
spots, much of the additional storage space is wasted for
regions of aggregates which are never or seldom requested.

6 Summary

In this paper, we present a novel method for the dynamic
selection of materialized aggregates in the context of mul-
tidimensional database systems. Our proposed solution is
based on the notion of multidimensional objects which pro-
vide a consistent view to queries as well as to materialized
aggregates. The use of multidimensional objects drastically
simplifies the determination of intersections and differ-
ences of queries. Therefore, we are able to present a query-
based caching strategy overcoming the limitations of query
containment by the concept of set-derivability. Set-deriv-
ability is achieved by a patch-working mechanism, which
(in the case of a monotonous cost function) computes the
cheapest substitution of a query by a set of materialized
aggregates. The cache replacement strategy is based on the
overall benefit computation for each element in the aggre-
gate cache which consists of a linear combination of four
different influence parameters. At last we give the results of
various experiments. Average cost reductions of 50% to
60% may be obtained by only 10% additional storage
capacity.

The proposed optimization technique must not be seen
as an alternative to traditional physical optimization meth-
ods like indexes or fragmentation, but as an addition. Our
method not only explicitly supports fragmentation of the
fact table but makes it even more beneficial. If aggregates
are only materialized for hot spots, a single query may uti-
lize both fragments of materialized aggregates and frag-
ments of raw data in one operation. Our proposed strategy
may easily be integrated into most relational OLAP serv-
ers, because all optimizations involve only algebraic oper-
ations on common multidimensional structures.

‡. Unfortunately, we could not compare our approach
with the work of [DRSN98], since they require a very
special ‘chunk-based’ file system in the context of
their Paradise database system.
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Currently, we are exploring the integration of indexes on
the multidimensional objects and the benefit of using spe-
cial linearizations. Another research is the use of the frag-
ment-based patch-working algorithm in a parallel server
environment.
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