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Abstract consistently and instantaneously. Maintaining the

integrity of these Indexes and Views [GM95], [MK99]
In an Object Relational Data Warehousing Imposes a challenging problem when the source data
(ORDW) environment, the semantics of data and changes frequently, when the size of the DW keeps

queries can be explicitly captured, represented, 9rowing, and/or when the user queries become
and utilized based on is-a and class composition increasingly complex. An extensible framework that can

hierarchies, thereby resulting in more efficient accommodate dynamic warehousing [Dayal99] of
OLAP query processing. In this paper, we show changm_g data gracefullly, ar)d. have. adaptive handles for
the efficacy in building semantic-rich hybrid processing OLAP queries efficiently is needed.

class partitions by incorporating thessodated . o
Horizontal Class Partitioning (AHCP) technique [N [VLK98], we showed that besides establishing a
on the ORDW schema. Given a set of queries, Seémantically richer framework for multi-dimension
we use primary and derived partitioning hierarchies, the Object Relational View (ORV) model
algorithms to select (near) optimal AHCPs, Provides excellent support for complex object retrieval. In
thereby embedding query semantics into the [VLK99] we presented the Object Relational Data
partitioned framework. Finally, by a cost model, ~ Warehousing (ORDW) approach to address some of the
we analyze the effectiveness of our approach vis- issues discussed in [VLK98] on data warehousing. More
a-vis the unpartitioned approach. specifically, we devised a translation mechanism from
the star/snowflake schema to an object oriented (O-O)
- representation. In [VLKO0O], we advocated a query
1 Introduction processing strategy implementing the Structural Join

Data warehouse (DW) equips users with more effectif@dex Hierarchy (SJIH) on ORDW.

decision support tools by integrating enterprise-wide ] . o .
corporate data into a single repository from whicH this paper, we show the efficacy in building semantic-
business end-users can run reports and perform ad HeB hybrid class partitions by incorporating the
data analysis [CD97]. As DWs contain enormous amoufigsodated Horizontal Class Partitioning (AHCP)

of data, often from different sources, we need highfgchnique on the ORDW schema. Given a set of queries,
efficient indexing structures [Sar97], [GHRU97]We use primary and derived partitioning algorithms to
[VLKOO], materialized (stored) Views [Rou97], andselect (near) optimal AHCPs, thereby embedding query
query processing techniques [VLK99] to efficienths€mantics into the partitioned fra}mework. Finally, by a
answer on-line analytical processing (OLAP) querie§0st model, we analyze the effectiveness of our approach
Materialized Views represent integrated data based ¥i§-a-vis the unpartitioned approach.

complex aggregate queries, and should be available . ] ]
To put our research in perspective, we review some

related work and briefly outline our previous work in the
The copyright of this paper belongs to the paper’s authors. Permission to cfivld of ORDW and Class partitioning oBODBs in

without feg aI.I or part of t_his material is.granted provided that the copies are "é’éction 2. We further motivate our study by presenting on
made ord|§tr|buted for direct commgrmal advantage. _ the ORDW schema some sample queries whose patterns
Proceedings of the International Workshop on Design and are classified based on DW operations and by OO
Management of Data Warehouses (DMDW'2000) concepts. Obtaining an optimal partitioning scheme to
Stockholm, Sweden, June 5-6, 2000 process this set of queries is the focus of section 3, where
(M. Jeusfeld, H. Shu, M. Staudt, G. Vossen, eds.) we employ a hill-climbing heuristic algorithm to select a

http://sunsite.informatik.rwtheachen.de/Publications/CEUR-WS/Vol-28/
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(near) optimal AHCPs. This algorithm is profilingother composition links. Moreover, we also demonstrate
driven, and can be further extended to incorporate othisra hierarchies (denoted by dotted lines) obtained by
semantics. In section 4, we compare results of retrievadrizontally partitioning the ORDW schema.

costs using the AHCPs vs. the unpartitioned case. Section

5 concludes the paper with a brief look at future work.

2 Background and Motivating Example

2.1 Related Work

Partitioning has been vastly researched in Relational & || [Swe] [Feenager] [ Adur ]

OO database systems. Excellent work has been done P i customer

Vertical Partitioning (VP) and Horizontal Partitioning [yee] | i [Coumy] i~
(HP) in both systems, but the unique features of G product i : Address : e Time. .
systems have made it possible to experiment with

different variations such as Derived Horizontal Class Fig. 1. The ORDW Schema.

Partitioning (DHCP), Assodated Horizontal Class T
Partitioning (AHCP), Path Partitioning (PP) and Methog ; ; aa hi

Induced Partitioning (MIP). [KLOO] presents atﬁ::;nggégﬁ:\::odr};nir;ii?ne Is-a hierarchy (shaded area) for
comprehensive framework for devising partitioning ’
schemes based on different types of methods and th/?irFact is the
classification. The issue of fragmentation transparency
addressed by considering appropriate  meth
transformation techniques. While those methods w
extremely successful in the transactional environment mplex enough to contain various other components

an OODB, to the best of our knowledge, no work haf,i"can themselves be classified as Dimensions and

been done in partitioning of an Object Relational DB Qj5)es then that Dimension can be a “Fact’ of another

Object Relational Data Warehouse (ORDW). OLAP query. In this case, we can consider the schema to
be that of “Nested Fact” or “Fact within Fact”.

he figure shows the class composition hierarchy for the

subject” of the OLAP queries, and is
antified by its dimensions and “values”. Dimensions
n be hierarchical and composite in nature, whereas
lues are numerical data. When a Dimension is

Recently, we have conducted somdiprimary studies on

developing an ORDW framework. In [VLK98], We\ynereas when two (or more) Facts share (one or more)

showed that the ORV (Object Relational View) modghimensions, then the OLAP queries can be considered as
offers inherent features that are conducive to managing&ar-Fact”. To support OLAP applications, we define a
data warehouse. We listed the various issues that arj Sup of OLAP queries OQG (modified frc’)m [VLKOO]
during the design of an OR-DWMS (Object Relationgly 5qqing predicates), which are invoked as a set (not
Data Warehouse Management Systems). Here, OR meg Eessarily in an order). Query patterns in@@G may

anl tpbjetl:t;jor:ented frontéend dor \t/;]ew.s to u dn_derlym at be restricted to a particular composition hierarchy or
relational data sources. based on the ISSUes QISCUSSefifbjtance hierarchy. Theceess paths may involve

[VLK98], we put forward a three-phase design approaglj itiple paths emanating from the same complex object,

in [VLK99], which also provided a query-driven ¢ \we| a5 interact with entities in completely unrelated
translation mechanism from the star/snowflake schem plex objects.

an object oriented (O-O) representation. Some query

processing strategies utilizing Structural Join IndeX,, yhis discussion, queries involving Nested Facts can be
Hierarchy (SJIH) techniques for complex queries Ofjngjdered as subsets of inter-Fact queries. They are
composite objects were addressed in [VLKOO]. distinguished by the presence of a semantic disjointness
between the Facts involved. It must be noted though that
this disjointedness does not preclude the Facts from
To further motivate our subsequent discussions, let sisaring the same component objects. A query-processing
consider the sample ORDW schema as shown in Figweheme built on separate Facts will inadvertently need
1, taken from [VLK99]. This schema is a simple singlesostly joins. This inefficiency is amplified for queries
star/snowflake schema, for a sales application. As seeniiith low selectivity and high frequency. This calls for a
the figure, dimension classes (DCs) are connected fyed for a partitioning scheme that transcends Facts and
solid arrows (composition hierarchies) to the main faét not restricted by the hierarchies mentioned. It must be
class (FC). In addition, there are other inter-dimensioroted that such a partitioning scheme may well be
hierarchies (as obtained by vertical partitiod)ngand overlapping and hence will suffer on the storage space.

2.2 Moativating Query Examples

Based on classifications by DW operations & by OO

! This paper deals only with Associated Horizontal Partitioningoncepts, we consider the following queries listed in
techniques, and the above schema has been arrived at u3iabple 1 as our sample OQG for subsequent discussions.
other techniques.
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Table 1. Sample OLAP queries - OQG frequency to determine the selection of minimal complete
set of partition fragments for optimal storage,

No. Query : Query type maintenance and retrieval costs.
Q1 | Sales by Prod by State in US Only along ¢ch
(pivot) 3.1.1 Primary Horizontal Partitions (PHP)

Q2 | Sales by Prod by State by Yea#> Drill-down .
in US Classes in the ORDW schema can be denoted"fas C

Q3 | Sales by Prod for Categ=Elec _ -> Roll-up which indicates thé " class in thep " path. The root

Q4 | Sales by Prod by City forOnly along cch| class (FC) is denoted as.®rimary Horizontal Partitions
Categ=Elec Drill-down on these classes can be denoted as sub-classes and placed

Q5 | Sales by Prod by Country forOnly along cch, in the is-a hierarchy under the original partitioned class.
Categ=Elec Roll-up Note that the (sub) is-a hierarchy in our examples is

Q6 | Sales by Prod to Teenagers b@nly along cch, denoted by the subscripj , which denotes thg™ sub-
State for Categ=Elec & in US| Slice_and_dice class of thei " class (in thep ™ path). The Primary

Q7 | Sales of Prod 1 compared witOnly along cch,  Horizontal Partitioning (PHP) operation is denoted as :
Sales of Prod 2 to Teenager®rill-down,
for Categ=Elec Slice_and_dice PHP(G® )p1 -~ {Cis", G2",..., G"}

o i i i i i - . . . .

Q8 | % increase in Sales {oCombination Of.'s where (G ) is the Class that is Primary Horizontally
Teenagers over Sales fam & cch, Dirill- Partiti d di t dicat 1 i .
Adults, of Prod 1 / 2 foi down, artitioned according to a predicate (pl), r;esu ingin
Categ=Elec & in US Slice_and_dice fragments which are treated as classes,"}C Note

however, that since FC is the only root in the realm of

Some OLAP queries could be on the entire range of Safs§ OLAP OQGs, any pnfslry parti_tion of the root need
and would need to access multiple dimensions for tR@t display the path suffix; ie. (6" = Co)-
"Group BY". However, as seen above, some queries co[

frata rancna cltirh A "CaAatan—Cla~" | jemimmim i =em e LEGEND
have a predicate range such as "Categ=Elec" T | | - T - ka
‘ g ———» CCH
"Country=US". In such cases, the search space on P 7@-" S o
Fact "Sales" is reduced by a factor equal to the selectiy NN i /2 b JFaament
NN S ation Join

of the predicate. However, this does not help durif =
guery processing (normal unpartitioned case), as t “L .%o
entire FC is processed while searching for releval
tuples. Even in cases where indexes are built [VLKOC
the benefit could be reduced, as index creation takes
more time due to the enormity of the FC. Further, as t
OLAP queries involve multiple paths (multiple selection
and group bys), the size of the Forward and Reverse Jg
is dependent on the size of the Root (FC). Thitsdor
the need to partition the FC according to the que
characteristics.

N

3 AHCP Selection Methodology

The Assomated Horizontal Class Partitioning (AHCP) Fig. 2. An AHCP example on the Fact and Dimensions
methodology creates semantic-rich hybrid class partitio%

for efficient query processing. It is a technique by whic o :
several classes can be partitioned according to e class composition hierarchy (CCH). Some of the

2 2 2
semantics of another class in its aggregation hierarc 1Ps are {G, G2 and Gy }, _connected by dashed
We employ the AHCP on our ORDW schema, ant'€S (is-a) to the super-clasg"@hich was partitioned.

propose to extend its applicability from class composition .
hierarchies to also include is-a hierarchies and linls the PHPs can be considered as subclasses of the class

guantified by partial participation, thereby encompassiran which the PHP were performed, they are placed in the
the Complete Warehouse Schema (CWS) in the ORDWIs-a hierarchy of the schema. We can have any no. of
PHPs on a single class based on a number of predicates.
3.1 AHCP fundamentals For a single simple predicate, the PHPs are disjoint, i.e.
The total cost of the AHCP framework can be broadipey don't share any objects. PHP schemes based on
categorized as partition storage cost, retrieval cost amdiltiple or complex predicates on the same class, may
maintenance cost. In this paper, we also incorpordtgluce overlapping fragments, however we do not
query-centric information including selectivity andconsider such schemes in this work to avoid complexity.

e example in figure 2 shows classgs@* and G? in
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3.1.2 Associated Hazontal Class Partitions (AHCP) 3.2.1 Storage Cost

After the PHPs are created, the AHCP operation may Bhe Storage cost (SC) has two components : Primary
performed on some other classes in the schema. As ndtledizontal Partition (PHP), and theAssodated
above, most queries in tl@QG access the root (FC) forHorizontal Class Partition (AHCP). It can be stated as :

its value based attributes, and hence this paper deg%_

primarily with AHCP of the root class. The AHCP =SGrp + SGurce
operation can be denoted as follows : They are given as follows :

AHCP (G%, PHP(@ )p1) - {C%i®, Chf ..., T} 1. SGrp (Cy) :

where (G') is the Class that is Assate Horizontally We assume that in most cases, and especially in this
Class Partitioned (AHCP) according to the PHP on clagaper, we consider only one PHP per class. This ensures
CP, resulting inm fragments which are treated as classdbat the partitions are disjoint for simple predicates. In
{ C%m" }. Here again since FC is the only root in theuch cases, there's negligible overhead for storage cost as
realm of our OLAPOQGSs, any AHCP of the root needSGp (Cy1) = | G| (no. of pages occupied by the clags C
not display the path suffix; ie. {€,2 = Co.15). + catalog entries for the no. of PHPs of These catalog
entries give details of the partitioned Class structure,
As seen in the figure, the examples indicate that two setent and qualifying rules. Hence, they're very small and
of AHCPs are created from the root. OThey can be can easily be accommodated in memory (in both the
created by : medium and large memory hypothesis.

2 2 2 2% .
AHCP (G, PHP(G )pll) ~ {Coat . Cfl’-lz : Cfl’“ b In case of multiple complex predicates on a Dimension
AHCP (G, PHP(G" )p1) — { Cozr » Gozz } (Cy), resulting in overlapping fragments, we propose not
These partition fragments are denoted as subclassedoinreplicate the entire class extent, but rather only
the figure by means of the shaded boxes to indicagplicate the Class OIDs (and some frequently accessed
Assodate Partitioning. attributes) in the separate Partitions.

The AHCP operation can also be preformed on clasdeghis case, the storage overhead can be estimated as :

other than the root, ie. the Dimension Classes. Fg C) = .

' = X NQur X (Sizeof(Attr)) x N
example, as seen in the figure’@n be AHCPed based Gore(C) G X NOw x ( (Attr)) X Ngwe
on the PHPs of £. where Nay, = No.of Attributes replicated.

3 1 1 1 where N@gp = No.of Partition schemes.
AHCP (&°, PHP(G )p1) » {Cs21 , Gaaz }

The result is shown in shaded boxes undgt i the Given a maximum of 2 replicated attributes or 20% of
figure. the class structure, and a uniform size of attributes, we

can accommodate up to 5 different Partitioning schemes

An important point to be noted here is that while th#r an increase of 100% in $6 (Cy).
Fragments obtained by any single AHCP operation on theg .

“s | = SGcr (Co) :
root are always disjoint, the same cannot be said about - _ _ .
Fragments obtained by AHCP on any other (DimensioAiis is by far the biggest increment for storage cost in the
class. This indicates the storage overhead to be incurfddCP ORDW. As noted above, the rootofQvould be
while performing AHCPs on the Dimension classes, ariie widely used as the candidate for performing AHCP.

must be taken into account by the cost model. Since any predicate on a single dimension can only
induce disjoint partitions in the root, the partitioning

3.2 AHCP cost model overhead is negligible for multiple partitioning schemes

In an ORDW, partitioning can be implemented by mean & Single DC.

of Method Induced Partitioning techniques [KLOO]. SGancr (Co) = | G | + Nappp X Sizeo(PHP).
Moreover, due to the structural and cardinal differences

inherent between Dimension Classes (DC) and the Facivhere Size, = Catalog entry size (structure, extent,
Class (FC), we can assume that the DCs need not be qualifying rules).

physically partitioned as they may be wholly or partial

I . . .
stored in memory (under both medium and large memc)%pwever, as we incorporate multiple predicates on
hypothesis). Hence, the cost of the traditiojain different dimension classes, §fr (Co) grows linearly

between the PHP fragments and the AHCP fragments &hth€ no. of dimensions (assuming only single complex
be ignored. Thigoin can be achieved by employing thdoredicates on each dimension). This can be a large
methods of the FC.
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overhead, as {as the FC, is very large (~order oftomposed of AHCP loading cost. Since this is smaller
Gigabytes). than the complete FC by a factor of mielj), where
Hence, we intend to reduce this overhead by means dded, indicates the selectivity of the predicates on query Q
Multiple Partition Processing Plan (MP based on , we achieve a considerable savings in retrieval cost.
MVPP [YKL97]. This would etail a compromise

between duplication and efficiency of the partitions, aghis saving is also obtained when indexing schemes like
sub-fragments will have to be created to support thiee SJIH [VLKOO] are built on top of the AHCPs, and
AHCPs. The Join needed to produce the final result froalso when aggregate views have to be developed.

these sub-fragments constitutes the increase in retrieval _
cost. 3.3 AHCP selection procedure

We approach the problem of performing AHCP in the

ORDW in a different manner from the case of DHCP in a

As noted above, since inter-fragmejoiin is avoided normalOODB [BKS98]. IN [BKS98], various techniques

between the PHP and AHCP fragments, maintenance o@stndidates) were considered to decide the best PHP

is considerably simplified due to the AHCP operation. candidate for performing DHCP. Here we consider all the
PHP candidates, and our AHCP algorithm generates a

As the ORDW is a read mostly and append onlyptimal combination of complete and minimal set of

environment, we can safely estimate the maintenan&EICPs.

cost even though the schema is vastly enhanced (and

complicated) by semantics. For example, once t/e3-1 AHCP Algorithm (also called MP3 algorithm)

Warehouse has achieved full functionality, in eachihe algorithm can be broken into three parts :

update cycle of the ORDW, we can expect up to 0.5%

addition of the FC (this is a very conservative estimate Generating an exhaustive set of AHCPs based on

based on our same DW, maintaining 10 years worth of query characteristics (selectivity, fan-out) obtained
"Sales" data and updated daily). The updates to DCs can from the entire query space.

3.2.2 Maintenance cost

be ignored mainly because their percentage will be even 1.1 For each query Qin the OQG, generate
smaller and also because most of the DCs will be in logical associated fragments {f} from
memory anyway. Only these 0.5% FC objects have to be {C/P} that satisfies sub-expressions of Q
processed in order to maintain the Partitioning scheme. completely.

1.2 Perform an intersection of the (€
The Maintenance cost for the AHCP partitioning scheme fragments for all Q. This creates the
(MC) can be defined as the extra cost of maintaining the complete disjoint AHCP set, on which the
AHCPs and the PHPs Catalogs. querieS will be based.

MC = MCco AHCP) + MCcof PHR) - . . -
2. Assigning query weights depending on priority and
Since MG.(PHR) is negligible as the PHPs are in  jmportance (frequency).

memory, the main cost is on the AHCP maintenance, 2.1 For each query Q evaluate the minimal set of

which is comprised of maintaining catalog entries of the query processing fragmentQPF = { Co_jlpl ,
AHCP, Generally this meta-information is small enough CO_J.ZPZ, ey Goyrt™}
to be stored completely in memory. 2.2 Create query plans for each @®aving nodes

. involving unions of fragments, which exist in
3.2.3 Retrieval cost multiple QPF, .
To determine retrieval cost, we break up the complex 2.3 Assign cumilative weights to the nodes
gueries into smaller atomic sub-query expressions. We depending on their utility to consecutive; Q
denote this by means of a MQO (Mple Query (based on frequency and cardinality).
Optimization) graph in the MP which is further
explained in section 3.3. 3. Selecting a minimal complete set of AHCPs based on

the query weights, subject to storage and
The Retrieval Cost (RC) is the cost of parsing the maintenance cost.
catalog, acessing the relevant AHCPs (as union) and the 3.1 For each @, perform top-down evaluation of
cost of thgoin with corresponding PHPs. nodes in its query plan.

3.2 Select lower nodes (breakup) if the retrieval cost

RC = RGa + RGcp + RGopp + RGoin is lesser ( P)

However, as we store the PHPs andjtie in memory, This part is similar to that of the Algorithm for selecting
and the Catalog is relatively small, RC is mainlyiews to be materialized given dvPP [YKL97].
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P L TN e e -
Complete A
disjoint AHCP -

R LR oo, We see that there are 4 main predicates by
- s-a . . . e
—»  coH which the Dimensions are partitioned,
Steps 23 Q 3 0 T viz. p1: "Country = US",p2a: "Customer = Teen ",

p2b : "Customer = Adult"p3a: "Product = P1 "p3b:
"Product = P2", ang4 : "Categ = Elec". Performing the
AHCP function with respect to these PHPs as shown in
section 3.1, we arrive at an exhaustive set of AHCPs of
the Sales Class (FC).

Step 1.2 : Perform an intersection of thgGragments
_ forall Q; .

Consequently, by intersection as shown in table

.................................. e i 2, We See that a complete set of 16 different AHCPs of the
FC (Sales) can be created based on these 4 predicates,
encompassing all possible and non-empty fragments :

Table 2. Fragments obtained after intersection

° F1| pl~p2a”p3a™ | F9 | pl”rp2a”p3a”
p4 p4
Fig.3. Multiple Partition Processing Plan (MP3) F2 | pl~p2a”p3b”™ | F10| !pl~p2a”p3b”"
p4 p4
Figure 3 shows examples of AHCPs (AHCP-1, AHcp-2) F3 | p1 " p2a”!p3a”| F11| !pl~p2a”!p3a”
and PHPs (PHP-1) on the Fact Class).(CThese 'p3b * p4 'p3b " p4
fragements can then be merged by intersecting them &4 | P1 " p2a ” Ip4 F12 !'pl~p2a”!p4
generate a complete disjoint set of Partitions. It must heFd | pP1 " p2b " p3a” | F13| Ipl~ p2b " p3a”
noted that this is obtained from the query characteristics p4 p4
and the Partitions are very exhaustive. Due to this reasonf6 | p1 "~ p2b” p3b” | F14 | !pl " p2b~ p3b "
it may not be feasible to materialize the fragments all, p4 p4
and hence the MHAs used to determine which should be| F7 | p1 " p2b~!p3a”| F15| !pl~ p2b~ Ip3a”
materialized and which should be kept virtual [VLK98]. 'p3b * p4 'p3a * p4
The cost model is based on the MVPP [YKL97] and F8 | pl” p2b” Ip4 F16 Ipl”p2b~Ipd

incorporates SC, MC and RC. As shown in the figure
the shaded classes are materialized.

’

minimal set of query processing fragments.
The query processing fragment®RF ) are

4 AHCP evaluation

shown in table 3:

In this section, we analyze the fragment retrieval cost for

Step 2.1: For each query; @f the OQG, evaluate the

Table 3. Query Processing Fragments (QPF)

QPF, , QPR F1, F2, F3, F4, F5, F6, FY,
F8
F1, F2, F3, F4, F5, F6, FY,
F9, F10, F11, F13, F14, F1§

processing queries in OQG using AHCP. A comparison
of the results with that of plain query processing
approach using pointer chasing is then conducted.

. PR , QPF, QP
4.1 Fragment retrieval cost QPFs, QPR QPR

In order to evaluate the AHCP methodology, we use theQPF; F1, F2, F3
sample ORDW schema and queries as detailed in sectip@PF, F1, F2, F9, F10
2. Here we note that there are eight queries in the OQGQPFR, F1, F2, F5, F6

and we assume them all to be of equal importance.

Step 2.2 : Create query plans for eachhaving nodes
Running our example through the algorithm given imvolving unions of fragments which exist in multiple
section 3.3 : QPF .

The intermediate nodes are created by a

Step 1.1 : For each query;Qn the OQG, generate combination of fragments noting their affinity in the
logical associated fragments {f} from {G"} that QPFs. For the sake of completeness, we also create
satisfies sub-expressions of@@mpletely. unaccessed nodes as shown in table 4, for example, N12

(F12 U F16), though these fragments are woessed by
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any query in th©QG. Initially all top -level nodes can be considered marked for

materialization.
Table 4. Intermediate Nodes

Node | Definition Node| Definition Step 3.2 : Select lower nodes (breakup) if the retrieval
NI |FI1UF2 N7 | N2UN6UN9 cost is lesser. _ o .

N2 N1UF3 NS F9 U F10 This is a recursive step, in which the node is
N3 F5 U F6 NO N1 U N8 unmarked (for materialization) if any node under it has a

weight higher than itself. In that case, the lower nodes
are considered marked for materialization, and the
process is repeated with them.

N4 N2 U N3 N10 F11 U F13 U F14
UF15

N5 N3 U F7 N11 N5 U N8 U N10
N6 NSUF4UF8| N12 F12 U F16

For example, processing forgQve mark N4 as it's the

. . . first node :
Step 2.3 : Assign cumulative weights to the nodBat the weights are : N4 : 1, N2 : 2, N3 : 3

depending on their utility to consecutive @ased on | .. N4 is discarded for N2 and N3
frequency and cardinality). NowN2:2 N1:4 F3:2 '

For eaph of the queri_es,Q_)ve know the opFimaI So N2 is discarded for N1 and F3.
query processing plaop, which is an ordered list of and so on

nodes and fragments. We also know the frequeg¥of

each query, land the selecnvnse(,j). of the clause that its Repeating this process for all the queries, the following
(sub-query) is based on. Depending on those parametﬁ?‘r&deS are materialized :

we give weights to the nodes in thg of each query. F3. F4 F7 F8 Nl N3. N8. N10

. This is our optimal minimal AHCP set.
For example, processing for Q1, we have : P

<op> = <N7, N6, N2, N9, N3, N5, N8, N1, F1, F2, F44 2  Comparing HCF retrieval cost with pointer
F5, F6, F7, F8, F9, F10> traversal cost

O the weights for all these nodes (and fragments) is
fi * sel .

Processing for Q6, we have :

<ops> =<N2, N1, F1, F2, F3>

O the weights for all these nodes (and fragments) is
fs * sek .

.. and so on.

In this section, we evaluate our AHCP scheme for its
performance gain over the un-partitioned case during
query retrieval. As noted in the previous section, we have
derived an optimal complete minimal AHCP set of the
Sales FC.

The DCs and associateppins are in memory and
evaluating a query branch dealing with them would

For simplification, we consider equal frequencies armi/olve CPU cost. This is ignored here, as the disk 1/O

0 AT
éLhO.O/Ot selectnr/:ty In thehlt‘ragmerl?ts, herltcttajlatthe end &st is the major component of response time in most
is step, we have weights as shown in table 5: query retrieval costs.

Table 5. Weights for the Fragments and Nodes

The following study shows disk i/o cost ratios for varying

Frag | Weight | Frag | Weight| Node Weight relative frequencies of queries in &G,

F1 4 F11 1 N5 2

F2 4 F12 0 N6 1 cost ratio (CR) = cost of disk i/o for unpartitioned case

F3 2 F13 1 N7 1 cost of disk i/o after AHCP

F4 1 F14 1 N8 3

F5 3 F15 1 N9 2 The query frequencies are varied from 10% to 90%. As

F6 3 F16 0 N10 | 1 these are relative frequencies, it must be noted that the
E7 1 N1 4 N11 1 frequencies of the other queries in OQG are modified

E8 1 N2 2 N12 | 0 equally in each case. The parameters for the study are
F9 3 N3 3 stated in the Appendix.

F10 3 N4 1

As can be seen from table 6, there's always a minimum

Step 3.1 : For each Q perform top-down evaluation of gain obtained when the ORDW is partitioned; the range
nodes in its query plan. of the gain varies from 1% to 50% in this case study.

As the op> are ordered (tree structured), forNOte that these results appear to exhibit a linear relation
each @ we can traverse the list in a top-down mannepetween the selectivity of the query and the cost gain
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obtained from the AHCP operation. However this shouldstead of the entire Fact table. We are currently in the
be interpreted only as the best-case scenario, becausergess of combining these complementary approaches
real-world cases some level of data replication [8t0 @ single framework. We are building an
expected which can cause redundant datess. This ©xperimental ORDW prototype system that will be

may lead to higher cost for the partitioned case than Wﬁftﬁdited kby empirical studies based on TPC-H
this example indicates, although the difference will n enchmark queries.

be too significant. )
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