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Efficient Query Processing with Associated Horizontal Class
Partitioning in an Object Relational Data Warehousing Environment

Abstract

In an Object Relational Data Warehousing
(ORDW) environment, the semantics of data and
queries can be explicitly captured, represented,
and utilized based on is-a and class composition
hierarchies, thereby resulting in more efficient
OLAP query processing. In this paper, we show
the efficacy in building semantic-rich hybrid
class partitions by incorporating the Associated
Horizontal Class Partitioning (AHCP) technique
on the ORDW schema. Given a set of queries,
we use primary and derived partitioning
algorithms to select (near) optimal AHCPs,
thereby embedding query semantics into the
partitioned framework. Finally, by a cost model,
we analyze the effectiveness of our approach vis-
a-vis the unpartitioned approach.

1   Introduction

Data warehouse (DW) equips users with more effective
decision support tools by integrating enterprise-wide
corporate data into a single repository from which
business end-users can run reports and perform ad hoc
data analysis [CD97]. As DWs contain enormous amount
of data, often from different sources, we need highly
efficient indexing structures [Sar97], [GHRU97],
[VLK00], materialized (stored) Views [Rou97], and
query processing techniques [VLK99] to efficiently
answer on-line analytical processing (OLAP) queries.
Materialized Views represent integrated data based on
complex aggregate queries, and should be available

consistently and instantaneously. Maintaining the
integrity of these Indexes and Views [GM95], [MK99]
imposes a challenging problem when the source data
changes frequently, when the size of the DW keeps
growing, and/or when the user queries become
increasingly complex. An extensible framework that can
accommodate dynamic warehousing [Dayal99] of
changing data gracefully, and have adaptive handles for
processing OLAP queries efficiently is needed.

In [VLK98], we showed that besides establishing a
semantically richer framework for multi-dimension
hierarchies, the Object Relational View (ORV) model
provides excellent support for complex object retrieval. In
[VLK99] we presented the Object Relational Data
Warehousing (ORDW) approach to address some of the
issues discussed in [VLK98] on data warehousing. More
specifically, we devised a translation mechanism from
the star/snowflake schema to an object oriented (O-O)
representation. In [VLK00], we advocated a query
processing strategy implementing the Structural Join
Index Hierarchy (SJIH) on ORDW.

In this paper, we show the efficacy in building semantic-
rich hybrid class partitions by incorporating the
Associated Horizontal Class Partitioning (AHCP)
technique on the ORDW schema. Given a set of queries,
we use primary and derived partitioning algorithms to
select (near) optimal AHCPs, thereby embedding query
semantics into the partitioned framework. Finally, by a
cost model, we analyze the effectiveness of our approach
vis-a-vis the unpartitioned approach.

To put our research in perspective, we review some
related work and briefly outline our previous work in the
field of ORDW and Class Partitioning on OODBs in
section 2. We further motivate our study by presenting on
the ORDW schema some sample queries whose patterns
are classified based on DW operations and by OO
concepts. Obtaining an optimal partitioning scheme to
process this set of queries is the focus of section 3, where
we employ a hill-climbing heuristic algorithm to select a
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(near) optimal AHCPs. This algorithm is profiling
driven, and can be further extended to incorporate other
semantics. In section 4, we compare results of retrieval
costs using the AHCPs vs. the unpartitioned case. Section
5 concludes the paper with a brief look at future work.

2 Background and Motivating Example

2.1 Related Work

Partitioning has been vastly researched in Relational and
OO database systems. Excellent work has been done in
Vertical Partitioning (VP) and Horizontal Partitioning
(HP) in both systems, but the unique features of OO
systems have made it possible to experiment with
different variations such as Derived Horizontal Class
Partitioning (DHCP), Associated Horizontal Class
Partitioning (AHCP), Path Partitioning (PP) and Method
Induced Partitioning (MIP). [KL00] presents a
comprehensive framework for devising partitioning
schemes based on different types of methods and their
classification. The issue of fragmentation transparency is
addressed by considering appropriate method
transformation techniques. While those methods were
extremely successful in the transactional environment of
an OODB, to the best of our knowledge, no work has
been done in partitioning of an Object Relational DB or
Object Relational Data Warehouse (ORDW).

Recently, we have conducted some preliminary studies on
developing an ORDW framework. In [VLK98], we
showed that the ORV (Object Relational View) model
offers inherent features that are conducive to managing a
data warehouse. We listed the various issues that arise
during the design of an OR-DWMS (Object Relational
Data Warehouse Management Systems). Here, OR means
an object-oriented front-end or views to underlying
relational data sources. Based on the issues discussed in
[VLK98], we put forward a three-phase design approach
in [VLK99], which also provided a query-driven
translation mechanism from the star/snowflake schema to
an object oriented (O-O) representation. Some query
processing strategies utilizing Structural Join Index
Hierarchy (SJIH) techniques for complex queries on
composite objects were addressed in [VLK00].

2.2   Motivating Query Examples

To further motivate our subsequent discussions, let us
consider the sample ORDW schema as shown in Figure
1, taken from [VLK99]. This schema is a simple single-
star/snowflake schema, for a sales application. As seen in
the figure, dimension classes (DCs) are connected by
solid arrows (composition hierarchies) to the main fact
class (FC). In addition, there are other inter-dimension
hierarchies (as obtained by vertical partitioning1), and

                                                       
1 This paper deals only with Associated Horizontal Partitioning

techniques, and the above schema has been arrived at using
other techniques.

other composition links. Moreover, we also demonstrate
is-a hierarchies (denoted by dotted lines) obtained by
horizontally partitioning the ORDW schema.

Fig. 1. The ORDW Schema.

The figure shows the class composition hierarchy for the
Time dimension, and the is-a hierarchy (shaded area) for
the Customer dimension.

A Fact is the “subject” of the OLAP queries, and is
quantified by its dimensions and “values”. Dimensions
can be hierarchical and composite in nature, whereas
Values are numerical data. When a Dimension is
complex enough to contain various other components
that can themselves be classified as Dimensions and
Values then that Dimension can be a “Fact” of another
OLAP query. In this case, we can consider the schema to
be that of “Nested Fact” or “Fact within Fact”.

Whereas when two (or more) Facts share (one or more)
Dimensions, then the OLAP queries can be considered as
“Inter-Fact”. To support OLAP applications, we define a
group of OLAP queries OQG (modified from [VLK00]
by adding predicates), which are invoked as a set (not
necessarily in an order). Query patterns in the OQG may
not be restricted to a particular composition hierarchy or
inheritance hierarchy. The access paths may involve
multiple paths emanating from the same complex object,
as well as interact with entities in completely unrelated
complex objects.

For this discussion, queries involving Nested Facts can be
considered as subsets of inter-Fact queries. They are
distinguished by the presence of a semantic disjointness
between the Facts involved. It must be noted though that
this disjointedness does not preclude the Facts from
sharing the same component objects. A query-processing
scheme built on separate Facts will inadvertently need
costly joins. This inefficiency is amplified for queries
with low selectivity and high frequency. This calls for a
need for a partitioning scheme that transcends Facts and
is not restricted by the hierarchies mentioned. It must be
noted that such a partitioning scheme may well be
overlapping and hence will suffer on the storage space.

Based on classifications by DW operations & by OO
concepts, we consider the following queries listed in
Table 1 as our sample OQG for subsequent discussions.

Product

Sales

City Customer

State

Product Retailer

Category

Country

Address Time

Type

Order

Date

Month

Year

Season

Week

QuarterAdultTeenager

Customer
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Table 1. Sample OLAP queries - OQG

No. Query Query type
Q1 Sales by Prod by State in US Only along cch

(pivot)
Q2 Sales by Prod by State by Year

in US
-> Drill-down

Q3 Sales by Prod for Categ=Elec -> Roll-up
Q4 Sales by Prod by City for

Categ=Elec
Only along cch,
Drill-down

Q5 Sales by Prod by Country for
Categ=Elec

Only along cch,
Roll-up

Q6 Sales by Prod to Teenagers by
State for Categ=Elec & in US

Only along cch,
Slice_and_dice

Q7 Sales of Prod 1 compared with
Sales of Prod 2 to Teenagers
for Categ=Elec

Only along cch,
Drill-down,
Slice_and_dice

Q8 % increase in Sales to
Teenagers over Sales to
Adults, of Prod 1 / 2 for
Categ=Elec & in US

Combination of is-
a & cch, Drill-
down,
Slice_and_dice

Some OLAP queries could be on the entire range of Sales
and would need to access multiple dimensions for the
"Group BY". However, as seen above, some queries could
have a predicate range such as "Categ=Elec" or
"Country=US". In such cases, the search space on the
Fact "Sales" is reduced by a factor equal to the selectivity
of the predicate. However, this does not help during
query processing (normal unpartitioned case), as the
entire FC is processed while searching for relevant
tuples. Even in cases where indexes are built [VLK00],
the benefit could be reduced, as index creation takes up
more time due to the enormity of the FC. Further, as the
OLAP queries involve multiple paths (multiple selections
and group bys), the size of the Forward and Reverse Joins
is dependent on the size of the Root (FC). This calls for
the need to partition the FC according to the query
characteristics.

3   AHCP Selection Methodology

The Associated Horizontal Class Partitioning (AHCP)
methodology creates semantic-rich hybrid class partitions
for efficient query processing. It is a technique by which
several classes can be partitioned according to the
semantics of another class in its aggregation hierarchy.
We employ the AHCP on our ORDW schema, and
propose to extend its applicability from class composition
hierarchies to also include is-a hierarchies and links
quantified by partial participation, thereby encompassing
the Complete Warehouse Schema (CWS) in the ORDW.

3.1   AHCP fundamentals

The total cost of the AHCP framework can be broadly
categorized as partition storage cost, retrieval cost and
maintenance cost. In this paper, we also incorporate
query-centric information including selectivity and

frequency to determine the selection of minimal complete
set of partition fragments for optimal storage,
maintenance and retrieval costs.

3.1.1   Primary Horizontal Partitions (PHP)

Classes in the ORDW schema can be denoted as Ci
p,

which indicates the i th class in the p th path. The root
class (FC) is denoted as C0. Primary Horizontal Partitions
on these classes can be denoted as sub-classes and placed
in the is-a hierarchy under the original partitioned class.
Note that the (sub) is-a hierarchy in our examples is
denoted by the subscript i.j  , which denotes the j th sub-
class of the i th class (in the p th path). The Primary
Horizontal Partitioning (PHP) operation is denoted as :

PHP(Ci
p )p1 → { Ci.1

p , Ci.2
p ,..., Ci.n

p }

where (Ci
p ) is the Class that is Primary Horizontally

Partitioned according to a predicate (p1), resulting in n
fragments which are treated as classes {Ci.n

p}. Note
however, that since FC is the only root in the realm of
our OLAP OQGs, any primary partition of the root need
not display the path suffix; ie. (C0.1

0 = C0.1).

Fig. 2. An AHCP example on the Fact and Dimensions

The example in figure 2 shows classes C0, C2
1 and C1

2 in
the class composition hierarchy (CCH). Some of the
PHPs are { C1.1

2 , C1.2
2 and C1.3

2 }, connected by dashed
lines (is-a) to the super-class C1

2 which was partitioned.

As the PHPs can be considered as subclasses of the class
on which the PHP were performed, they are placed in the
is-a hierarchy of the schema. We can have any no. of
PHPs on a single class based on a number of predicates.
For a single simple predicate, the PHPs are disjoint, i.e.
they don't share any objects. PHP schemes based on
multiple or complex predicates on the same class, may
induce overlapping fragments, however we do not
consider such schemes in this work to avoid complexity.
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2 C 1
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C 2
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1
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3.1.2  Associated Horizontal Class Partitions (AHCP)

After the PHPs are created, the AHCP operation may be
performed on some other classes in the schema. As noted
above, most queries in the OQG access the root (FC) for
its value based attributes, and hence this paper deals
primarily with AHCP of the root class. The AHCP
operation can be denoted as follows :

AHCP (Cj
q, PHP(Ci

p )p1 ) → { Cq
j.i1

p , Cq
j.i2

p ,..., Cq
j.im

p }

where (Cj
q ) is the Class that is Associate Horizontally

Class Partitioned (AHCP) according to the PHP on class
Ci

p, resulting in m fragments which are treated as classes
{ Cq

j.im
p }. Here again since FC is the only root in the

realm of our OLAP OQGs, any AHCP of the root need
not display the path suffix; ie. (C0

0.11
2 = C0.11

2).

As seen in the figure, the examples indicate that two sets
of AHCPs are created from the root C0. They can be
created by :

AHCP (C0, PHP(C1
2 )p1 ) → { C0.11

2 , C0.12
2 , C0.13

2 } ;
AHCP (C0, PHP(C2

1 )p1 ) → { C0.21
1 , C0.22

1 }

These partition fragments are denoted as subclasses in
the figure by means of the shaded boxes to indicate
Associate Partitioning.

The AHCP operation can also be preformed on classes
other than the root, ie. the Dimension Classes. For
example, as seen in the figure, C2

3can be AHCPed based
on the PHPs of C2

1.

AHCP (C2
3, PHP(C2

1 )p1 ) → { C3.21
1 , C3.22

1 }

The result is shown in shaded boxes under C2
3 in the

figure.

An important point to be noted here is that while the
Fragments obtained by any single AHCP operation on the
root are always disjoint, the same cannot be said about
Fragments obtained by AHCP on any other (Dimension)
class. This indicates the storage overhead to be incurred
while performing AHCPs on the Dimension classes, and
must be taken into account by the cost model.

3.2   AHCP cost model

In an ORDW, partitioning can be implemented by means
of Method Induced Partitioning techniques [KL00].
Moreover, due to the structural and cardinal differences
inherent between Dimension Classes (DC) and the Fact
Class (FC), we can assume that the DCs need not be
physically partitioned as they may be wholly or partially
stored in memory (under both medium and large memory
hypothesis). Hence, the cost of the traditional join
between the PHP fragments and the AHCP fragments can
be ignored. This join can be achieved by employing the
methods of the FC.

3.2.1   Storage Cost

The Storage cost (SC) has two components : Primary
Horizontal Partition (PHP), and the Associated
Horizontal Class Partition (AHCP). It can be stated as :

SC = SCPHP + SCAHCP

They are given as follows :

1. SCPHP (C1) :

We assume that in most cases, and especially in this
paper, we consider only one PHP per class. This ensures
that the partitions are disjoint for simple predicates. In
such cases, there's negligible overhead for storage cost as
SCPHP (C1) = | C1 | (no. of pages occupied by the class C1

+ catalog entries for the no. of PHPs of C1. These catalog
entries give details of the partitioned Class structure,
extent and qualifying rules. Hence, they're very small and
can easily be accommodated in memory (in both the
medium and large memory hypothesis.

In case of multiple complex predicates on a Dimension
(C1), resulting in overlapping fragments, we propose not
to replicate the entire class extent, but rather only
replicate the Class OIDs (and some frequently accessed
attributes) in the separate Partitions.

In this case, the storage overhead can be estimated as :

SCPHP(C1) = || C1 || x NoAttr x (sizeof(Attr)) x NoPHP

where NoAttr = No.of Attributes replicated.
where NoPHP = No.of Partition schemes.

Given a maximum of 2 replicated attributes or 20% of
the class structure, and a uniform size of attributes, we
can accommodate up to 5 different Partitioning schemes
for an increase of 100% in SCPHP (C1).

2. SCAHCP (C0) :

This is by far the biggest increment for storage cost in the
AHCP ORDW. As noted above, the root (C0) would be
the widely used as the candidate for performing AHCP.
Since any predicate on a single dimension can only
induce disjoint partitions in the root, the partitioning
overhead is negligible for multiple partitioning schemes
in a single DC.

SCAHCP (C0) = | C0 | + NoPHP x SizeCat(PHPi).

where SizeCat = Catalog entry size (structure, extent,
qualifying rules).

However, as we incorporate multiple predicates on
different dimension classes, SCAHCP (C0) grows linearly
as the no. of dimensions (assuming only single complex
predicates on each dimension). This can be a large
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overhead, as C0 as the FC, is very large (~order of
Gigabytes).
Hence, we intend to reduce this overhead by means of a
Multiple Partition Processing Plan (MP3), based on
MVPP [YKL97]. This would entail a compromise
between duplication and efficiency of the partitions, as
sub-fragments will have to be created to support the
AHCPs. The Join needed to produce the final result from
these sub-fragments constitutes the increase in retrieval
cost.

3.2.2   Maintenance cost

As noted above, since inter-fragment join is avoided
between the PHP and AHCP fragments, maintenance cost
is considerably simplified due to the AHCP operation.

As the ORDW is a read mostly and append only
environment, we can safely estimate the maintenance
cost even though the schema is vastly enhanced (and
complicated) by semantics. For example, once the
Warehouse has achieved full functionality, in each
update cycle of the ORDW, we can expect up to 0.5%
addition of the FC (this is a very conservative estimate
based on our same DW, maintaining 10 years worth of
"Sales" data and updated daily). The updates to DCs can
be ignored mainly because their percentage will be even
smaller and also because most of the DCs will be in
memory anyway. Only these 0.5% FC objects have to be
processed in order to maintain the Partitioning scheme.

The Maintenance cost for the AHCP partitioning scheme
(MC) can be defined as the extra cost of maintaining the
AHCPs and the PHPs catalogs.

MC = MCCat(AHCPi) + MCCat(PHPi)

Since MCCat(PHPi) is negligible as the PHPs are in
memory, the main cost is on the AHCP maintenance,
which is comprised of maintaining catalog entries of the
AHCP, Generally this meta-information is small enough
to be stored completely in memory.

3.2.3   Retrieval cost

To determine retrieval cost, we break up the complex
queries into smaller atomic sub-query expressions. We
denote this by means of a MQO (Multiple Query
Optimization) graph in the MP3, which is further
explained in section 3.3.

The Retrieval Cost (RC) is the cost of parsing the
catalog, accessing the relevant AHCPs (as union) and the
cost of the join with corresponding PHPs.

RC = RCCat + RCAHCP + RCPHP + RCjoin

However, as we store the PHPs and the join in memory,
and the Catalog is relatively small, RC is mainly

composed of AHCP loading cost. Since this is smaller
than the complete FC by a factor of min (selpi), where
selpi indicates the selectivity of the predicates on query Qi

, we achieve a considerable savings in retrieval cost.

This saving is also obtained when indexing schemes like
the SJIH [VLK00] are built on top of the AHCPs, and
also when aggregate views have to be developed.

3.3   AHCP selection procedure

We approach the problem of performing AHCP in the
ORDW in a different manner from the case of DHCP in a
normal OODB [BKS98]. IN [BKS98], various techniques
(candidates) were considered to decide the best PHP
candidate for performing DHCP. Here we consider all the
PHP candidates, and our AHCP algorithm generates a
optimal combination of complete and minimal set of
AHCPs.

3.3.1   AHCP Algorithm (also called MP3 algorithm)

The algorithm can be broken into three parts :

1. Generating an exhaustive set of AHCPs based on
query characteristics (selectivity, fan-out) obtained
from the entire query space.

1.1 For each query Qi in the OQG, generate
logical associated fragments {C0.j

p} from
{Cj

p} that satisfies sub-expressions of Qi

completely.
1.2 Perform an intersection of the C0.j

p

fragments for all Qi . This creates the
complete disjoint AHCP set, on which the
queries will be based.

2. Assigning query weights depending on priority and
importance (frequency).
2.1 For each query Qi , evaluate the minimal set of

query processing fragments : QPFi = { C0.j1
p1 ,

C0.j2
p2 , … , C0.jm

pm }
2.2 Create query plans for each Qi having nodes

involving unions of fragments, which exist in
multiple QPFi .

2.3 Assign cumulative weights to the nodes
depending on their utility to consecutive Qi

(based on frequency and cardinality).

3. Selecting a minimal complete set of AHCPs based on
the query weights, subject to storage and
maintenance cost.
3.1 For each Qi , perform top-down evaluation of

nodes in its query plan.
3.2 Select lower nodes (breakup) if the retrieval cost

is lesser.
This part is similar to that of the Algorithm for selecting
views to be materialized given an MVPP [YKL97].
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Fig.3.  Multiple Partition Processing Plan (MP3)

Figure 3 shows examples of AHCPs (AHCP-1, AHCP-2)
and PHPs (PHP-1) on the Fact Class (C0). These
fragements can then be merged by intersecting them to
generate a complete disjoint set of Partitions. It must be
noted that this is obtained from the query characteristics,
and the Partitions are very exhaustive. Due to this reason,
it may not be feasible to materialize the fragments all,
and hence the MP3 is used to determine which should be
materialized and which should be kept virtual [VLK98].
The cost model is based on the MVPP [YKL97] and
incorporates SC, MC and RC. As shown in the figure,
the shaded classes are materialized.

4   AHCP evaluation

In this section, we analyze the fragment retrieval cost for
processing queries in OQG using AHCP. A comparison
of the results with that of plain query processing
approach using pointer chasing is then conducted.

4.1   Fragment retrieval cost

In order to evaluate the AHCP methodology, we use the
sample ORDW schema and queries as detailed in section
2. Here we note that there are eight queries in the OQG,
and we assume them all to be of equal importance.

Running our example through the algorithm given in
section 3.3 :

Step 1.1 : For each query Qi in the OQG, generate
logical associated fragments {C0.j

p} from {Cj
p} that

satisfies sub-expressions of Qi completely.

We see that there are 4 main predicates by
which the Dimensions are partitioned,
viz. p1 : "Country = US", p2a : "Customer = Teen " ,
p2b : "Customer = Adult", p3a : "Product = P1 ", p3b :
"Product = P2", and p4 : "Categ = Elec". Performing the
AHCP function with respect to these PHPs as shown in
section 3.1, we arrive at an exhaustive set of AHCPs of
the Sales Class (FC).

Step 1.2 : Perform an intersection of the C0.j
p fragments

for all Qi .
Consequently, by intersection as shown in table

2, we see that a complete set of 16 different AHCPs of the
FC (Sales) can be created based on these 4 predicates,
encompassing all possible and non-empty fragments :

Table 2. Fragments obtained after intersection

F1 p1 ^ p2a ^ p3a ^
p4

F9 !p1 ^ p2a ^ p3a ^
p4

F2 p1 ^ p2a ^ p3b ^
p4

F10 !p1 ^ p2a ^ p3b ^
p4

F3 p1 ^ p2a ^ !p3a ^
!p3b ^ p4

F11 !p1 ^ p2a ^ !p3a ^
!p3b ^ p4

F4 p1 ^ p2a ^ !p4 F12 !p1 ^ p2a ^ !p4
F5 p1 ^ p2b ^ p3a ^

p4
F13 !p1 ^ p2b ^ p3a ^

p4
F6 p1 ^ p2b ^ p3b ^

p4
F14 !p1 ^ p2b ^ p3b ^

p4
F7 p1 ^ p2b ^ !p3a ^

!p3b ^ p4
F15 !p1 ^ p2b ^ !p3a ^

!p3a ^ p4
F8 p1 ^ p2b ^ !p4 F16 !p1 ^ p2b ^ !p4

Step 2.1: For each query Qi of the OQG, evaluate the
minimal set of query processing fragments.

The query processing fragments (QPF ) are
shown in table 3:

Table 3. Query Processing Fragments (QPF)

QPF1 , QPF2 F1, F2, F3, F4, F5, F6, F7,
F8

QPF3 , QPF4, QPF5 F1, F2, F3, F4, F5, F6, F7,
F9, F10, F11, F13, F14, F15

QPF6 F1, F2, F3
QPF7 F1, F2, F9, F10
QPF8 F1, F2, F5, F6

Step 2.2 : Create query plans for each Qi having nodes
involving unions of fragments which exist in multiple
QPFi .

The intermediate nodes are created by a
combination of fragments noting their affinity in the
QPFs. For the sake of completeness, we also create
unaccessed nodes as shown in table 4, for example, N12
(F12 U F16), though these fragments are not accessed by

C 0

Is-a
CCH

LEGEND

C 0.21
1 C 0.22

1

C 0.11
2 C 0.12

2 C 0.13
2

C 0.1
0 C 0.2

0

C 0.21.11.1
120

C 0.22.11.1
120

C 0.21.12.1
120 C 0.21.13.1

120

C 0.22.12.1
120 C 0.22.13.1

120

C 0.21.11.2
120

C 0.22.11.2
120

C 0.21.12.2
120 C 0.21.13.2

120

C 0.22.12.2
120 C 0.22.13.2

120

materialized
fragments

Q 1 Q 4Q 2 Q 3 Q 5 Q 6

AHCP - 1 PHP - 1

Complete
disjoint AHCP

AHCP - 2

MQO -
Intermediate nodes

Step 1.2

Step 1.1

Steps 2-3
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any query in the OQG.

Table 4. Intermediate Nodes

Node Definition Node Definition
N1 F1 U F2 N7 N2 U N6 U N9
N2 N1 U F3 N8 F9 U F10
N3 F5 U F6 N9 N1 U N8
N4 N2 U N3 N10 F11 U F13 U F14

U F15
N5 N3 U F7 N11 N5 U N8 U N10
N6 N5 U F4 U F8 N12 F12 U F16

Step 2.3 : Assign cumulative weights to the nodes
depending on their utility to consecutive Qi (based on
frequency and cardinality).

For each of the queries Qi, we know the optimal
query processing plan opi, which is an ordered list of
nodes and fragments. We also know the frequency (fqi) of
each query, and the selectivity (selpj) of the clause that its
(sub-query) is based on. Depending on those parameters,
we give weights to the nodes in the opi of each query.

For example, processing for Q1, we have :
<op1> = <N7, N6, N2, N9, N3, N5, N8, N1, F1, F2, F4,
F5, F6, F7, F8, F9, F10>
∴ the weights for all these nodes (and fragments) is
f1 * sel1 .
Processing for Q6, we have :
<op6> = <N2, N1, F1, F2, F3>
∴ the weights for all these nodes (and fragments) is
f6 * sel6 .
.. and so on.

For simplification, we consider equal frequencies and
100% selectivity in the fragments, hence at the end of
this step, we have weights as shown in table 5:

Table 5. Weights for the Fragments and Nodes

Frag Weight Frag Weight Node Weight
F1 4 F11 1 N5 2
F2 4 F12 0 N6 1
F3 2 F13 1 N7 1
F4 1 F14 1 N8 3
F5 3 F15 1 N9 2
F6 3 F16 0 N10 1
F7 1 N1 4 N11 1
F8 1 N2 2 N12 0
F9 3 N3 3
F10 3 N4 1

Step 3.1 : For each Qi , perform top-down evaluation of
nodes in its query plan.

As the <opi> are ordered (tree structured), for
each Qi, we can traverse the list in a top-down manner.

Initially all top -level nodes can be considered marked for
materialization.

Step 3.2 : Select lower nodes (breakup) if the retrieval
cost is lesser.

This is a recursive step, in which the node is
unmarked (for materialization) if any node under it has a
weight higher than itself. In that case, the lower nodes
are considered marked for materialization, and the
process is repeated with them.

For example, processing for Q8, we mark N4 as it’s the
first node :
but the weights are : N4 : 1, N2 : 2, N3 : 3.
hence N4 is discarded for N2 and N3.
Now N2 : 2, N1 : 4, F3 : 2.
So N2 is discarded for N1 and F3.
.. and so on.

Repeating this process for all the queries, the following
nodes are materialized :

F3, F4, F7, F8, N1, N3, N8, N10.
This is our optimal minimal AHCP set.

4.2   Comparing HCF retrieval cost with pointer
traversal cost

In this section, we evaluate our AHCP scheme for its
performance gain over the un-partitioned case during
query retrieval. As noted in the previous section, we have
derived an optimal complete minimal AHCP set of the
Sales FC.

The DCs and associated joins are in memory and
evaluating a query branch dealing with them would
involve CPU cost. This is ignored here, as the disk I/O
cost is the major component of response time in most
query retrieval costs.

The following study shows disk i/o cost ratios for varying
relative frequencies of queries in the OQG.

cost ratio (CR) = cost of disk i/o for unpartitioned case
cost of disk i/o after AHCP

The query frequencies are varied from 10% to 90%. As
these are relative frequencies, it must be noted that the
frequencies of the other queries in OQG are modified
equally in each case. The parameters for the study are
stated in the Appendix.

As can be seen from table 6, there's always a minimum
gain obtained when the ORDW is partitioned; the range
of the gain varies from 1% to 50% in this case study.
Note that these results appear to exhibit a linear relation
between the selectivity of the query and the cost gain
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obtained from the AHCP operation. However this should
be interpreted only as the best-case scenario, because in
real-world cases some level of data replication is
expected which can cause redundant data access. This
may lead to higher cost for the partitioned case than what
this example indicates, although the difference will not
be too significant.

Table 6. Cost Ratio observations

relative
frequency

10% 30% 50% 70% 90%

Q1 0.05 0.15 0.25 0.35 0.45
Q2 0.05 0.15 0.25 0.35 0.45
Q3 0.03 0.09 0.15 0.21 0.27
Q4 0.03 0.09 0.15 0.21 0.27
Q5 0.03 0.09 0.15 0.21 0.27
Q6 0.02 0.06 0.1 0.14 0.18
Q7 0.01 0.03 0.05 0.07 0.09
Q8 0.01 0.03 0.05 0.07 0.09

5   Conclusions and future work

In this paper, we have presented a methodology towards
efficient query processing in an object-relational data
warehousing (ORDW) environment, through devising
and incorporating Associated Horizontal Class
Partitioning (AHCP) techniques over the ORDW schema.
Our methodology starts with a given set of data
warehouse queries, comes up a near-optimal AHCP
scheme for the queries, and selects AHCP fragments as
materialized views to facilitate efficient evaluation of
these queries. Through an initial analytical study, we are
already able to demonstrate the gains of our approach
vis-a-vis the unpartitioned approach in terms of disk I/O
in the ORDW environment.

Note that the work we have described in this paper
(hence the result obtained) should be only regarded as an
intermediate stage towards efficient ORDW query
processing; further advanced techniques and mechanisms
should and can be naturally added. In particular, an
adaptive and extensible indexing framework is currently
being developed, so as to better accommodate the
requirements of dynamic data warehousing [Dayal99]
which demands to incorporate more semantics into the
data warehouse schemata. As shown in [VLK00], a
query-driven indexing mechanism built on the SJIH
(structural join index hierarchy) [FKL98] seems to be
very effective, and is supplementary to the work
described in this paper. Moreover, the creation and
maintenance algorithms of materialized views and OLAP
cubes benefit from the reduced search space obtained due
to the AHCP scheme. Since OLAP queries involve
multiple paths (multiple selections and group bys), the
Forward and Reverse Joins are considerably reduced by
employing them on a subset of the AHCP fragments

instead of the entire Fact table. We are currently in the
process of combining these complementary approaches
into a single framework. We are building an
experimental ORDW prototype system that will be
validated by empirical studies based on TPC-H
benchmark queries.
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Appendix
Table A. Query Parameters
fo = fan-out
R - reference (reverse links)
||Ci|| - cardinality

Reference (i→j) fo R ||Ci|| ||Cj||
Sales→Product 1 100 50M .5M
Sales→Customer 1 50 50M 1M
Sales→Teenager 1 250 50M .2M
Sales→Date 1 500 50M 36.5K
Prod→Category 1 10 .5M 1K
Product→Retailer 50 100 .5M 50K
Category→Type 100 5 1000 10
Retailer→City 1 4 50,K 12.5K
Customer→City 1 80 1M 12.5K
Year→Mon 12 1 10 120
Mon→Date 30 1 120 3.6K
Year→Date 365 1 10 3.6K
Country→State 25 1 10 250
State→City 5 1 250 1.2K
Country→City 125 1 10 1.2K

Table B. Selectivity (%) :

Country = 'US' 50
Category = 'Elec' 30
Product = 'P1' 5
Product = 'P2' 5
Customer = 'Teen' 20


