
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Coverage analysis method using quality

characteristics

Daiju Kato

Nihon Knowledge Co., Ltd.

 Tokyo, Japan

d-kato@know-net.co.jp

Hiroshi Ishikawa

 Tokyo Metropolitan University

 Tokyo, Japan

 ishikawa-hiroshi@tmu.ac.jp

Abstract— Requirement of Must-Be Quality for software has

changed over time, and the awareness of software quality has

become increasingly strong. Therefore, an objective and easy-

to-understand method for analyzing software quality is

necessary. By utilizing SQuaRE (ISO/IEC 25000 series) in

software development projects, it is possible to proceed with

software development with comprehensive quality in mind.

However, in order to utilize these quality characteristics, the

project is needed to have traceability of quality in various

phases or sprints. Therefore, analyzing the quality using by

various evidence under development project provides an

effective means of explanation of the quality logically and

enables us to judge the quality under standard rules. In this

paper, we propose a quality coverage analysis method using

quality characteristics for software within a general software

lifecycle. (Abstract)

Keywords- quality analysis, software engineer, quality

characteristics,SQuaRE (key words)

I. INTRODUCTION

The Kano Model[1] is a type of customer satisfaction
model and the model uses data obtained from questionnaires
to rank product quality (function and performance) in terms
of attractiveness (differentiation) and affordability
(indispensability), etc., to visualize the characteristics of
products from the customer's point of view and stimulate
discussion in design and development.

In the world of software, I feel that this Kano model of
quality has been broadly interpreted and used in the same way
as minimum requirement of quality. However, we believe that
this quality requirement is changing with the times like below
bullet. The quality characteristics in parentheses at the end
indicates those that match the product quality.

• Quality that was commonplace 10 years
ago

-Functions work correctly as required (Functional

Suitability)

-No response problems (Performance Efficiency)

• Quality that is commonplace today

-Safe to use (Security)

• Quality as a matter of course in the future

-Quality with the user in mind (Effectiveness -

Quality in Use-)

-Safe and secure to use (Freedom for risk – Quality

in Use-)

*Quality characteristics in parentheses

Ten years ago, Must-Be Quality indicated that a function

worked exactly as required and that there were no
performance issues. However, this alone is worrisome in a
world where a variety of devices are connected to the Internet.
Every week, numerous cyber incidents are distributed by the
CERT Coordination Center[2] , and Microsoft delivers
security updates on the second Tuesday of every month[3]. In
addition, antivirus patterns are being delivered by anti-virus
software vendors quickly. The ability to use software with
peace of mind, i.e., to use software without being aware of
vulnerabilities and security as well as features and
performance, has become a minium requirementment of
quality these days.

ISO/IEC 25010[4] defines two quality models. A system
must meet the explicit and implicit needs of the various
people who use the system, called stakeholders, and
satisfying them is considered to be quality. This quality is
categorized by characteristics, and the standard defines two
models: product quality and Quality in Use. There are other
data quality models defined in ISO/IEC 25012[5], which
defines the quality of the data used in the system.

The quality model consists of characteristics and sub-
characteristics that make up the characteristics. The product
quality model classifies the quality of a software or system
product into eight characteristics. This product quality
provides the 'quality of things'. It means the quality of a thing
because it is a quality that the product itself has.

On the other hand, quality in use is the quality that people
receive or feel when they use the product. It is called as "user
quality" and it is a quality that is perceived mainly by the user.
Quality in use is closely related to product quality, and quality
in use will not improve unless product quality is exhaustive.

SQuaRE consists of five divisions and defines the means
to achieve quality-conscious software development, Figure.1.
Utilizing SQuaRE in your development projects will enable
you to develop software with quality characteristics in mind.

However, to make full use of quality characteristics,
SQuaRE can be used from the quality requirement phase of a
development project, or all test work must have test cases or

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

test criteria that are mapped to quality characteristics to
classify the ensured quality into quality characteristics. Since
quality characteristics provides essentially a classification of
quality, they are effective in measuring the coverage of the
quality of the final product. Therefore, we developed a
method to achieve coverage analysis of quality with
classification of the quality of software during a development
project with ISO/IEC/IEEE 12207 [6] and ISO/IEC/IEEE
15288[7]. Those standards define software life cycle model
and classification of activity at development process with
mapping of product quality characteristics.

II. CLASSIFICATION OF ACTIVITIES BY QUALITY

CHARACTERISTICS

This section proceeds with the quality coverage analysis
from the following artifacts created in a typical software
development project.

• Project plan and test plan

• Various documents: requirement spec,
design spec, test cases and test procedures

• Bug information during the project

• Review results and Test analysis report

• Software and test data
The project plan generally describes goal of the quality

requirements. Also, the document indicates how to fulfill the
quality requirement even though the project use waterfall
development process or agile process. The project plan
includes test process to list the test types to be conducted and
will contain the idea of the criteria for each test type.

Since the quality requirements written in the project plan
are the quality goals of the final deliverable software, it is
possible to define the required quality by classifying the
quality requirements by quality characteristics. It is necessary
to analyze both the process and the deliverables to see if the
developed software has the quality that is the goal.

The first step to find out if the process was a quality-
building process is to find out which quality characteristics
the various activities during the project have an effect on.
Although it is very time-consuming to do this task from
scratch, ISO/IEC 30130[6] summarizes which quality
attributes are mapped to various activities, TABLE 3. For
example, ‘Test Design’ described in the first part of this table

is work for all quality characteristics and the second ‘Risk
Base Priority’ is work for functional suitability, reliability and
performance efficiency.

Table 1 shows the results of mapping common test types to
quality characteristics. You can refer to this table to map the
quality characteristics of the test types written in the test plan.

TABLE I. MAPPING OF QUALITY CHARACTERISTICS TO TEST TYPES

Test types Quality Characteristics

Accessibility Testing Usability

Compatibility Testing Compatibility

Conversion Testing Functional Suitability

Disaster Recovery Testing Reliability

Functional Testing Functional Suitability

Instalation Testing Portability

Interoperability Testing Compatibility

Localization Testing Functional Suitability

Usability

Portability

Maintainability Testing Maintainability

Performance-Related Testing Performance efficiency

Portability Testing Portability

Reliability Testing Reliability

Security Testing Security

Usability Testing Usability

Stress/Load Testing Performance efficiency

Reliability

Screen Transition Testing Functional Suitability

Usability

From the above approach, it will be possible to summarize

which quality characteristics the development project is
performing for from the activities listed in the project plan or
sprint plan and the test plan.

III. MAPPING QUALITY CHARACTERISTICS TO

REQUIREMENTS

The next step is to map the quality requirements to quality
characteristics to identify the quality that the final product, the
software, will require. If the quality requirements are not clear,
it is a good idea to categorize them into functional
requirements, performance and load requirements, user
interface requirements, etc., and map each requirement to a
quality characteristic. If there is a service specification, the
listed items can also be classified as quality characteristics.

Maintainability requirements are generally not included in
requirement definitions. Of course, You can refer to the
project plan or project rules to determine how software
maintenance will be performed. The quality characteristic
probably contains coding style rules for programming or
testing way for using some stab or debugging technique.

Ideally, the requirements derived from each requirement
should also be classified as a quality characteristic. Typically,
requirement items are mapped to a single quality
characteristic so that the requirements required by the final
product, the software, can be counted for each quality
characteristic. Since the number of man-hours of
classification work increases proportionally with the size of
the software, requirements can be sampled or, at worst, only
requirements can be classified into quality characteristics.

Figure 1. Organization of SQuaRE series

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

This work completes the classification of quality
characteristics of the quality required for the software.

IV. MAPPING VARIOUS EVIDENCE TO QUALITY

CHARACTERISTICS

Then, classify all the review evidence over the life of the
project, e.g., design reviews, code reviews, test design
reviews, etc., into quality attributes. Rather than simply
mapping activities to quality attributes, we classify criteria
into quality attributes. For example, in the case of API design,
the criteria and review reports show whether the reviewers
check not only the implemented functionality itself, but also
error sequencing and recovery methods, performance and
load considerations, authentication methods, and
vulnerability responses and so on.

The findings that are identified and corrected during the
review are also classified by quality characteristics. Corrected
bug information is important evidence to ensure the quality of
the corresponding quality characteristic.

 Finally, we refer to the criteria for each test type performed
to see if the quality characteristics mapped to the test type are
ensured by having met the criteria. For example, suppose the
criteria are set for performance testing, Table 2. If the criteria
are too vague to map the quality characteristics of the criteria,
the test cases are checked and classified. In addition, bugs
found and fixed in the test as well as in the review report are
classified according to each quality characteristic to check
whether the quality characteristics are maintained or not.

TABLE II. MAPPING QUALITY CHARACTERISTICS TO TEST CRITERIA

AT STRESS TESTING

No Test Criteria Quality

Characteristics

1 Single
operation

The CPU load should return to
normal after each process.

Performance
efficiency

2 Single

operation

Memory is released after each

process

Performance

efficiency

3 Use-case If a new process occurs while
multiple processes are in

progress, it should not result in

an error.

Reliability

4 Use-case The CPU load becomes 100%
and other processes are not

interrupted while multiple

processes are running.

Reliability

5 Peak

operation

The process is carried out even if

the load is twice the expected

workload.

Performance

efficiency

Reliability

If there is a description of quality in the test report, we
consider whether the description or results can be mapped to
some quality characteristics as well.

Categorizing the evidence of these activities into quality
characteristics will clarify the comprehensiveness of the
quality of the final product.

Figure 2 shows the way of mixed up classify for coverage
analysis method using quality characteristics. PQ in the figure
stands for Product Quality.

V. CREATING A COVERAGE ANALYSIS OF QUALITY

USING QUALITY CHARACTERISTICS

Once all the classification work for completeness analysis
using quality characteristics is completed, the results of
categorizing the quality requirements are compared with the
results of categorizing the final deliverable, the software, to
ensure that the quality is on target. The broad analysis is
determined by using a radar chart as like Figure 3 to visualize
the differences between requirement and results.

The areas that have a large difference between
requirements and results indicate possibility of the unclear
qualities, which can be pursued by checking the specific
classified results and investigating the causes.

In general, functional conformance requirements are often
fulfilled. But reliability is not ensured if the scope of impact
of a bug fix is not adequately checked or if the functional
conformance test is not re-run even though effect of fixed
some bug found in a test related to performance efficiency has
an impact on functionality. It is also a good idea to analyze
whether their impact on relevant quality characteristics has
been verified or not, when the bugs which are classified as
non-functional conformance have been fixed.

If there is a large difference between the two, you can run
some of the tests and check the results of the analysis with
your team members to improve the validity of the results.

Figure 2. Coverage analysis method using quality characteristics

Quality Requirement Software

Design/Manufacture/Test

Activity during project

Review Results

Bug Reports

Test Reports

Review Criteria Test Criteria

Evidence of built in quality

Development

Mapping to Activity Checking of PQ

Mapping to PQ Mapping to PQ Mapping to PQ

ReferenceReference

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

VI. CONCLUSION

Quality characteristics enable us to objectively and
logically classify the quality of software product, and conduct

an exhaustive analysis of whether the quality requirements
are being met or not. Although it is most desirable to use
SQuaRE from the beginning of a development project, quality
analysis using quality characteristics can be performed even
after the project is over by using the method described here.
In addition, it is possible to identify the quality that is
considered to be unsecured from the analysis results, and
therefore, it is also possible to consider policies for
strengthening weaknesses.

Thus, quality comprehensiveness analysis using quality
characteristics not only visualizes the quality of software, but
it is also effective as a means to improve quality.

It is also possible to classify test techniques, process
transfer criteria and test reports in sprints by quality
characteristics. In the case of derived development, it is
possible to judge the appropriateness of quality quantitatively
for each quality characteristic by using quality data from past
development and quality characteristic quantities defined in
ISO/IEC 25022. We intend to further improve the quality
comprehensiveness analysis method using these quality
characteristics so that it can be used as a quality monitoring
method that enables objective visualization of quality.

REFERENCES

[1] Kano,N., Seraku, N., Takahashi, F., Tsuji, S. : Attractive Quality and
Must-Be Quality; Quality Vol.14(2), pp147-156, JSQC, 1984,
(Japanese)

[2] CERT Coordination Center,

 https://www.sei.cmu.edu/about/divisions/cert/index.cfm

[3] Microsoft Security Update Guide,

https://portal.msrc.microsoft.com/en-us/security-guidance

[4] ISO/IEC 25010: Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models (2011)

[5] ISO/IEC 25012: Software engineering — Software product Quality
Requirements and Evaluation (SQuaRE) — Data quality model(2008)

[6] ISO/IEC/IEEE 12207: Systems and software engineering — Software
life cycle processes(2017)

[7] ISO/IEC/IEEE 15288: Systems and software engineering — System
life cycle processes(2015)

[8] Kato, D., Okuyama, A., Ishikawa, H. : Introduction of test
management based on quality characteristics, IWESQ 2019, 2019.

[9] Kato,D., Ishikawa, H. : Develop Quality Characteristics based quaity
evaluation process for ready to use software products, JSE-2016,
February, 2016.

[10] Kato,D., Okuyama, A., Ishikawa, H.: Use proactive evaluation
process for ‘Quality in Use’, Seventh World Congress for Software
Quality, 2017.

.

Figure 3. Coverage analysis by radar chart

0

5

10

15

20

Functional

Suitability

Performance

Efficiency

Reliability

Compatibility

Usability

Security

Portability

Maintenability

Coverage Analysis

Requirement Results

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

TABLE III. SUMMARY OF CAPABILITIES WITH CHARACTERISTICS IN ISO/IEC 30130

Test

environm

ent

Input for

dynamic

test

execution

Dynamic

test

execution

Test data

repository

Test

environm

ent

Input for

code

analysis

Code

analysis

Test

plan

Test

asset

Quality

record

report

Test

completio

n report

Ver if

ication

and

validation

Test

status

report

Functional

suitability

Reliability Usability Performance

efficiency

Maintain

ability

Portability Compatib

ility

Security Smallest

unit

Intermedia

te units

Largest

unit

Test design 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Risk Based Priority 〇 〇 〇 〇 〇 〇 〇 〇

Test execution

controll,

Automated test

execution

〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Caputure,Playback 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Keyword driven test

case
〇 〇 〇 〇

Test comparator 〇 〇 〇

Debugging 〇 〇 〇 〇 〇

Dynamic analysis 〇 〇 〇 〇 〇 〇

Monitoring 〇 〇 〇 〇 〇 〇 〇

Coverage

measurement
〇 〇 〇

Security testing 〇 〇 〇

Test data

preparation,

Test data generation

〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Stress testing,Load

testing
〇 〇 〇 〇

Performance testing 〇 〇 〇 〇 〇

Data validation and

verification
〇 〇 〇 〇 〇 〇

Database validation

and Verification
〇 〇 〇 〇 〇 〇

Emulators,Simulator

s
〇 〇 〇 〇 〇 〇

Unit test framework 〇 〇 〇

Automated

environment set up
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Runtime

envrionment

management

〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Review 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Code analyzer 〇 〇 〇 〇 〇 〇

Codebased security

testing
〇

Test management 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Test Asset

configuration

management

〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Incident

management
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Defect

management,

Defect tracking,Bug

tracking

〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Test monitoring 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Relating of data that

serves as the basis

for Verification and

Validation Reports

〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Verification and

Validation Report
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Characteristics

software quality characteristics Granularity

Capabilities

Categories

Dynamic test execution Code analysis Test management

