
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Retrofitting Quality

Raul Martinez

Subcomité de Calidad en Tecnología de la Información

IRAM

Buenos Aires, Argentina

rmartinez582@gmail.com

Abstract—This short paper proposes a simple and

practical way to improve quality while system/software

product is in production, combining theoretical points of view

of quality models and information extracted from the

operation, change requests logs and user feedback like

incidents, required/requested modifications, and detected

reactions from users. Such information can be used to

enhance the existing models, or to create a new one, and

therefore to improve the quality of the system/software

products.

SQuaRE [1][2] framework, which models quality as a set

of quality characteristics valuable for users, is a widely

accepted technique and will be used as reference in this paper.

Keywords— SQuaRE, Quality Models, Quality in

Production Environments, Quality Maintenance

I. INTRODUCTION

The goal of SQuaRE quality modelling process is to
represent quality before the system/product exists, as a set
of characteristics and sub characteristics to which users can
assign importance and value, providing helpful clues for
development prioritization, requirements trade-off and
monitoring.

In this proposal, modelling, originally a mental process,
is enhanced with the actual data obtained from the execution
of the system/product in the production environment.

Citing Lehman [6], E-type software systems that solve a
problem or implement a computer application in the real
world will be perceived as of declining quality unless
rigorously maintained and adapted to a changing
operational environment.

The aim of the proposed basic process is the application
of SQuaRE quality models as an ordered reference
framework to organize and optimize this job of preserving
the system/product good quality perception of the user.

II. POTENTIAL SOURCES OF DATA FOR ELICITATION OF

QUALITY PROBLEMS

There are many different situations during maintenance of a
system/software product where the quality could be
compromised. Two common sources of data for quality
maintenance opportunities are proposed, but the idea could
be easily extended to other sources.

A. Corrective maintenance

During normal execution of the system/software
product incidents are reported by user community.
Following, some common instances of this problem are
enumerated.

• Errors classified as functional by the maintenance
organization; these errors could hide suitability,
correctness, appropriateness problems.

• Security problems.

• Poor system/software product performance.

• User operation errors reported to helpdesks could
be signals of usability problems or learnability
problems.

Error statistics of specific software modules could be used
as a source of internal/external quality problems. Products
components with more defects usually spot quality
problems.

B. Enhancements

• Pure functional enhancements containing new
quality characteristics or modification to existent
products.

• New requirements related with improvements of
the quality of the product.

• Communities’ boards, helpdesk, and other user-
developer communicational and organizational
tools that can be used for quality enhancement
discovery.

III. CLASSIFICATION PROCESS

The following basic process is proposed to utilize the
SQuaRE model as a categorization framework for quality
maintenance incidents.

A. Classification

Most of maintenance requirements are classified into
two categories: incidents and enhancements, but others
could exist.

Each incident / enhancement can be mapped to a
characteristic / sub-characteristic / measures of the
SQuaRE model, allowing a clear classification of the
quality problem.

• Incidents

Incidents imply that some user expectations are not
being met and should be included, or result in unexpected
values and should be corrected.

Incidents will be analysed to detect quality events and
characteristics affected. These characteristics could be
related to Data Quality, Product Quality or Quality in Use
models.

A detected quality incident could affect a characteristic,
sub-characteristic, or measure. Response should be
analysed, a trade-off with other needs solved and, if
necessary, the model or models updated, and changes
reflected on the system/software product.

• Enhancements

Enhancements and new requirements will be analysed
looking for quality improvements.

Existing characteristics and/or sub-characteristics /
measures could be affected, or new ones added. These
characteristics could be related to Data Quality, Product
Quality or Quality in Use models.

This situation implies that users believe that certain
capacities will be useful if included.

The required quality should be analysed and a trade-off
with other needs solved and, if necessary, the model or
models updated.

B. Correction and improvement of the model

The previous classification could uncover failures of
the system/software quality model if an explicit model
exists.

Some common situations can be:

• The incident / enhancement cannot be
categorized in the model because the
characteristic was not considered in the
original model of the project but exist in
SQuaRE. This is an important case; it means
that certain characteristic that user expects is
not offered or is offered with insufficient or
less than the expected performance in the
product. Characteristic is evaluated and added
to the model.

• The incident/enhancement can be categorized
within a characteristic, but no sub-
characteristic covers the
incident/enhancement. In this case,
characteristics have been detected during
modelling process but certain sub-
characteristics, valuable to the user, are
missing.
Example: Interaction Capability detected but
Learnability not considered. Sub-
characteristic is evaluated and added to the
model.

• The incident/enhancement can be fully
classified because the characteristic / sub-
characteristic exists, but actual measures are
out of range from the proposed on the model.
Values obtained for the measures differ from

users’ expected values.
Time behaviour values are classical examples
of this situation. Target values are evaluated
and changed in the model.

IV. EXPECTED OUTPUTS

A. Primary result

An updated model with new and/or revised characteristics

/ sub-characteristics / measures, illustrating user

requirements for quality.

This updated model and its correspondent implementation

on the system/software product will be useful for

diminishing the perception of declining quality.

V. SPECIAL SITUATIONS

A. Reflections of requirements on the existent models

Not necessarily incidents and enhancements reflect directly

on a unique characteristic / sub-characteristic / measure of

the existent or generic SQuaRE model.

New enhancements could include different characteristic /

sub-characteristic of the standard model and an incident or

enhancement might be reflected in more than one

characteristic / sub-characteristic in Data Quality, Product

Quality or Quality in Use models.

B. Explicit model does not exist

In this case generic models proposed by SQuaRE [1] [2]

[3] [4] [5], Data Quality, Product Quality, Quality in Use

could be used as a metamodel to create the specific

instances of quality models for system/software product

project, enabling a more precise communication about

quality between user and developer organization.

VI. CONCLUSION

Returning to Lehman’s reference, system/software product

evolution is intrinsic to software, not necessarily a

developer’s fault.

SQuaRE models can be used as a practical tool to reflect

those evolving quality needs of users in an ordered and

visible way.

These models can be created or updated/enhanced along

the whole system/product life cycle, maintaining visibility

of quality enclosed in the system/software product and

preserving as previously mentioned the system/product

good quality perception of the user.

REFERENCES

[1] ISO/IEC 25000:2014 Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) —
Guide to SQuaRE

[2] ISO/IEC 25010:2011. ISO/IEC 25010:2011 Systems and Software
engineering System and software quality models

[3] SO/IEC 25023:2016 Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) —
Measurement of system and software product quality

[4] ISO/IEC 25022:2016 Systems and software engineering — Systems
and software quality requirements and evaluation (SQuaRE) —
Measurement of quality in use

[5] ISO/IEC 25024:2015 Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) —
Measurement of data quality

[6] M. M. Lehman, Laws of Software Evolution Revisited, EWSPT '96,
1996

