

100

The system of convolution neural networks automated training

Vladislav A. Sobolevskiia

a St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), 14th line V.O., 39, St.

Petersburg, 199178, Russia

Abstract
In this paper the research related to the creation of a program complex, which realizes the

automated generation of service-programs for the artificial intelligence systems based on the

convolution neural networks is presented. The presented program complex to accelerate and

simplify the generation and training of convolutional neural networks.

Keywords
Machine learning, convolutional neural networks, service-oriented architecture, internet of

things

1. Introduction

In modern world the recognition

technologies of photo and video images are
being implemented more intensively. The

development of this sphere became possible

due to the appearance of new convolution

neural network (CNN) architectures and the
modification of existing ones. The given type of

architecture turned out to be successful enough

for solving the tasks of image analysis,
segmentation and semantic recognition. The

higher the CNN accuracy and capabilities are,

the more complex CNN become. Some of the
most successful and widespread CNN

architectures at the moment have a plenty of

heterogeneous layers [1-3]. This leads not only

to the increase of work quality, but to the
complication in creating and training such

networks.

At the same time, the number of tasks that
can be solved using CNN rises. The given tasks

not always demand the application of the most

complex and foremost CNN architectures, but
they are still quite difficult and regular users

without any knowledge of deep learning

methods and their implementation skills would

not be able to create and adapt these networks
correctly. It can be said that the quantity of such

tasks is growing faster than the number of

professionals capable of solving them.

Models and Methods for Researching Information Systems in

Transport, Dec. 11-12, St. Petersburg, Russia

EMAIL: arguzd@yandex.ru (V. A. Sobolevskii)

ORCID: 0000-0001-7685-4991 (V. A. Sobolevskii)

©️ 2020 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

This leads to the fact that the task of creating
the systems of CNN generation automation

process for one or the other spheres is becoming

very relevant [4-6]. At the same time, the
demand for a system suitable for solving typical

tasks from different spheres is becoming more

acute. There are many tasks of one class (for
example, the recognition of certain tree species

in space images, landscape peculiarities,

specific nature objects etc), the solving

principle of which has been already discovered
or they are being handled on the basis of an

individual CNN production [7-9] or not being

solved at all due to the lack of specialists.
Additionally, a lot of CNNs are produced in

forms of program prototypes (for instance,

using MatLab) and such prototypes require

improvement for implementing into the
existing monitoring systems which are

designed at specific stacks of applied

programming languages (C++, Java, Python
etc). In its turn, this makes the further

development and the following implementation

of prototypes more complicated.
For solving the given tasks, the system of

convolution neural networks automated

training was designed based on the service-

oriented approach within the project presented
in this article. The approach of artificial neural

networks automated generation is not new and

there are some works upon this topic [10-13].
All these works point to the fact that the

automation of machine learning models

production process will allow to fasten the

process of developing program products for
solving a multitude of tasks. The system

described in the article elaborates the idea of

automation and has module extensible structure

101

which allows to add and combine trainable

architectures, training algorithms, data
normalization, validation etc. Moreover, due to

genetic algorithms, the given system is capable

of automated CNN generating and training

which allows non-professionals who are not
aware of neural networks setting details to use

it for solving typical tasks. The work result of

this system is not only a built architecture, but
a generated executable file with additional

REST and SOAP wrappings that without any

preliminary preparations will allow to start the
produced CNN as a service and apply to it from

other systems and program complexes. This

presents the system as a tool for a quick and

effortless solving of simple typical tasks by
regular users.

By present time, the designed system had

already been used for generating simple deep
neural networks that were introduced into third-

party program products for solving specific

applied tasks [14-15]. In suggested article the
capabilities of the given program complex

which were improved using CNN automated

training are described.

2. The service-oriented approach

in neural networks automation

generation

The service-oriented architecture (SOA) of

applications implies a module approach to the

program application development [16]. In the

considered situation the given paradigm is
implemented at several levels.

At the level of the program complex itself

SOA maintains the modularity and
interchangeability of CNN generation and

training algorithms. Thus, the whole process of

automated generation and training is divided

into some consecutively evoked program
modules:

• the input data normalization module;

• the generation module of chosen CNN
or the module of pre-trained CNN

architecture initialization;

• the CNN training module (including
verification and validation submodules).

Each of these modules is presented in

several realization variants (for various CNN

architectures) and certain realizations are
chosen depending on the requirements. In

addition, these modules are evoked from an

external automated training module (it is

currently implemented on the basis of a genetic

algorithm) which was developed with an
expectation of changeability. The other

algorithms of solution search can be used

instead of it and there is no need to make

significant modifications to other modules for
the use of these algorithms.

This approach is based on the principles of

transparency and scalability which allows to
expand the program product functionality by

adding new modules, not by modifying the

existing ones.
It is obvious that the given approach would

not allow to implement the automated training

of all possible CNN architectures. However, the

generation and training processes of typical
architectures have a precise and consecutive

algorithm. Having implemented the given

algorithm in the program complex it would be
possible to solve the task of typical neural

network solutions streaming (conveyor)

implementation as the main one.
The service-oriented approach in the

developed program complex occurs in the fact

that all modules should not be necessarily

installed to one and the same personal computer
(PC). Modules can be distributed between

different PCs or placed in cloud storages. Thus,

the given program complex can be
implemented in the form of a distributed system

that blends into the SOA paradigm completely.

At the program product operation result

level SOA is maintained by the implementation
of autonomous service containing CNN trained

to solve a specific task. This service is cross-

platformed and it can be launched without any
prior installing and additional software setting

on the basis of some operation systems (which

is possible due to the cross-platform of the
given modules implementation language -

Python [17]). Respectively, such module can be

used in the systems maintaining both SOA

paradigm and the Internet of Things (IoT) via
interfaces REST and SOAP [18-20].

3. The algorithm of convolution

neural networks automated

training

The difficulty in CNN production and

training lies in the fact that they are being
trained only having a marked training dataset

which describes the class of recognizable

objects. The recognition of different object

102

classes requires various CNN architectures and

their parameter settings. Due to the CNN
complexity this task becomes very resource-

intensive. This is one of the CNN key

restrictions of CNN trained with a teacher. Now

the approach which consists in multitasking
CNN creation for different science fields that

can solve the whole class of tasks is often used

[21-23]. The given approach has some
advantages, particularly the higher accuracy for

selected objects. However, the development of

each of these CNNs is more resource-intensive
and demands participation of specialists able to

project the architectures of such networks. The

alternative solution described in this article is

the automated training of models. This kind of
solution implies simultaneous training of some

CNNs based on prepared information dataset

for the following situational choice of the most
precise model which leads to the necessity to

solve the task of models parametrical

adaptation quality assessment. At the same
time, the formation task of training dataset in

common case does not require special

knowledge [24]. The automated system (AS)

described in the article is relevant in such cases
when the development of a wholesome CNN

able to solve the task in the most accurate way

is unprofitable. Using this system, it is possible
to create CNN able to solve the assigned task

cheaper and faster with an accuracy specified

by user.

The algorithm of CNN selection was
implemented in the following way:

1. In the first parent population a fixed

CNN number (M) is generated with
randomly set parameters.

2. Nd of new CNNs is generated, the

parameters of which are selected randomly
out of two occasionally chosen parent

CNNs, and also Nr of CNN, the parameters

of which are set completely randomly

considering the given value ranges for these
parameters.

3. Further, the CNN selection is

performed using the roulette method
(formula 1) [25]

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

,
(1)

where pi is the choice probability of i-CNN,

fi is the value of fitness function for i-CNN,

N is the quantity of CNN in population. The
roulette method was chosen as the most

universal one, because the algorithm is

supposed to be used for different classes of

tasks. Although the use of specific
algorithms would have fastened the

operation speed for some task classes, but it

inevitably would have slowed the operation

speed for other classes. The inaccuracy
estimation calculated using CNN target

parameter value relatively to the real value

of a test dataset (formula 2) lies in the basis
of the fitness function

𝑓𝑖 =
1

√
∑ (𝜀𝑖𝑗 −𝜔𝑗)2
𝑀
𝑗=1

𝑋

,
(2)

where εij is the output value of a target

parameter, which was forecast by i-network

in response to an input test j-vector, ωj is the
real value of a test dataset in response to an

input test j-vector, X is the quantity of test

vectors.

The result of a calculation according to the
given formula is a "fitness level" value,

which is inversely proportional to the mean

squared error of i-CNN at the test dataset. As
a result of selection, M is selected to the

current generation out of (M + Nd + Nr)

CNN with the maximum pi value (choice
probability of i-CNN).

4. For all CNN the mean squared error of

the target parameter value calculated by

them relatively to the real test dataset value
is computed. If at least one CNN shows the

mean squared error lower than the set value,

the cycle stops. The CNN with the lowest
mean squared error is treated as a "winner".

Otherwise, the return to point 2 takes place.

In addition, the population of each iteration

is stored separately. If the population of a
current iteration coincides completely with a

previous population, it means that during all

iteration the CNN configuration with the
most accuracy has not been found and the

unconditional transition to step 5 is carried

out.
5. If a CNN with the mean squared error

lower than the set value is not found, the

cycle launches from the step 1 with a new

parent population, for which new random
parameter values are set. If the solution is

not found after I iteration, the task is

declared to be unsolvable with specified

103

settings and the output from the algorithm is

performed.

4. Technologies used in the

developed program complex

This program complex is developed in

programming language Python, the main assets

of which relate to its cross-platform,
extensibility and large amount of sided program

libraries used for solving specified tasks. The

suggested programming language was chosen
because at the moment it happens to be the main

solution for deep learning systems development

and also because it allows to realize SOA

paradigm easily [26, 27]. Keras and
TensorFlow libraries are used for training

algorithms implementation.

Such stack of technologies is explained by
the fact that the program does not face the

implementation task of untypical solutions. On

the contrary, the quick realization of already
known architectures is required. The use of

already developed, tested and optimized

libraries satisfies the set task completely. At the

same time, the key requirements are
extensibility and scalability. Respectively, the

program complex realization on the basis of a

constantly extending program platform will
allow to add new CNN architectures and their

work tools at the cost of one program interface.

The cross-platform of the described stack and

the support of SOA paradigm will allow to scale
the program complex to different hardware.

It is important to mention separately that

CUDA SDK is also included in the used
program libraries, which allows to exploit

hardware acceleration during artificial neural

network training using NVidia video cards [28,
29]. The use of this technology makes the

process of CNN training significantly faster

[30].

5. The approbation of automated

convolution neural network

training program complex

For approbation of the program complex

prototype performing additional training of

Mask R-CNN (MRCNN) CNN architecture

trained on COCO dataset was developed. The
given configuration was chosen because of the

balance between universality and accuracy

[31]. By default, MRCNN is already capable of

recognizing fundamentally different object
classes, from automobiles to animals. That is

why, by proper additional training, it would be

able to recognize a wide range of objects that

are not included into COCO dataset.
The program complex was tested on the

calculation task of the amount of deer in a herd

from air photography. Besides the fact that deer
do not belong to the COCO dataset and

MRCNN is not able to distinguish them by

default from the range of other creatures (sheep,
gazelles, cows, horses), the specificity of this

task has something to do with the fact that

photos are made from various angles and

distances, at different landscapes and during all
seasons, which result in the fact that deer can be

shot under different angles, in various scales

and can have diverse colouring. What is more,
due to the size of herds, deer often cover one

another in photos. This leads to the fact that the

described task in non-trivial and the application
of CNN trained at common amount of data is

impossible. In figure 1 the recognition results of

one out of two images using MRCNN without

additional training are shown.

Figure 1: The deer recognition and calculation

using basic MRCNN trained at COCO dataset

It can be noted that there are plenty of false

negative errors evoked by the COCO dataset

specificity, in which there is an insufficient
number of images with similar scaling of

objects. To get rid of false operations, it is

required to train the network using images

marked for the specified task. That is why
MRCNN was additionally trained using the

CNN automated training system prototype. The

training was conducted in the automated mode
based on the training dataset specified by a user.

The following parameters of a training process

were varied in the prototype:

104

• the quantity of training epochs;

• the quantity of training steps in each
epoch;

• the speed of training;

• the threshold of detection skipping.

The CNN declared to be the winner by a
system was trained on 3 epochs, with 53

training steps in each, 0,0058 training speed and

0,86 threshold of detection skipping. The
described network for the same image

recognized correctly 58 out of 93 deer and did

not perform any false negative error (figure 2).

Figure 2: The deer recognition and calculation

using additionally trained MRCNN

Of course, the trained CNN did not reach the

maximum possible accuracy, but it can be

improved in the future. What is more, the

recognition accuracy may be increased by using
the other CNN architectures. But the prototype

testing can be considered successful because

program and service coverages were generated
for additionally trained MRCNN which will

allow to use the received CNN for solving the

set task right away. Due to the unified interface,

it will be possible to perform the
implementation of the most accurate CNNs in

the future. Even if in the following versions a

different CNN architecture is used, the program
and service coverage interface will not change,

and it will not be required to introduce changes

into the programs at the client side.

6. Conclusion

Nowadays, the program complex is at its

prototype stage and it is used for the

development of some off-site applications. First
of all, to start the full operation the

improvement of user application interface is

needed. As at the prototyping step the product

is used by specialists in machine learning, the

current interface is not adapted for using by
regular users. Because of this, the accessibility

for the wide user audience which is one of the

key tasks facing the program complex is not

being solved at the moment.
In addition, because of the high-

performance requirements, during the given

program product functioning the program
complex transition to highly productive servers

is needed for the commercial use. The

calculation specifity during CNN training puts
a range of requirements to the hardware and the

commercial use implies the parallel training of

several models that can load the system

significantly. Despite the calculation
parallelism put in the program complex

architecture using SOA, it is demanded to

perform the additional research and stress-tests
to outline the specific requirements to the

hardware.

Acknowledgements

This work was supported by the RFBR grant
№19-37-90112 and the budgetary theme 0073-

2019-0004.

References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton,

ImageNet classification with deep
convolutional neural networks,

Communications of the ACM (2017),

volume 60, issue 6, pp. 84 – 90.

[2] K. Simonyan, A. Zisserman, Very deep
convolutional networks for large-scale

image recognition, 3rd International

Conference on Learning Representations
(2015).

[3] M. D. Zeiler, R. Fergus, Visualizing and

understanding convolutional networks, 3th

European Conference on Computer Vision
(2014), volume 8689, issue 1, pp. 818 –

833.

[4] Z. Geng, Y. Wang, Automated design of a
convolutional neural network with multi-

scale filters for cost-efficient seismic data

classification, Nature Communications,
volume 11, issue 1, 2020.

[5] M. Witsuba, A. Rawat, T. Pedapati,

Automation of deep learning, Proceedings

105

of the 2020 International Conference on

Multimedia Retrieval (2020), pp. 5-6.
[6] B. Baker, O. Gupta, N. Naik, R. Raskar,

Designing neural network architectures

using reinforcement learning, 5th

International Conference on Learning
Representations (2017).

[7] Ateeq-ur-Rauf, A. R. Ghumman, S.

Ahmad, H. N. Hashmi, Performance
assessment of artificial neural networks

and support vector regression models for

stream flow predictions, Environmental
Monitoring and Assessment, volume 190,

issue 12, article 704, 2018.

[8] Z. Alizadeh, J. Yazdi, J. H. Kim, A. K. Al-

Shamiri, Assessment of machine learning
techniques for monthly flow prediction.

Water (Switzerland), volume 10, issue 11,

article 1676, 2018.
[9] J. Lantrip, M. Griffin, A. Aly, Results of

near-term forecasting of surface water

supplies, Proceedings of the 2005 World
Water and Environmental Resources

Congress, Anchorage, Alaska, US, 2005.

doi: 10.1061/40792(173)447.

[10] I. Bello, B. Zoph, V. Vasudevan, Q. V. Le,
Neural optimizer search with

Reinforcement learning, 34th International

Conference on Machine Learning (2017),
volume 1, pp. 712-721.

[11] H. Cai, T. Chen, W. Zhang, Y. Yu, J.

Wang, Efficient architecture search by

network transformation, 32nd AAAI
Conference on Artificial Intelligence

(2018), pp. 2787-2794.

[12] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W.
Wei, M. Sun, DPP-Net: Device-Aware

Progressive Search for Pareto-Optimal

Neural Architectures, Lecture Notes in
Computer Science (including subseries

Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume

11215, pp. 540-555, 2018.
[13] M. Wistuba, Deep learning architecture

search by neuro-cell-based evolution with

function-preserving mutations, Lecture
Notes in Computer Science (including

subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in
Bioinformatics), volume 11052, pp. 243-

258, 2019.

[14] V. Mikhailov, A. Spesivtsev, V.

Sobolevsky, N. Kartashev, Multi-Model
Estimation of the Dynamics of Plant

Community Phytomass, The 13th IEEE

International Conference Application of

Information and Communication
Technologies, Baku, Azerbaijan, pp. 324 –

328, 2019.

[15] V. A. Zelentsov, A. M. Alabyan, I. N.

Krylenko, I. Yu. Pimanov, M. R.
Ponomarenko, S. A. Potryasaev, A. E.

Semenov, V. A. Sobolevskii, B. V.

Sokolov, R. M. Yusupov, A Model-
Oriented System for Operational

Forecasting of River Floods, Herald of the

Russian Academy of Sciences, volume 89,
issue 4, pp. 405 – 417, 2019. doi:

10.1134/S1019331619040130.

[16] M. Bell, Introduction to Service-Oriented

Modeling, in Service-Oriented Modeling:
Service Analysis, Design and

Architecture, Wiley & Sons, New York,

NY, 2008.
[17] V. John, Guttag Introduction to

Computation and Programming Using

Python: With Application to
Understanding, 2nd Edition, MIT Press,

Cambridge, Massachusetts, 2016.

[18] Y. Mesmoudi, M. Lamnaour, Y. E. L.

Khamlichi, A. Tahiri, A. Touhafi, A.
Braeken, Design and implementation of a

smart gateway for IoT applications using

heterogeneous smart objects, 4th
International Conference on Cloud

Computing Technologies and

Applications, Cloudtech, 2018.

[19] D. Hanes, IoT Fundamentals: Networking
Technologies, Protocols, and Use Cases

for the Internet of Things, Cisco Press,

Indianapolis, Indiana, 2017.
[20] T. Erl, Service-Oriented Architecture:

Analysis and Design for Services and

Microservices, 2nd Edition, Prentice Hall,
Upper Saddle River, New Jersey, 2016.

[21] D. Xu, Z. Tian, R. Lai, X. Kong, Z. Tan,

W. Shi, Deep learning based emotion

analysis of microblog texts, Information
Fusion, volume 64, pp. 1-11, 2020.

[22] U. Ozkaya, F. Melgani, M. Belete Bejiga,

L. Seyfi, M. Donelli, GPR B scan image
analysis with deep learning methods,

Measurement: Journal of the International

Measurement Confederation, volume 165,
2020.

[23] A. Dutta, T. Batabyal, M. Basu, S. T.

Acton, An efficient convolutional neural

network for coronary heart disease
prediction, Expert Systems with

Applications, volume 159, 2020.

106

[24] M. Sewak, M. R. Karim, P. Pujari,

Practical convolutional neural networks:
implement advanced deep learning models

using Python, Packt Publishing,

Birmingham, UK, 2018.

[25] L. A. Gladkov, V. V. Kureichik, V. M.
Kureichik, Genetic algorithms: a textbook,

2nd Edition, Fizmatlit, Moscow, Russia,

2006.
[26] T. Ziade, Python Microservices

Development, Packt Publishing,

Birmingham, UK, 2017.
[27] G. C. Hillar, Internet of Things with

Python, Packt Publishing, Birmingham,

UK, 2016.

[28] D. B. Tuomanen, Hands-On GPU
Programming with Python and CUDA:

Explore high-performance parallel

computing with CUDA, Packt Publishing,
Birmingham, UK, 2018.

[29] J. Han, B. Sharma, Learn CUDA

Programming: A beginner's guide to GPU
programming and parallel computing with

CUDA 10.x and C/C++, Packt Publishing,

Birmingham, UK, 2019.

[30] B. Vaidya, Hands-On GPU-Accelerated
Computer Vision with OpenCV and

CUDA: Effective techniques for

processing complex image data in real
time using GPUs, Packt Publishing,

Birmingham, UK, 2019.

[31] K. He, G. Gkioxari, P Dollar, R. Girshick,

Mask R-CNN, Proceedings of the IEEE
International Conference on Computer

Vision, volume 2017, pp. 2980-2988,

2017.

