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Abstract  
In this paper the research related to the creation of a program complex, which realizes the 

automated generation of service-programs for the artificial intelligence systems based on the 

convolution neural networks is presented. The presented program complex to accelerate and 

simplify the generation and training of convolutional neural networks.  
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1. Introduction 

In modern world the recognition 

technologies of photo and video images are 
being implemented more intensively. The 

development of this sphere became possible 

due to the appearance of new convolution 

neural network (CNN) architectures and the 
modification of existing ones. The given type of 

architecture turned out to be successful enough 

for solving the tasks of image analysis, 
segmentation and semantic recognition. The 

higher the CNN accuracy and capabilities are, 

the more complex CNN become. Some of the 
most successful and widespread CNN 

architectures at the moment have a plenty of 

heterogeneous layers [1-3]. This leads not only 

to the increase of work quality, but to the 
complication in creating and training such 

networks. 

At the same time, the number of tasks that 
can be solved using CNN rises. The given tasks 

not always demand the application of the most 

complex and foremost CNN architectures, but 
they are still quite difficult and regular users 

without any knowledge of deep learning 

methods and their implementation skills would 

not be able to create and adapt these networks 
correctly. It can be said that the quantity of such 

tasks is growing faster than the number of 

professionals capable of solving them. 
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This leads to the fact that the task of creating 
the systems of CNN generation automation 

process for one or the other spheres is becoming 

very relevant [4-6]. At the same time, the 
demand for a system suitable for solving typical 

tasks from different spheres is becoming more 

acute. There are many tasks of one class (for 
example, the recognition of certain tree species 

in space images, landscape peculiarities, 

specific nature objects etc), the solving 

principle of which has been already discovered 
or they are being handled on the basis of an 

individual CNN production [7-9] or not being 

solved at all due to the lack of specialists.  
Additionally, a lot of CNNs are produced in 

forms of program prototypes (for instance, 

using MatLab) and such prototypes require 

improvement for implementing into the 
existing monitoring systems which are 

designed at specific stacks of applied 

programming languages (C++, Java, Python 
etc). In its turn, this makes the further 

development and the following implementation 

of prototypes more complicated. 
For solving the given tasks, the system of 

convolution neural networks automated 

training was designed based on the service-

oriented approach within the project presented 
in this article. The approach of artificial neural 

networks automated generation is not new and 

there are some works upon this topic [10-13]. 
All these works point to the fact that the 

automation of machine learning models 

production process will allow to fasten the 

process of developing program products for 
solving a multitude of tasks. The system 

described in the article elaborates the idea of 

automation and has module extensible structure 
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which allows to add and combine trainable 

architectures, training algorithms, data 
normalization, validation etc. Moreover, due to 

genetic algorithms, the given system is capable 

of automated CNN generating and training 

which allows non-professionals who are not 
aware of neural networks setting details to use 

it for solving typical tasks. The work result of 

this system is not only a built architecture, but 
a generated executable file with additional 

REST and SOAP wrappings that without any 

preliminary preparations will allow to start the 
produced CNN as a service and apply to it from 

other systems and program complexes. This 

presents the system as a tool for a quick and 

effortless solving of simple typical tasks by 
regular users. 

By present time, the designed system had 

already been used for generating simple deep 
neural networks that were introduced into third-

party program products for solving specific 

applied tasks [14-15]. In suggested article the 
capabilities of the given program complex 

which were improved using CNN automated 

training are described. 

2. The service-oriented approach 

in neural networks automation 

generation 

The service-oriented architecture (SOA) of 

applications implies a module approach to the 

program application development [16]. In the 

considered situation the given paradigm is 
implemented at several levels.  

At the level of the program complex itself 

SOA maintains the modularity and 
interchangeability of CNN generation and 

training algorithms. Thus, the whole process of 

automated generation and training is divided 

into some consecutively evoked program 
modules: 

• the input data normalization module; 

• the generation module of chosen CNN 
or the module of pre-trained CNN 

architecture initialization; 

• the CNN training module (including 
verification and validation submodules). 

Each of these modules is presented in 

several realization variants (for various CNN 

architectures) and certain realizations are 
chosen depending on the requirements. In 

addition, these modules are evoked from an 

external automated training module (it is 

currently implemented on the basis of a genetic 

algorithm) which was developed with an 
expectation of changeability. The other 

algorithms of solution search can be used 

instead of it and there is no need to make 

significant modifications to other modules for 
the use of these algorithms.  

This approach is based on the principles of 

transparency and scalability which allows to 
expand the program product functionality by 

adding new modules, not by modifying the 

existing ones. 
It is obvious that the given approach would 

not allow to implement the automated training 

of all possible CNN architectures. However, the 

generation and training processes of typical 
architectures have a precise and consecutive 

algorithm. Having implemented the given 

algorithm in the program complex it would be 
possible to solve the task of typical neural 

network solutions streaming (conveyor) 

implementation as the main one. 
The service-oriented approach in the 

developed program complex occurs in the fact 

that all modules should not be necessarily 

installed to one and the same personal computer 
(PC). Modules can be distributed between 

different PCs or placed in cloud storages. Thus, 

the given program complex can be 
implemented in the form of a distributed system 

that blends into the SOA paradigm completely. 

At the program product operation result 

level SOA is maintained by the implementation 
of autonomous service containing CNN trained 

to solve a specific task. This service is cross-

platformed and it can be launched without any 
prior installing and additional software setting 

on the basis of some operation systems (which 

is possible due to the cross-platform of the 
given modules implementation language - 

Python [17]). Respectively, such module can be 

used in the systems maintaining both SOA 

paradigm and the Internet of Things (IoT) via 
interfaces REST and SOAP [18-20]. 

3. The algorithm of convolution 

neural networks automated 

training 

The difficulty in CNN production and 

training lies in the fact that they are being 
trained only having a marked training dataset 

which describes the class of recognizable 

objects. The recognition of different object 
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classes requires various CNN architectures and 

their parameter settings. Due to the CNN 
complexity this task becomes very resource-

intensive. This is one of the CNN key 

restrictions of CNN trained with a teacher. Now 

the approach which consists in multitasking 
CNN creation for different science fields that 

can solve the whole class of tasks is often used 

[21-23]. The given approach has some 
advantages, particularly the higher accuracy for 

selected objects. However, the development of 

each of these CNNs is more resource-intensive 
and demands participation of specialists able to 

project the architectures of such networks. The 

alternative solution described in this article is 

the automated training of models. This kind of 
solution implies simultaneous training of some 

CNNs based on prepared information dataset 

for the following situational choice of the most 
precise model which leads to the necessity to 

solve the task of models parametrical 

adaptation quality assessment. At the same 
time, the formation task of training dataset in 

common case does not require special 

knowledge [24]. The automated system (AS) 

described in the article is relevant in such cases 
when the development of a wholesome CNN 

able to solve the task in the most accurate way 

is unprofitable. Using this system, it is possible 
to create CNN able to solve the assigned task 

cheaper and faster with an accuracy specified 

by user. 

The algorithm of CNN selection was 
implemented in the following way:  

1. In the first parent population a fixed 

CNN number (M) is generated with 
randomly set parameters. 

2. Nd of new CNNs is generated, the 

parameters of which are selected randomly 
out of two occasionally chosen parent 

CNNs, and also Nr of CNN, the parameters 

of which are set completely randomly 

considering the given value ranges for these 
parameters. 

3. Further, the CNN selection is 

performed using the roulette method 
(formula 1) [25] 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

, 
(1) 

where pi is the choice probability of i-CNN, 

fi is the value of fitness function for i-CNN, 

N is the quantity of CNN in population. The 
roulette method was chosen as the most 

universal one, because the algorithm is 

supposed to be used for different classes of 

tasks. Although the use of specific 
algorithms would have fastened the 

operation speed for some task classes, but it 

inevitably would have slowed the operation 

speed for other classes. The inaccuracy 
estimation calculated using CNN target 

parameter value relatively to the real value 

of a test dataset (formula 2) lies in the basis 
of the fitness function 

𝑓𝑖 =
1

√
∑ (𝜀𝑖𝑗 −𝜔𝑗)2
𝑀
𝑗=1

𝑋

, 
(2) 

where εij is the output value of a target 

parameter, which was forecast by i-network 

in response to an input test j-vector, ωj is the 
real value of a test dataset in response to an 

input test j-vector, X is the quantity of test 

vectors. 

The result of a calculation according to the 
given formula is a "fitness level" value, 

which is inversely proportional to the mean 

squared error of i-CNN at the test dataset. As 
a result of selection, M is selected to the 

current generation out of (M + Nd + Nr) 

CNN with the maximum pi value (choice 
probability of i-CNN). 

4. For all CNN the mean squared error of 

the target parameter value calculated by 

them relatively to the real test dataset value 
is computed. If at least one CNN shows the 

mean squared error lower than the set value, 

the cycle stops. The CNN with the lowest 
mean squared error is treated as a "winner". 

Otherwise, the return to point 2 takes place. 

In addition, the population of each iteration 

is stored separately. If the population of a 
current iteration coincides completely with a 

previous population, it means that during all 

iteration the CNN configuration with the 
most accuracy has not been found and the 

unconditional transition to step 5 is carried 

out. 
5. If a CNN with the mean squared error 

lower than the set value is not found, the 

cycle launches from the step 1 with a new 

parent population, for which new random 
parameter values are set. If the solution is 

not found after I iteration, the task is 

declared to be unsolvable with specified 
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settings and the output from the algorithm is 

performed.  

4. Technologies used in the 

developed program complex 

This program complex is developed in 

programming language Python, the main assets 

of which relate to its cross-platform, 
extensibility and large amount of sided program 

libraries used for solving specified tasks. The 

suggested programming language was chosen 
because at the moment it happens to be the main 

solution for deep learning systems development 

and also because it allows to realize SOA 

paradigm easily [26, 27]. Keras and 
TensorFlow libraries are used for training 

algorithms implementation.  

Such stack of technologies is explained by 
the fact that the program does not face the 

implementation task of untypical solutions. On 

the contrary, the quick realization of already 
known architectures is required. The use of 

already developed, tested and optimized 

libraries satisfies the set task completely. At the 

same time, the key requirements are 
extensibility and scalability. Respectively, the 

program complex realization on the basis of a 

constantly extending program platform will 
allow to add new CNN architectures and their 

work tools at the cost of one program interface. 

The cross-platform of the described stack and 

the support of SOA paradigm will allow to scale 
the program complex to different hardware.  

It is important to mention separately that 

CUDA SDK is also included in the used 
program libraries, which allows to exploit 

hardware acceleration during artificial neural 

network training using NVidia video cards [28, 
29]. The use of this technology makes the 

process of CNN training significantly faster 

[30]. 

5. The approbation of automated 

convolution neural network 

training program complex 

For approbation of the program complex 

prototype performing additional training of 

Mask R-CNN (MRCNN) CNN architecture 

trained on COCO dataset was developed. The 
given configuration was chosen because of the 

balance between universality and accuracy 

[31]. By default, MRCNN is already capable of 

recognizing fundamentally different object 
classes, from automobiles to animals. That is 

why, by proper additional training, it would be 

able to recognize a wide range of objects that 

are not included into COCO dataset. 
The program complex was tested on the 

calculation task of the amount of deer in a herd 

from air photography. Besides the fact that deer 
do not belong to the COCO dataset and 

MRCNN is not able to distinguish them by 

default from the range of other creatures (sheep, 
gazelles, cows, horses), the specificity of this 

task has something to do with the fact that 

photos are made from various angles and 

distances, at different landscapes and during all 
seasons, which result in the fact that deer can be 

shot under different angles, in various scales 

and can have diverse colouring. What is more, 
due to the size of herds, deer often cover one 

another in photos. This leads to the fact that the 

described task in non-trivial and the application 
of CNN trained at common amount of data is 

impossible. In figure 1 the recognition results of 

one out of two images using MRCNN without 

additional training are shown.  
 

 

 
Figure 1: The deer recognition and calculation 

using basic MRCNN trained at COCO dataset 

 
It can be noted that there are plenty of false 

negative errors evoked by the COCO dataset 

specificity, in which there is an insufficient 
number of images with similar scaling of 

objects. To get rid of false operations, it is 

required to train the network using images 

marked for the specified task. That is why 
MRCNN was additionally trained using the 

CNN automated training system prototype. The 

training was conducted in the automated mode 
based on the training dataset specified by a user. 

The following parameters of a training process 

were varied in the prototype: 
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• the quantity of training epochs; 

• the quantity of training steps in each 
epoch; 

• the speed of training; 

• the threshold of detection skipping. 

The CNN declared to be the winner by a 
system was trained on 3 epochs, with 53 

training steps in each, 0,0058 training speed and 

0,86 threshold of detection skipping. The 
described network for the same image 

recognized correctly 58 out of 93 deer and did 

not perform any false negative error (figure 2).  
 

 

 
Figure 2: The deer recognition and calculation 

using additionally trained MRCNN 

 
Of course, the trained CNN did not reach the 

maximum possible accuracy, but it can be 

improved in the future. What is more, the 

recognition accuracy may be increased by using 
the other CNN architectures. But the prototype 

testing can be considered successful because 

program and service coverages were generated 
for additionally trained MRCNN which will 

allow to use the received CNN for solving the 

set task right away. Due to the unified interface, 

it will be possible to perform the 
implementation of the most accurate CNNs in 

the future. Even if in the following versions a 

different CNN architecture is used, the program 
and service coverage interface will not change, 

and it will not be required to introduce changes 

into the programs at the client side. 

6. Conclusion 

Nowadays, the program complex is at its 

prototype stage and it is used for the 

development of some off-site applications. First 
of all, to start the full operation the 

improvement of user application interface is 

needed. As at the prototyping step the product 

is used by specialists in machine learning, the 

current interface is not adapted for using by 
regular users. Because of this, the accessibility 

for the wide user audience which is one of the 

key tasks facing the program complex is not 

being solved at the moment. 
In addition, because of the high-

performance requirements, during the given 

program product functioning the program 
complex transition to highly productive servers 

is needed for the commercial use. The 

calculation specifity during CNN training puts 
a range of requirements to the hardware and the 

commercial use implies the parallel training of 

several models that can load the system 

significantly. Despite the calculation 
parallelism put in the program complex 

architecture using SOA, it is demanded to 

perform the additional research and stress-tests 
to outline the specific requirements to the 

hardware. 
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