

129

Investigation of the computational complexity of the

formation of checksums for the Cyclic Redundancy Code

algorithm depending on the width of the generating

polynomial

Odilzhan A. Turdiev a, Vladimir A. Smagin b and Vladimir N. Kustov a

a Petersburg State Transport University, 9 Moskovsky pr, Saint Petersburg, 190031, Russian Federation
b International Academy of Informatization St. Petersburg, Saint Petersburg, 190031, Russian Federation

Abstract

Formulation of the problem: The need to ensure the integrity of data transmitted in

communication networks makes the issue of ensuring the formation of checksums actual.

At the same time, it is advisable to reduce the complexity of algorithms for generating

checksums to improve data integrity. The well-known CRC (Cyclic Redundancy Code)

checksum generation algorithm has high computational complexity. The aim of the

work is to perform search studies to substantiate the fundamental possibility of reducing

the computational complexity of the algorithm for generating CRC checksums and

searching for possible ways of practical implementation. The novelty of the work lies in

the fact that in order to achieve the goal of the work, the computational complexity of the

CRC algorithm is investigated depending on various generating polynomials and their bit

width. Result: on the basis of the conducted search studies, the possibility of reducing the

computational complexity of the algorithm for generating CRC checksums for data

transmitted in communication networks was confirmed. Additionally, a set of programs is

presented for assessing the complexity of the CRC checksum generation algorithm

depending on the length of the polynomial, as well as the analysis of the computational

complexity of the CRC-based data integrity check algorithm. Practical relevance: The

research results can be applied to reduce the computational complexity of the algorithm

for generating CRC checksums in protocols of data transmission networks, as well as to

substantiate promising ways for further research in this direction.

Keywords

computational complexity, generator polynomial, cyclic redundancy code, CRC, burst

errors, bit errors, data integrity.

1. Introduction

One of the important tasks in modern

communication networks is to ensure data

integrity. The most common algorithm for

determining the integrity of transmitted data is the

CRC (Cyclic Redundancy Check) algorithm.1.

Models and Methods for Researching Information Systems

in Transport, Dec. 11-12, St. Petersburg, Russia

EMAIL: odiljan.turdiev@mail.ru (O.A. Turdiev);

va_smagin@mail.ru (V.A. Smagin).

ORCID: 0000-0002-1651-5493 (O.A. Turdiev).

©️ 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-

WS.org)

The CRC algorithm is based on the theory

of cyclic error correction codes. This algorithm

was first proposed by V.V. Peterson and D.T.

Brown, in [1]. The CRC algorithm computes a

short binary sequence that has a certain constant

length, known as a check value or CRC algorithm

code. The CRC is calculated for each individual

block of data to be transmitted over the network

and added to the block to form a codeword. When

a codeword is received on the receiving side, one

of two things is done. Either the received CRC

check value is compared with the value of the

CRC that is generated anew for the transmitted

data on the receiving side, or the CRC is generated

again on the receiving side for the entire received

130

codeword and the resulting CRC check value is

compared with the expected residual constant. If

the control values do not match, then the

transmitted data contains an error and the

receiving device can take actions to correct them,

such as re-reading the block or sending it again.

The theoretical provisions of the functioning

of the CRC algorithm are given in [2-5]. It is

assumed that when a data block and its check CRC

are received correctly, integrity is ensured for that

data block. The process of generating and

checking the CRC can be quite laborious when

using network devices with low speed or high data

transfer rates. In this regard, reducing the

computational complexity of the CRC algorithm is

an urgent scientific and practical task.

In addition, in real transmission conditions,

the communication channel can be affected by

various kinds of interference, which appear in the

process under study in the form of erroneous bits,

which lead to a violation of data integrity [6]. In

the work of V.V. Yakovlev [7] proposed the

choice of the generating polynomial to increase

the probability of error recognition when

generating checksums in the transmitted data.

Summarizing the above, it can be noted that

the purpose of the work is to perform search

studies to substantiate the fundamental possibility

and possible ways to reduce the computational

complexity of the CRC checksum generation

algorithm used to control the integrity of the

transmitted data.

To find ways to reduce the computational

complexity in the work, a study of the

computational complexity of the formation of

CRC checksums was carried out depending on

various generating polynomials and their bit

width. To assess the computational complexity of

the CRC, we simulated the process of transmitting

binary data over a symmetric channel.

2. Basic concepts and

characteristics of CRC codes

Cyclic redundancy codes CRC are a

subclass of block codes and are used in HDLC,

Token Ring, Token Bus protocols, Ethernet

protocol families and other link layer protocols

[8]. Computing resources mean memory,

processor power, and the number of shift registers.

One of the ways to represent a cyclic code is to

represent it in the form of a generating polynomial

- the set of all polynomials of degree (r – code-1),

containing some fixed polynomial G (x) as a

common factor. The polynomial G (x) is called the

generating polynomial of the code. For example,

𝑥4+ 𝑥 +1, here r-code = 5, since the binary

sequence looks like 10011. The standardized and

recommended generator polynomials for the CRC

algorithm are given in Table 1, where the name of

the standard and the generator polynomial are

shown: for example, the notation 𝑥4+ 𝑥 + 1 is

equivalent to 1∙ 𝑥4 + 0∙ 𝑥3 + 0∙ 𝑥2 + 1∙𝑥 + 1∙ 𝑥0 =

10011 (in binary).

Table 1.
Popular standardized generator polynomials [9].

nomination Generating polynomials

CRC-4-TU 𝑥4 + 𝑥 + 1 (ITU G.704)

CRC-5-EPC 𝑥5 + 𝑥3 + 1 (Gen 2 RFID)
CRC-5-ITU 𝑥5 + 𝑥4 + 𝑥2 + 1 (ITU G.704)

CRC-5-USB 𝑥5 + 𝑥2 + 1 (USB token packets)
CRC-6-ITU 𝑥6 + 𝑥 + 1 (ITU G.704)

CRC-7 𝑥7 + 𝑥3 + 1 (ITU-T G.707, ITU-T G.832, MMC, SD)

CRC-8-CCITT 𝑥8 + 𝑥2 + 𝑥 + 1 (ATM HEC), ISDN Header Error Control and Cell

Delineation ITU-T I.432.1 (02/99)
CRC-8-Dallas/Maxim 𝑥8 + 𝑥5 + 𝑥4 + 1 (1-Wire bus)

CRC-8 𝑥8 + 𝑥7 + 𝑥6 + 𝑥4 + 𝑥2 + 1 (ETSI EN 302 307, 5.1.4)

CRC-8-SAE J1850 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1

CRC-10 𝑥10 + 𝑥9 + 𝑥5 + 𝑥4 + 𝑥 + 1
CRC-11 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥2 + 1 (FlexRay)
CRC-12 𝑥12 + 𝑥11 + 𝑥3 + 𝑥2 + 𝑥 + 1 (системы телекоммуникации)

131

CRC-15-CAN 𝑥15 + 𝑥14 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 1

CRC-16-IBM 𝑥16 + 𝑥15 + 𝑥2 + 1 (Bisync, Modbus, USB, ANSI X3.28,)

CRC-16-CCITT 𝑥16 + 𝑥12 + 𝑥5 + 1 (X.25, HDLC, XMODEM, Bluetooth, SD и др.)

CRC-16-T10-DIF 𝑥16 + 𝑥15 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 1 (SCSI DIF)

CRC-16-DNP 𝑥16 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥10 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥2 + 1 (DNP, IEC 870,

M-Bus)
CRC-24 𝑥24 + 𝑥22 + 𝑥20 + 𝑥19 + 𝑥18 + 𝑥16 + 𝑥14 + 𝑥13 + 𝑥11 + 𝑥10 + 𝑥8 +

𝑥6 + 𝑥3 + 𝑥 + 1 (FlexRay)

CRC-24-Radix-64 𝑥24 + 𝑥23 + 𝑥18 + 𝑥17 + 𝑥14 + 𝑥11 + 𝑥10 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 +
𝑥3 + 𝑥 + 1 (OpenPGP)

CRC-30 𝑥30 + 𝑥29 + 𝑥21 + 𝑥15 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥8 + 𝑥7 + 𝑥6 + 𝑥2 + 𝑥 +
1 (CDMA)

CRC-32-IEEE 802.3 𝑥32 + 𝑥26 + 𝑥23 + 𝑥22 + 𝑥16 + 𝑥12 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 +
𝑥2 + 𝑥 + 1 (V.42, MPEG-2, PNG, POSIX cksum)

CRC-32C (Castagnoli) 𝑥32 + 𝑥28 + 𝑥27 + 𝑥26 + 𝑥25 + 𝑥23 + 𝑥22 + 𝑥20 + 𝑥19 + 𝑥18 + 𝑥14 +
𝑥13 + 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 1

CRC-32K (Koopman) 𝑥32 + 𝑥28 + 𝑥27 + 𝑥26 + 𝑥25 + 𝑥23 + 𝑥22 + 𝑥20 + 𝑥19 + 𝑥18 + 𝑥14 +
𝑥13 + 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 1

CRC-32Q 𝑥32 + 𝑥31 + 𝑥24 + 𝑥22 + 𝑥16 + 𝑥14 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥 + 1
CRC-64-ISO 𝑥64 + 𝑥4 + 𝑥3 + 𝑥 + 1 (HDLC — ISO 3309)

CRC-64-ECMA 𝑥64 + 𝑥62 + 𝑥57 + 𝑥55 + 𝑥54 + 𝑥53 + 𝑥52 + 𝑥47 + 𝑥46 + 𝑥45 + 𝑥40 +
𝑥39 + 𝑥38 + 𝑥37 + 𝑥35 + 𝑥33 + 𝑥32 + 𝑥31 + 𝑥29 + 𝑥27 + 𝑥24 + 𝑥23 +
𝑥22 + 𝑥21 + 𝑥19 + 𝑥17 + 𝑥13 + 𝑥12 + 𝑥10 + 𝑥9 + 𝑥7 + 𝑥4 + 𝑥 + 1

The value of the result of the

implementation of the CRC algorithm is the

remainder of dividing the binary sequence M (x)

corresponding to the input data by the generating

binary sequence G (x) of degree r.

Each final sequence of bits is one-to-one

associated with a binary polynomial, the

sequence of which is the original sequence. For

example, bit sequence 1011010 corresponds to

the binary polynomial M(x) = 1·
6x + 0·

5x + 1·

4x + 1·
3x + 0·

2x + 1·
1x + 0·

0x =
6x +

4x +
3x + x.

Let's consider examples in which addition

and subtraction are performed without carrying

the digits in accordance with the "exclusive OR"

operation, which corresponds to the addition

modulo 2 of binary arithmetic.

Polynomial division is performed in the

binary system, with the difference that the
subtraction is performed modulo 2.

The use of polynomial codes during

transmission is as follows. The sender and the

receiver pre-select the same generator

polynomial G (x), whose coefficients at the

higher term and at the lower term must be equal

to 1. When calculating the checksums of a block

of m bits in size, the following condition m > r

must be met. Further, implementing the CRC

calculation algorithm, the sender adds the

checksum to the transmitted block, considered as

a polynomial M (x), so that the transmitted block

with the checksum is a multiple of G (x). When

the recipient receives the checksum block, he

divides it by G (x). If a nonzero remainder is

formed, then this indicates the occurrence of an

error during transmission [10,11].

Checksum calculation algorithm:

1. Add r zeros to the end of the block so that it

contains m + r digits, the result is a polynomial

xrM (x).

2. Divide the polynomial xrM (x) by G (x)

modulo 2, the quotient is ignored.

3. Subtract modulo 2 the remainder (its length

does not exceed r bits) from the string

corresponding to xrM (x). The result is a block

with a checksum.

132

Currently, most network technologies

most often use the following three types of

generating polynomials G (x) [12]:

CRC-12 = 𝑥12 + 𝑥11 + 𝑥3 + 𝑥2 + 𝑥 + 1

CRC-16-IBM = 𝑥16 + 𝑥15 + 𝑥2 + 1

CRC-16-CCITT = 𝑥16 + 𝑥12 + 𝑥5 + 1

CRC-12 is used to transmit 6-bit

characters. The other two are for 8-bit. CRC-16

and CRC-CCITT detect all single and all double

errors, an odd number of isolated errors, single

bursts of errors less than 16 in length, and many

burst errors greater than 16 with a 99.997%

probability.

After getting acquainted with the basic

concepts and characteristics of CRC codes, let

us consider an example of calculating the

remainder of cyclic redundancy codes and

estimate the computational complexity of this

process.

3. An example of calculating the

remainder for constructing a CRC

code word and estimating the

computational complexity

Calculation of CRC.

Information frame - 1101011011

Generator polynomial - 10011

Frame with additional zeros – 11010110110000

CRC codeword (transmitted frame) -

11010110111110 [13-15].

Thus, the example shows that with the

generator polynomial CRC-4-TU (10011) and

the bit length of the information frame equal to

10 bits, 10 divisions and 50 modulo 2 additions

are required. In the general case, the relationship

between the computational complexity (the

number of additions and divisions), the size of

the generating polynomial and the size of the

information polynomial.

For the best understanding of the number

of divisions and additions in the CRC algorithm

with various generator polynomials and

information frames, software has been created to

assess the computational complexity of the CRC

algorithm.

4. A program for evaluating the

computational complexity of the

CRC algorithm

The program is designed to estimate the

complexity of the CRC algorithm by the width

of the polynomial using the CRC checksum

method, which is shown in the example of cyclic

redundancy codes. By estimating the

complexity of the implementation of the CRC

algorithm by performing additions according to

the width of the polynomial, we obtain an

approximate number of additions (shift into

cells). This study opens up possible ways to

reduce the computational complexity of the

CRC checksum generation algorithm used to

control the integrity of transmitted data [16,17].

For the considered CRC generation

method, the "CRC calculation" application was

written in Java, presented in Appendix 1, which

allows for a user-specified frame size and

generating polynomial to estimate the required

number of additions and divisions to obtain the

final CRC checksum. The javaFX library was

used to write the application. The CRC and

TableData classes are used from this library.

There are three operations in the CRC class:

1. Operation (calculation) - it calculates the CRC

code.

2. Operation (initialize).

3. Operation (xor).

133

The initialize operation processes the bit

sequence array and passes it to the table, the xor

operation emulates the operations of logical

addition of the bits of the input code and the

CRC code to the input and gives two parameters

X and Y - a binary code, 1 and 1, or 1 and 0, or

0 and 1, or 0 and 0.

5. Analysis of the results of

evaluating the computational

complexity of the CRC algorithm

The calculation of the number of

additions, which is one of the important

components of the CRC algorithm, is carried out

in accordance with formula 1. Note that the

value obtained as a result of the calculations

should not be small, as this will lead to the need

to retransmit the data. In this case, the

transmission algorithm is repeated, which leads

to secondary calculations. Polynomials are

chosen so that there is no downtime in the data

transmission channels.

The calculation of the number of additions

is carried out according to the formula:

𝑅 = (𝑃 ∙ 𝑁) mod 2, (1)

here R is the number of addition operations

modulo 2;

P - packet size;

N - is the length of the polynomial.

Let us consider an example in which the

digit capacity of 8 polynomials has 48 divisions,

therefore the number of additions according to

the formula (1) R = 48 ∙ 8 = 384. The results of

evaluating the computational complexity of the

CRC generation algorithm, expressed in the

number of operations, are shown using the graph

in Fig. 1 and are confirmed a simulation model.

Figure 1: The result of evaluating the

computational complexity of the CRC

generation algorithm, expressed in the number

of operations.

Conclusions

The article investigates the computational

CRC algorithm. It is shown that with an increase

in the number of bits of generating polynomials,

the number of operations increases, while the

number of division operations remains

unchanged. With an increase in the number of

digits and division operations, the generating

polynomials remain unchanged, but the number

of additions increases.

It is shown that a possible way to reduce

the computational complexity of the CRC

checksum generation algorithm used to control

the integrity of the transmitted data is to reduce

the number of addition operations while

maintaining the number of division operations in

the algorithm under consideration.

As a result of this work, on the basis of

research on generating polynomials and the

number of division operations, an expression for

calculating the number of addition operations

was obtained. The research results pave the way

for further research to reduce the computational

complexity of the operation of cyclic

redundancy codes.

Appendix 1.

By the logic of the method, the logical

operator "or" is emulated, that is, xor, as shown

in Listing 1.

Listing 1: Emulation of the logical operator

"or".

The CRC class contains fields with the

original message, that is, a variable that stores a

134

bit sequence of a certain length, as shown in

Listing 2.

Listing 2: Variable storing a bit sequence of a

certain length.

Next, a polynomial of a certain bit depth is

generated and the CRC code is calculated in the

calculation method.

The program simulates the process of data

transfer between the source and the receiver

(Fig. 2), and also provides the following

functions:

1. Specifying the initial data in the specified

table ("polynomial" and "information frame",

Fig. 2) creates a number generator using a

unique seed.

2. Calculation of the initial data is displayed in

the program window (button "Calculation", Fig.

2).

3. As a result of the initial data, the number of

additions and the formation of CRC checksums

of cyclic redundancy codes (“parameters and

data” field, Fig. 2) is calculated.

4. Additionally, at the discretion of the user, you

can reset and start the calculation over again (the

"Reset" button, Fig. 2).

Figure 2: CRC calculation.

After the simulation of the data

calculation process, the number of addition of

the CRC checksum algorithm of cyclic

redundancy codes is calculated again, which are

then compared with those previously calculated

to reveal the fact of calculating the addition of

the checksum algorithm of the transmitted data

(Fig. 2); field "CRC calculation".

References

[1] Peterson, W. W. and Brown, D. T.

(January 1961). "Cyclic Codes for Error

Detection". Proceedings of the IRE 49:

228.

[2] Ritter, Terry (February 1986). "The Great

CRC Mystery". Dr. Dobb's Journal 11 (2):

http://www.ciphersbyritter.com/ARTS/CR

CMYST.HTM. Retrieved 21 May 2009

26–34, 76–83.

[3] N. Cam-Winget, Nancy; R. Housley,

Russ; D. Wagner, David; J. Walker, Jesse

(May 2003). "Security Flaws in 802.11

Data Link Protocols". Communications of

the ACM 46 (5): 35–39.

[4] Stigge, Martin; Plötz, Henryk; Müller,

Wolf; Redlich, Jens-Peter (May 2006).

Reversing CRC – Theory and Practice

(http://sar.informatik.hu-

berlin.de/research/publications/SAR-PR-

2006-05/SAR-PR-2006-05_.pdf). Berlin:

Humboldt University Berlin. p. 17.

Retrieved 4 February 2011

[5] Anachriz (30 April 1999). "CRC and how

to Reverse it" Retrieved 21 January 2010.

Online essay with example x86 assembly

code.

[6] "Eurocontrol – FAQ: Technologies"

(http://www.eurocontrol.int/aim/public/fa

q/chain faq3.html). European

Organisation for the Safety of Air

Navigation. 29 April 2009.

[7] Yakovlev V.V., Fedorov R.F. Stochastic

computers. L., "Mechanical Engineering",

1974,

[8] Ross N. Williams Элементарное

руководство по CRC – алгоритмам

обнаружения ошибок. Copyright (C)
Ross Williams, 1993

[9] Cyclic redundant code [Electronic

resource]. - Internet page. - Access mode:

https://ru.wikipedia.org/wiki/Cyclic_Redu
ndant_code, free

[10] Yakovlev VV Assessment of the influence

of interference on the performance of the
channel level protocols / VV Yakovlev, FI

Kushnazarov // Izv. Petersburg. state un-

that ways of communication. - SPb .:

135

PGUPS, 2015. - Issue. 1 (42). - S. 133-

138.

[11] Halsall F. Fifth edition, computer

networks and the Internet / F. Halsall. –

Addison-Wesley: Pearson Education,

2005. ‒ 803 р.

[12] Lin S. and Costello D.J. Jr. Error Control

Coding: Fundamentals and Applications.

Prentice-Hall, Inc., EnglewoodCliffs, N.

J., 1983.

[13] Halsall F. Data communications,

computer networks and open systems / F.

Halsall. – Addison-Wesley: Pearson

Education, 1996. ‒ 907 р.

[14] Olifer V. G. Computer networks.

Principles, technologies, protocols / V. G.

Olifer, N. A. Olifer. - SPb .: Peter, 2008 .-

- 958 p.

[15] A. Romashchenko, A. Rumyantsev, A.

Shen. NOTES ON THE THEORY OF

CODING. Notes on coding theory. | 2nd

ed., Rev. and add. | M .: MTsNMO, 2017.

| 88 p. ISBN 978-5-4439-0689-8

[16] Turdiev O.A., Yakovlev V.V., Klimenko

S.V., Boltaev A.Kh. Investigation of the

formation of the block checksum (BCC)

of the transmitted data. Izvestia ETU

"LETI" Issue No. 6 2019.

[17] Turdiev O.A., Klimenko S.V.,

Tukhtakhodzhaev A.B. Evaluations of the

efficiency of detecting checksum errors

(CRC) of transmitted data Izvestia ETU

"LETI" Issue No. 8 2019.

