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Abstract 

Formulation of the problem: The need to ensure the integrity of data transmitted in 

communication networks makes the issue of ensuring the formation of checksums actual. 

At the same time, it is advisable to reduce the complexity of algorithms for generating 

checksums to improve data integrity. The well-known CRC (Cyclic Redundancy Code) 

checksum generation algorithm has high computational complexity. The aim of the 

work is to perform search studies to substantiate the fundamental possibility of reducing 

the computational complexity of the algorithm for generating CRC checksums and 

searching for possible ways of practical implementation. The novelty of the work lies in 

the fact that in order to achieve the goal of the work, the computational complexity of the 

CRC algorithm is investigated depending on various generating polynomials and their bit 

width. Result: on the basis of the conducted search studies, the possibility of reducing the 

computational complexity of the algorithm for generating CRC checksums for data 

transmitted in communication networks was confirmed. Additionally, a set of programs is 

presented for assessing the complexity of the CRC checksum generation algorithm 

depending on the length of the polynomial, as well as the analysis of the computational 

complexity of the CRC-based data integrity check algorithm. Practical relevance: The 

research results can be applied to reduce the computational complexity of the algorithm 

for generating CRC checksums in protocols of data transmission networks, as well as to 

substantiate promising ways for further research in this direction. 
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1. Introduction 

One of the important tasks in modern 

communication networks is to ensure data 

integrity. The most common algorithm for 

determining the integrity of transmitted data is the 

CRC (Cyclic Redundancy Check) algorithm.1. 
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The CRC algorithm is based on the theory 

of cyclic error correction codes. This algorithm 

was first proposed by V.V. Peterson and D.T. 

Brown, in [1]. The CRC algorithm computes a 

short binary sequence that has a certain constant 

length, known as a check value or CRC algorithm 

code. The CRC is calculated for each individual 

block of data to be transmitted over the network 

and added to the block to form a codeword. When 

a codeword is received on the receiving side, one 

of two things is done. Either the received CRC 

check value is compared with the value of the 

CRC that is generated anew for the transmitted 

data on the receiving side, or the CRC is generated 

again on the receiving side for the entire received 
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codeword and the resulting CRC check value is 

compared with the expected residual constant. If 

the control values do not match, then the 

transmitted data contains an error and the 

receiving device can take actions to correct them, 

such as re-reading the block or sending it again. 

The theoretical provisions of the functioning 

of the CRC algorithm are given in [2-5]. It is 

assumed that when a data block and its check CRC 

are received correctly, integrity is ensured for that 

data block. The process of generating and 

checking the CRC can be quite laborious when 

using network devices with low speed or high data 

transfer rates. In this regard, reducing the 

computational complexity of the CRC algorithm is 

an urgent scientific and practical task. 

In addition, in real transmission conditions, 

the communication channel can be affected by 

various kinds of interference, which appear in the 

process under study in the form of erroneous bits, 

which lead to a violation of data integrity [6]. In 

the work of V.V. Yakovlev [7] proposed the 

choice of the generating polynomial to increase 

the probability of error recognition when 

generating checksums in the transmitted data. 

Summarizing the above, it can be noted that 

the purpose of the work is to perform search 

studies to substantiate the fundamental possibility 

and possible ways to reduce the computational 

complexity of the CRC checksum generation 

algorithm used to control the integrity of the 

transmitted data. 

To find ways to reduce the computational 

complexity in the work, a study of the 

computational complexity of the formation of 

CRC checksums was carried out depending on 

various generating polynomials and their bit 

width. To assess the computational complexity of 

the CRC, we simulated the process of transmitting 

binary data over a symmetric channel. 

 

2. Basic concepts and 

characteristics of CRC codes 
 

Cyclic redundancy codes CRC are a 

subclass of block codes and are used in HDLC, 

Token Ring, Token Bus protocols, Ethernet 

protocol families and other link layer protocols 

[8]. Computing resources mean memory, 

processor power, and the number of shift registers. 

One of the ways to represent a cyclic code is to 

represent it in the form of a generating polynomial 

- the set of all polynomials of degree (r – code-1), 

containing some fixed polynomial G (x) as a 

common factor. The polynomial G (x) is called the 

generating polynomial of the code. For example, 

𝑥4+ 𝑥 +1, here r-code = 5, since the binary 

sequence looks like 10011. The standardized and 

recommended generator polynomials for the CRC 

algorithm are given in Table 1, where the name of 

the standard and the generator polynomial are 

shown: for example, the notation 𝑥4+ 𝑥 + 1 is 

equivalent to 1∙ 𝑥4 + 0∙ 𝑥3  + 0∙ 𝑥2  + 1∙𝑥 + 1∙ 𝑥0  = 

10011 (in binary). 

 

Table 1. 
Popular standardized generator polynomials [9]. 

nomination Generating polynomials 

CRC-4-TU 𝑥4 + 𝑥 + 1 (ITU G.704)  

CRC-5-EPC 𝑥5 + 𝑥3 + 1 (Gen 2 RFID) 
CRC-5-ITU 𝑥5 + 𝑥4 + 𝑥2 + 1 (ITU G.704)  

CRC-5-USB 𝑥5 + 𝑥2 + 1  (USB token packets)  
CRC-6-ITU 𝑥6 + 𝑥 + 1 (ITU G.704)  

CRC-7 𝑥7 + 𝑥3 + 1 (ITU-T G.707, ITU-T G.832, MMC, SD)  

CRC-8-CCITT 𝑥8 + 𝑥2 + 𝑥 + 1 (ATM HEC), ISDN Header Error Control and Cell 

Delineation ITU-T I.432.1 (02/99)  
CRC-8-Dallas/Maxim 𝑥8 + 𝑥5 + 𝑥4 + 1 (1-Wire bus)  

CRC-8 𝑥8 + 𝑥7 + 𝑥6 + 𝑥4 + 𝑥2 + 1 (ETSI EN 302 307, 5.1.4)  

CRC-8-SAE J1850 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 

CRC-10 𝑥10 + 𝑥9 + 𝑥5 + 𝑥4 + 𝑥 + 1 
CRC-11 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥2 + 1 (FlexRay)  
CRC-12 𝑥12 + 𝑥11 + 𝑥3 + 𝑥2 + 𝑥 + 1 (системы телекоммуникации)  
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CRC-15-CAN 𝑥15 + 𝑥14 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 1 

CRC-16-IBM 𝑥16 + 𝑥15 + 𝑥2 + 1 (Bisync, Modbus, USB, ANSI X3.28,)  

CRC-16-CCITT 𝑥16 + 𝑥12 + 𝑥5 + 1 (X.25, HDLC, XMODEM, Bluetooth, SD и др.)  

CRC-16-T10-DIF 𝑥16 + 𝑥15 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 1 (SCSI DIF)  

CRC-16-DNP 𝑥16 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥10 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥2 + 1 (DNP, IEC 870, 

M-Bus)  
CRC-24 𝑥24 + 𝑥22 + 𝑥20 + 𝑥19 + 𝑥18 + 𝑥16 + 𝑥14 + 𝑥13 + 𝑥11 + 𝑥10 + 𝑥8 +

𝑥6 + 𝑥3 + 𝑥 + 1 (FlexRay)  

CRC-24-Radix-64 𝑥24 + 𝑥23 + 𝑥18 + 𝑥17 + 𝑥14 + 𝑥11 + 𝑥10 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 +
𝑥3 + 𝑥 + 1 (OpenPGP)  

CRC-30 𝑥30 + 𝑥29 + 𝑥21 + 𝑥15 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥8 + 𝑥7 + 𝑥6 + 𝑥2 + 𝑥 +
1 (CDMA)  

CRC-32-IEEE 802.3 𝑥32 + 𝑥26 + 𝑥23 + 𝑥22 + 𝑥16 + 𝑥12 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 +
𝑥2 + 𝑥 + 1 (V.42, MPEG-2, PNG, POSIX cksum)  

CRC-32C (Castagnoli) 𝑥32 + 𝑥28 + 𝑥27 + 𝑥26 + 𝑥25 + 𝑥23 + 𝑥22 + 𝑥20 + 𝑥19 + 𝑥18 + 𝑥14 +
𝑥13 + 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 1  

CRC-32K (Koopman) 𝑥32 + 𝑥28 + 𝑥27 + 𝑥26 + 𝑥25 + 𝑥23 + 𝑥22 + 𝑥20 + 𝑥19 + 𝑥18 + 𝑥14 +
𝑥13 + 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 1  

CRC-32Q 𝑥32 + 𝑥31 + 𝑥24 + 𝑥22 + 𝑥16 + 𝑥14 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥 + 1  
CRC-64-ISO 𝑥64 + 𝑥4 + 𝑥3 + 𝑥 + 1 (HDLC — ISO 3309)  

CRC-64-ECMA 𝑥64 + 𝑥62 + 𝑥57 + 𝑥55 + 𝑥54 + 𝑥53 + 𝑥52 + 𝑥47 + 𝑥46 + 𝑥45 + 𝑥40 +
𝑥39 + 𝑥38 + 𝑥37 + 𝑥35 + 𝑥33 + 𝑥32 + 𝑥31 + 𝑥29 + 𝑥27 + 𝑥24 + 𝑥23 +
𝑥22 + 𝑥21 + 𝑥19 + 𝑥17 + 𝑥13 + 𝑥12 + 𝑥10 + 𝑥9 + 𝑥7 + 𝑥4 + 𝑥 + 1  

 
The value of the result of the 

implementation of the CRC algorithm is the 

remainder of dividing the binary sequence M (x) 

corresponding to the input data by the generating 

binary sequence G (x) of degree r. 

Each final sequence of bits is one-to-one 

associated with a binary polynomial, the 

sequence of which is the original sequence. For 

example, bit sequence 1011010 corresponds to 

the binary polynomial M(x) = 1·
6x  + 0·

5x + 1·

4x  + 1·
3x + 0·

2x + 1·
1x + 0·

0x = 
6x  + 

4x +
3x + x. 

Let's consider examples in which addition 

and subtraction are performed without carrying 

the digits in accordance with the "exclusive OR" 

operation, which corresponds to the addition 

modulo 2 of binary arithmetic. 

 

 
 

Polynomial division is performed in the 

binary system, with the difference that the 
subtraction is performed modulo 2. 

The use of polynomial codes during 

transmission is as follows. The sender and the 

receiver pre-select the same generator 

polynomial G (x), whose coefficients at the 

higher term and at the lower term must be equal 

to 1. When calculating the checksums of a block 

of m bits in size, the following condition m > r 

must be met. Further, implementing the CRC 

calculation algorithm, the sender adds the 

checksum to the transmitted block, considered as 

a polynomial M (x), so that the transmitted block 

with the checksum is a multiple of G (x). When 

the recipient receives the checksum block, he 

divides it by G (x). If a nonzero remainder is 

formed, then this indicates the occurrence of an 

error during transmission [10,11]. 

Checksum calculation algorithm: 

1. Add r zeros to the end of the block so that it 

contains m + r digits, the result is a polynomial 

xrM (x). 

2. Divide the polynomial xrM (x) by G (x) 

modulo 2, the quotient is ignored. 

3. Subtract modulo 2 the remainder (its length 

does not exceed r bits) from the string 

corresponding to xrM (x). The result is a block 

with a checksum. 
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Currently, most network technologies 

most often use the following three types of 

generating polynomials G (x) [12]: 

CRC-12     = 𝑥12 + 𝑥11 + 𝑥3 + 𝑥2 + 𝑥 + 1 

CRC-16-IBM         = 𝑥16 + 𝑥15 + 𝑥2 + 1 

CRC-16-CCITT     = 𝑥16 + 𝑥12 + 𝑥5 + 1 

CRC-12 is used to transmit 6-bit 

characters. The other two are for 8-bit. CRC-16 

and CRC-CCITT detect all single and all double 

errors, an odd number of isolated errors, single 

bursts of errors less than 16 in length, and many 

burst errors greater than 16 with a 99.997% 

probability. 

After getting acquainted with the basic 

concepts and characteristics of CRC codes, let 

us consider an example of calculating the 

remainder of cyclic redundancy codes and 

estimate the computational complexity of this 

process. 

 

3. An example of calculating the 

remainder for constructing a CRC 

code word and estimating the 

computational complexity 
 

Calculation of CRC. 

Information frame - 1101011011 

Generator polynomial - 10011 

Frame with additional zeros – 11010110110000 

 
CRC codeword (transmitted frame) - 

11010110111110 [13-15]. 

 

Thus, the example shows that with the 

generator polynomial CRC-4-TU (10011) and 

the bit length of the information frame equal to 

10 bits, 10 divisions and 50 modulo 2 additions 

are required. In the general case, the relationship 

between the computational complexity (the 

number of additions and divisions), the size of 

the generating polynomial and the size of the 

information polynomial. 

For the best understanding of the number 

of divisions and additions in the CRC algorithm 

with various generator polynomials and 

information frames, software has been created to 

assess the computational complexity of the CRC 

algorithm. 

 

4. A program for evaluating the 

computational complexity of the 

CRC algorithm 
 

The program is designed to estimate the 

complexity of the CRC algorithm by the width 

of the polynomial using the CRC checksum 

method, which is shown in the example of cyclic 

redundancy codes. By estimating the 

complexity of the implementation of the CRC 

algorithm by performing additions according to 

the width of the polynomial, we obtain an 

approximate number of additions (shift into 

cells). This study opens up possible ways to 

reduce the computational complexity of the 

CRC checksum generation algorithm used to 

control the integrity of transmitted data [16,17]. 

For the considered CRC generation 

method, the "CRC calculation" application was 

written in Java, presented in Appendix 1, which 

allows for a user-specified frame size and 

generating polynomial to estimate the required 

number of additions and divisions to obtain the 

final CRC checksum. The javaFX library was 

used to write the application. The CRC and 

TableData classes are used from this library. 

There are three operations in the CRC class: 

1. Operation (calculation) - it calculates the CRC 

code. 

2. Operation (initialize). 

3. Operation (xor). 



 

133 

 

The initialize operation processes the bit 

sequence array and passes it to the table, the xor 

operation emulates the operations of logical 

addition of the bits of the input code and the 

CRC code to the input and gives two parameters 

X and Y - a binary code, 1 and 1, or 1 and 0, or 

0 and 1, or 0 and 0. 

 

5. Analysis of the results of 

evaluating the computational 

complexity of the CRC algorithm 
 

The calculation of the number of 

additions, which is one of the important 

components of the CRC algorithm, is carried out 

in accordance with formula 1. Note that the 

value obtained as a result of the calculations 

should not be small, as this will lead to the need 

to retransmit the data. In this case, the 

transmission algorithm is repeated, which leads 

to secondary calculations. Polynomials are 

chosen so that there is no downtime in the data 

transmission channels. 

The calculation of the number of additions 

is carried out according to the formula: 

 

𝑅 = (𝑃 ∙ 𝑁) mod 2,  (1) 

here R is the number of addition operations 

modulo 2; 

P - packet size; 

N - is the length of the polynomial. 

Let us consider an example in which the 

digit capacity of 8 polynomials has 48 divisions, 

therefore the number of additions according to 

the formula (1) R = 48 ∙ 8 = 384. The results of 

evaluating the computational complexity of the 

CRC generation algorithm, expressed in the 

number of operations, are shown using the graph 

in Fig. 1 and are confirmed a simulation model. 

 

 

Figure 1: The result of evaluating the 

computational complexity of the CRC 

generation algorithm, expressed in the number 

of operations. 

 

Conclusions 
 

The article investigates the computational 

CRC algorithm. It is shown that with an increase 

in the number of bits of generating polynomials, 

the number of operations increases, while the 

number of division operations remains 

unchanged. With an increase in the number of 

digits and division operations, the generating 

polynomials remain unchanged, but the number 

of additions increases. 

It is shown that a possible way to reduce 

the computational complexity of the CRC 

checksum generation algorithm used to control 

the integrity of the transmitted data is to reduce 

the number of addition operations while 

maintaining the number of division operations in 

the algorithm under consideration. 

As a result of this work, on the basis of 

research on generating polynomials and the 

number of division operations, an expression for 

calculating the number of addition operations 

was obtained. The research results pave the way 

for further research to reduce the computational 

complexity of the operation of cyclic 

redundancy codes. 

 

Appendix 1. 
 

By the logic of the method, the logical 

operator "or" is emulated, that is, xor, as shown 

in Listing 1. 

 
Listing 1: Emulation of the logical operator 

"or". 

 

The CRC class contains fields with the 

original message, that is, a variable that stores a 



 

134 

 

bit sequence of a certain length, as shown in 

Listing 2. 

 
Listing 2: Variable storing a bit sequence of a 

certain length. 

 

Next, a polynomial of a certain bit depth is 

generated and the CRC code is calculated in the 

calculation method. 

The program simulates the process of data 

transfer between the source and the receiver 

(Fig. 2), and also provides the following 

functions: 

1. Specifying the initial data in the specified 

table ("polynomial" and "information frame", 

Fig. 2) creates a number generator using a 

unique seed. 

2. Calculation of the initial data is displayed in 

the program window (button "Calculation", Fig. 

2). 

3. As a result of the initial data, the number of 

additions and the formation of CRC checksums 

of cyclic redundancy codes (“parameters and 

data” field, Fig. 2) is calculated. 

4. Additionally, at the discretion of the user, you 

can reset and start the calculation over again (the 

"Reset" button, Fig. 2). 

 

 
Figure 2: CRC calculation. 

 

After the simulation of the data 

calculation process, the number of addition of 

the CRC checksum algorithm of cyclic 

redundancy codes is calculated again, which are 

then compared with those previously calculated 

to reveal the fact of calculating the addition of 

the checksum algorithm of the transmitted data 

(Fig. 2); field "CRC calculation". 
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