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Abstract  

The article considers the issue of choosing a machine learning method for solving the applied 

problem of assessing the current state of the quality of IT services. As a method of choice, a 

comparative analysis of the generally accepted methods of machine learning was carried out using a 

set of criteria that made it possible to evaluate their effectiveness and efficiency. F-measure is 

considered as the main criteria, as a generalizing concept of the completeness and accuracy of 

classification, for each class of states separately and the duration of the training and prediction 

procedure. All operations were carried out on the same dataset, namely, on the data of the 

centralized monitoring and management system for the IT infrastructure of Russian Railways in 

terms of the ETRAN IT service. Due to their heterogeneity and taking into account the practice of 

applying the Barlow hypothesis, the initial data went through preliminary processing, the algorithm 

of which is also described in detail in the article 
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1. Introduction 

 
The requirement for software developers and device 

manufacturers in terms of mandatory monitoring of 

their performance is an established and mandatory 

norm. As a result, most of the IT services provided by 

operating organizations can be assessed not only by 

the final failure state, but also by the current local 

characteristics of their work. 

Consider the currently operating centralized system for 

monitoring and managing the IT infrastructure of 

Russian Railways, which is operated by the Main 

Computer Center. The huge array of accumulated and 

constantly updated data of the specified monitoring 

system allows us to assume the success of using 

machine learning methods to solve the problem of 

assessing the quality of IT services by determining the 

current state of the specified infrastructure and the 

service applications implemented on it. 

It is possible to assess the state of the IT infrastructure 

at a certain point in time by predicting its final 

performance based on the current data of the 

monitoring system. To do this, it is necessary to solve 

the problem of classifying the final state of the IT 

infrastructure, that is, to determine the class label (the 

type of the final state of the incident / regular 

operation) based on the current values of the 

monitoring system metrics. At the same time, for the 

choice of the implementation method, the number of 

available classes is not so important - the binary 

classification is a special case of the multiclass 

classification, and is not a decisive characteristic when 

choosing a teaching method. Typically, the nature of 

the input data, namely the types and formats, have a 

significant impact on the choice of machine learning 

methods. At the same time, data preprocessing 

algorithms do not depend on the chosen training 

method itself and must ensure the correct use of the 

initial data as training and test samples for all further 

methods of solving the problem. [1] 
 

2. Primary data processing 

 
Primary data is understood as the whole set of the 

characteristics of the IT infrastructure involved in the 
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operability of the specified system, taken by the 

current monitoring and management system, and the 

set of service characteristics that make it possible to 

define this automated system as an IT service. The 

quality of the obtained primary data, namely their 

heterogeneity, imply additional processing regardless 

of the choice of a specific machine learning method. 

For the correct formation of the training sample, the 

most suitable programming language is Python version 

3.7.4 and the following imported libraries: Pandas and 

Numpy. The specified libraries must be installed on 

the script execution server as Site-package libraries. 

Initially, the data received from the monitoring system 

is presented as a csv file with a separator | and a set of 

columns in the following order:mon_obj 

metric_name 

metric_value 

value_time 

isIncident 

These columns contain the following information: 

mon_obj — monitoring object name 

metric_name — metric’s name 

metric_value — metric value at the time of data 

collection 

value_time — date / time when data was collected 

isIncident — critical state indicator (at the first stage, a 

binary classification is highlighted: 1 - critical state, 0 

- normal operation). 

After that via variable small_columns_list = 

['mon_obj','metric_name','metric_value', 

'value_time','isIncident'] and using pandas library new 

DataFrame is formed, which is suitable for usage. 

d = pd.read_csv('data/data.csv', sep='|', encoding='utf-

8', skipinitialspace=True, skiprows=1,     

names=small_columns_list, low_memory=False) 

Next, you need to define a new 

composite_metric_name column in DataFrame d, 

which will have a composite name from the values of 

the columns with the data about the object of 

monitoring and the name of the metric for each 

current: 

row.d['composite_metric_name']=['mon_obj']+'_'+d['m

etric_name] 

Then a new variable column_names is declared, 

consisting of the unique values of the newly generated 

column 

'composite_metric_name'column_names=d['composite

_metric_name'].unique() 

These steps are necessary to unambiguously compare 

the metric and its values at any given time. 

Further, after transposing the DataFrame into a more 

convenient form and removing unnecessary columns, 

it will be possible to remove static data as a method to 

reduce the dimensionality and optimize the use of 

computing resources without losing data quality: 

defdelete_cols_w_static_value(): 

column_names_with_static_value = [] 

forcol_name in column_names: 

if (merged_df[col_name].nunique() == 1): 

column_names_with_static_value.append(col_name) 

if 'isIncident' in column_names_with_static_value:  

column_names_with_static_value.remove('isIncident') 

merged_df.drop(column_names_with_static_value, 

axis = 1, inplace = True) 

After reducing the dimension in this way, it is 

necessary to recode the text values, that is, replace the 

existing text values of the metrics with numeric ones 

by entering new arguments of the objective function. 

For each current text value, a separate column is 

created in the current dataset and a value of 1 or 0 is 

determined, thus obtaining the correct data for analysis 

and comparability. 

def find_strings_column(): 

df_cols = merged_df.columns 

ret_col_names = []; 

for col in df_cols: 

if (merged_df[col].dtypes == 'object'): 

ret_col_names.append(col) 

returnret_col_names 

The variable string_columns stored list of names of the 

columns that contain the string values. Next step is to 

form a dictionary of string values. Values in columns 

should then be replaced by indexes of elements from 

the dictionary. 

def make_dict_with_strings_column(): 

ret = {} 

forsc in strings_column: 

ret[sc] = list(merged_df[sc].unique()) 

returnret 

By using the Save function of the NumPy library, this 

dictionary is saved to a file. 

np.save('data/dict_of_string_values.npy', 

dict_of_string_values)  

And further, using the function 

def modify_value_string_column(): 

for c in dict_of_string_values.keys(): 

merged_df[c] = merged_df[c].map(lambda x: 

dict_of_string_values[c].index(x)), all text values are 

changed to numeric values. 

At the end of the primary data processing, the data 

frame values are standardized so that the variance is 

unitary, and the average value of the series is 0 - this 

can be done using the built-in Standardscaler tool or 

through a self-written function: 

def normalize_df(): 

cols = list(merged_df.columns)  

for cl in cols: 

x_min = min(list(merged_df[cl])) 

x_max = max(list(merged_df[cl])) 

merged_df[cl]= merged_df[cl].map(lambda x: ((x - 

x_min)/(x_max - x_min))) 
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For the convenience, the final result should be saved to 

a file. 

merged_df.to_csv(path_or_buf='data/normalised_df.cs

v', sep='|',index=False) 

As a result of the actions performed, a dataset was 

obtained that is suitable for applying various machine 

learning models with the following characteristics: 

• The number of records in the training set is 10815 

(9323 class 0, 1492 class 1); 

• The number of records in the test set is 3605 (3297 of 

class 0, 308 of class 1). 
 

3. Criteria for comparing results 
 

When solving any supervised learning problem, there 

is no most suitable machine learning algorithm - there 

is such a thing as the "No Free Lunch" theorem, the 

essence of which is the impossibility to 

unambiguously approve the best machine learning 

method for a specific task in advance. The 

applicability of this theorem extends, among other 

things, to the well-studied area of problems of binary 

classification, therefore, it is imperative to consider a 

set of methods and, based on the results of practical 

tests, evaluate the effectiveness and applicability of 

each of them. [2] 

The effectiveness and efficiency will be primarily 

assessed by the most common and user-understandable 

criterion Accuracy. 

Accuracy is a measure that indicates the proportion of 

correct decisions of the classifier: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑃

𝑁
, 

 

where P is the number of states correctly identified by 

the system, and N is the total number of states in the 

test sample. 

However, for the problem being solved, this criterion 

is not enough, since in its calculation it assigns the 

same weight to all final states (classes), which may be 

incorrect in the considered case of non-uniform 

distribution of time moments over the final states. 

Thus, for a more correct comparison and taking into 

account the fact that in the example under 

consideration the share of normal states is much 

greater than the share of critical states, the assessment 

of the classifiers should be based, among other things, 

according to the following criteria: Precision (accuracy 

- in a calculation other than Accuracy), and Recall 

(completeness). 

These criteria are calculated separately for each 

summary class, where Precison is the proportion of 

situations that really belong to this class relative to all 

situations that the system has assigned to this class. 

System completeness (Recall) is the proportion of 

situations found by the classifier that belong to a class 

relative to all situations of this class in the test sample. 

More clearly, these criteria can be presented through 

the contingency (contingency) table, also built 

separately for each final class [3] 

 

Class (1/0) 
Training Sample 

Positive Negative 

Result 
Positive 𝑇𝑃 𝐹𝑃 

Negative 𝐹𝑁 𝑇𝑁 

 

These results are used directly in the calculation of the 

criteria for the classifier as follows: 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
; 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

As can be seen from the calculation algorithm, these 

criteria provide a more complete understanding of the 

quality of the classifier's work. It would be logical to 

say that the higher the accuracy and completeness, the 

better, but in reality, maximum accuracy and 

completeness are not achievable at the same time and 

it is necessary to find a balance between these 

characteristics. To do this, you need to use the F 

measure, which is the following calculated value: 
 

𝐹 = (𝛽2 + 1) ⋅
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒 𝑐𝑎𝑙𝑙

𝛽2⋅𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
, 

 

where 0<β<1, if the greater weight for the selection of 

the classifier has accuracy and β> 1 with the 

preference for completeness. In the case β = 1, a 

balanced F-measure is obtained, denoted as: 
 

𝐹1 = 2 ⋅
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒 𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
. 

 

In addition, for all classifiers, we will apply an 

estimate of the duration of the execution of Wall time 

operations, by which we will count the time from the 

moment the model is created and the beginning of 

training until the moment the values of the 

performance assessment metrics are issued based on 

the comparison of the predicted results with the test 

sample. 

All work is carried out on a computer complex with 

the following characteristics: 

Intel Core i9-9980XE 3.00 Ghz, 128 Mb, 4xNVIDIA 

RTX 2080Ti 11 Gb, 1 TB PCIe SSD. 
 

4. K-nearest neighbors (knn) algorithm 
 

The specified algorithm works as follows - let a 

training sample of pairs "object (state characteristic) - 

response (state class)" be given: 
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𝑋𝑚 = {(𝑥1, 𝑦1), . . . (𝑥𝑚, 𝑦𝑚)}, 

 

then the distance function P (x, x ') is given on the set 

of objects. This function should be a reasonably 

adequate model of object similarity. The larger the 

value of this function, the less similar two objects x, x 

'are [4]. For an arbitrary object μ, we arrange the 

objects of the training sample in the order of 

increasing distances to μ: 

 

𝑃(𝜇1; 𝑝(𝜇𝑖, 𝑥1;𝜇) < 𝑝(𝜇𝑖, 𝑥2;𝜇). . . < 𝑝(𝜇𝑖, 𝑥𝑚;𝜇), 

 

where some x (1; μ) denotes the object of the training 

sample that is the i-th neighbor of the object μ. We 

introduce a similar notation for the answer to the i-th 

neighbor y (i; μ). Thus, an arbitrary object μ generates 

a new renumbering of the sample. In its most general 

form, the nearest neighbors algorithm is: 
 

𝑎(𝜇) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 ∑ [𝑦(𝑥𝑖;𝜇) = 𝑦]𝑚
𝑖=1 ⋅ 𝑤(𝑖, 𝜇), 

 
where w (i, μ) is a given weight function that estimates 

the degree of importance of the i-th neighbor for 

classifying the object μ, while this function cannot be 

negative and does not increase with respect to i. 

For the k nearest neighbors method: 

 

(𝑖; 𝜂) = [𝑖 ≤ 𝑘] 
 

The qualitative characteristics of using the 

KNeighborsClassifier algorithm with the n_neighboors 

= 10 parameter are as follows: 

 

Accuracy 0.949 
 Precision Recall F1 score 

1 0.63 0.97 0.77 

0 1.0 0.95 0.97 

Wall time: 1 min 15 s 

 

It is clearly seen that the accuracy assessment in the 

form of Accuracy is not enough for a comparative 

analysis - with a value of this indicator of 0.949 - 

almost 95% accuracy - we see that the accuracy of 

determining the final state 1 (inoperability) through the 

Precision characteristic is only 63%. As a result of the 

work, one should record the F-Measure value for each 

class and the total duration of the classifier's work. 
 

5. Logistic regression 
 

To predict the probability of occurrence of a certain 

event by the values of the set of signs, a dependent 

variable Y is introduced, which takes values 0 or 1 and 

a set of independent variables x1, ... xn, based on the 

values of which it is required to calculate the 

probability of accepting a particular value of the 

dependent variable. [5] 

Let the objects be specified by numerical features: 
 

𝑓𝑗: 𝑋 → 𝑅, 𝑗 = 1. . . 𝑛 

 

and the space of feature descriptions in this case X=Rn. 

Let Y in this case be a set of class labels and a training 

set of object-response pairs 
𝑋𝑚 = {(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)}. 

 

Consider the case of two classes: Y={-1,+1}. In 

logistic regression, a linear classification algorithm 

aX→Y of the form: 

𝑎(𝑥, 𝑤) = 𝑠𝑖𝑔𝑛 (∑ 𝑤𝑗𝑓𝑖(𝑥) − 𝑤0

𝑛

𝑗=1

) = 𝑠𝑖𝑔𝑛〈 𝑥, 𝑤〉, 

 

where wj – scale of j-th feature, w0 − decision 

threshold w=(w0,...,wn) − scales vector, ⟨x,w⟩ − dot 

product of the feature description of an object by a 

vector of weights. It is assumed that the zero feature is 

artificially introduced: f0(x) = −1. 

The task of training a linear classifier is to adjust the 

weight vector w based on the sample Xm. In logistic 

regression, for this, the problem of minimizing 

empirical risk is solved with a loss function of the 

following form:  
 

𝑄(𝑤) = ∑ 𝑙𝑛( 1 + 𝑒𝑥𝑝( − 𝑦𝑖 < 𝑥𝑖 , 𝑤 >)) → 𝑚𝑖𝑛 𝑤

𝑚

𝑖=1

 

 

After the solution w is found, it becomes possible not 

only to perform classification for an arbitrary object x, 

but also to estimate the posterior probabilities of its 

belonging to the existing classes: 
 

𝛲{𝑦|𝑥} = 𝜎(𝑦 < 𝑥, 𝑤 >), 𝑦 ∈ 𝑌, 

 

𝜎(𝑧) =
1

1 + 𝑒𝑥𝑝−𝑧
−  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

Qualitative characteristics of the application of the 

specified model with the following parameters  

LogisticRegression (multi_class='ovr', solver='lbfgs'): 

 

Accuracy 0.971 
 Precision Recall F1 score 

1 0.76 0.98 0.85 

0 1.0 0.97 0.98 

Wall time: 1 min 10 s 

 

The results shown by this classifier are better relative 

to the previous method with a comparable duration of 

operation, however, the work on identifying faulty 

situations (class 1) does not yet guarantee satisfactory 

operation in industrial mode. 
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6. Naive Bayesian classifier 

 
The Bayesian classification is based on the maximum 

probability hypothesis, that is, an object d is 

considered to belong to the class cj (cj ∈ C) if the 

highest posterior probability is achieved: 
 

𝑚𝑎𝑥 𝑃 (𝑐𝑗|𝑑).[6] 

 

Bayesian formula: 
 

𝑃(𝑐𝑗|𝑑) =
𝑃(𝑐𝑗)⋅𝑃(𝑑|𝑐𝑗)

𝑃(𝑑)
≈ 𝑃(𝑐𝑗)𝑃(𝑑|𝑐𝑗), 

 

where P(d|cj)- the probability of encountering an 

object d among objects of class cj, and P(cj),P(d) – 

prior probabilities of the class cj and d. 

Under the "naive" assumption that all features 

describing the classified objects are completely equal 

and not related to each other, then P (d | cj) can be 

calculated as the product of the probabilities of 

encountering a feature xi (xi∈X) among objects of 

class cj: 
 

𝑃(𝑑|𝑐𝑗) = ∏𝑖=1
|𝑥|

𝑃(𝑥𝑖|𝑐𝑗), 

 

where 𝑃(𝑥𝑖|𝑐𝑗) - probabilistic assessment of the 

contribution of a feature xi to the fact that d ∈ cj.[7] 

In practice, when multiplying very small conditional 

probabilities, there can be a loss of significant digits, 

and therefore, instead of the estimates of the 

probabilities P (xi | cj), the logarithms of these 

probabilities should be used. The logarithm is a 

monotonically increasing function, and, therefore, the 

class cj with the largest value of the logarithm will 

remain the most probable. In this case, the decision 

rule of the naive Bayesian classifier takes the 

following form: 
 

𝐶∗ = 𝑎𝑟𝑔𝑐𝑗∈𝐶 𝑚𝑎𝑥 [𝑙𝑜𝑔 𝑃 (𝑐𝑗) + ∑ 𝑃(𝑥𝑖|𝑐𝑗)

𝑥

𝑖=1

] 

. 

 

The resulting values of the MultinomialNB classifier 

from the Sklearn library turned out to be the following: 

 

Accuracy 0.874 
 Precision Recall F1 score 

1 0.40 0.96 0.57 

0 1.0 0.87 0.93 

Wall time: 289 ms 

 

The considered classifier, based on its description, 

works fundamentally differently - the speed of its 

work is much higher - however, the qualitative criteria, 

the main of which F-measure, are inferior to past 

classifiers. 
 

7. Decision tree methodology 

 
With this algorithm, the tree is built from top to 

bottom - from the root node to the leaves. At the first 

step of training, an "empty" tree is formed, which 

consists only of the root node, which in turn contains 

the entire training set. Next, you need to split the root 

node into subsets, from which the descendant nodes 

will be formed. For this, one of the attributes is 

selected and rules are formed that divide the training 

set into subsets, the number of which is equal to the 

number of unique values of the selected attribute. [8] 

As a result of splitting, p (according to the number of 

attribute values) subsets are obtained and, therefore, p 

descendants of the root node are formed, each of 

which is assigned its own subset. Then this procedure 

is recursively applied to all subsets until the stop 

condition is reached. 

For example, a partitioning rule should be applied to 

the training set, in which the attribute A, which can 

take p values: a1, a2, ..., ap, creates p subsets S1, S2, ..., 

Sp, where examples will be distributed, in which the 

attribute A takes the corresponding value. 

Moreover, N (Cj, S) is the number of examples of the 

class Cj in the set S, then the probability of the class Cj 

in this set is determined by the expression: 
 

𝑃 =
𝑁(𝐶𝑗𝑆)

𝑁(𝑆)
 , 

 

where N (S) is the total number of examples in the set 

S. 

The entropy of the sets S will be expressed as: 
 

𝐼 𝑛 𝑓𝑜(𝑆) = − ∑
𝑁(𝑆𝑖)

𝑁(𝑆)

𝑚

𝑖=1

⋅ 𝑙𝑜𝑔(
𝑁(𝐶𝑗𝑆)

𝑁(𝑆)
) 

It will demonstrate the average amount of information 

required to determine the class of an example from the 

set S. 

The same estimate, obtained after partitioning the set S 

by attribute A, can be written as: 
 

𝐼𝑛𝑓𝑜𝐴(𝑆) = ∑
𝑁(𝐶𝑗𝑆)

𝑁(𝑆)

𝑘

𝑖=1

⋅ 𝐼𝑛𝑓𝑜(𝑆𝑖), 

 

 

where Si - i-th node, obtained by splitting by attribute 

A. After that, to choose the best branching attribute, 

you should use the criterion of the form: 
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𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝑆) − 𝐼𝑛𝑓𝑜𝐴(𝑆) 
 

This criterion is called the criterion of information 

gain. This value is calculated for all potential split 

attributes and the one that maximizes the specified 

criterion is selected for the division operation. 

The described procedure is applied to subsets Si and 

further, until the values of the criterion cease to 

increase significantly with new partitions or a different 

stopping condition is met. In this case, when in the 

process of building a tree, an "empty" node is 

obtained, where not a single example will fall, then it 

must be converted into a leaf that is associated with 

the class most often found in the immediate ancestor 

of this node. 

The DecisionTreeRegressor classifier with parameters 

Random_state = 15 and Min_samples_leaf = 25 

showed the following characteristics: 

 

Accuracy 0.964 
 Precision Recall F1 score 

1 0.71 0.97 0.85 

0 1.0 0.97 0.98 

Wall time: 975ms 

 

When working with the decision tree method, the 

results are similar to the logistic regression method, 

however, the duration of training and forecasting in the 

decision tree method is much longer, which, with 

equal qualitative characteristics, puts the results of this 

method higher than others. 
 

8. Gradient boosting method 
 

Gradient boosting is a machine learning method that 

creates a decisive forecasting model in the form of an 

ensemble of weak forecasting models, usually decision 

trees, essentially developing the decision tree method. 

During boosting, the model is built in stages - an 

arbitrary differentiable loss function is also optimized 

in stages. [9] 

For the problem of object recognition from a 

multidimensional space X with a label space Y, a 

training sample {𝑥𝑖}𝑖=1
𝑁  is given, where 𝑥𝑖 ∈ 𝑋. In 

addition, the true values of the class labels for each 

object {𝑦𝑖}𝑖=1
𝑁  are known, where yi∈Y. The solution to 

the prediction problem is reduced in this case to the 

search for a recognizing operator who can predict the 

labels as accurately as possible for each new object 

from the set X. 

Let a family of basic algorithms H be given, each 

element h(x,a)∈H:X→R of which defined by some 

vector of parameters a∈A. 

In this case, it is necessary to find the final 

classification algorithm in the form of the following 

composition: 𝐹𝑀(𝑥) = ∑ 𝑏𝑚ℎ(𝑥, 𝑎𝑚), 𝑏𝑚 ∈𝑀
𝑚=1

𝑅, 𝑎𝑚 ∈ 𝐴. 

However, the selection of the optimal set of 

parameters {𝑎𝑚, 𝑏𝑚}𝑚=1 
𝑀  is an extremely time-

consuming task, therefore the construction of this 

composition should be carried out by means of 

"greedy" growth, each time adding the summand, 

which is the most optimal algorithm, to the sum. 

At the step when the optimal classifier F(m-1) of length 

m - 1 has already been assembled, the task is reduced 

to finding a pair of the most optimal parameters 

{am,bm} for the classifier of length m: 

 

 𝐹𝑀(𝑥) = 𝐹𝑚−1(𝑥) +  𝑏𝑚ℎ(𝑥, 𝑎𝑚), 𝑏𝑚 ∈ 𝑅, 𝑎𝑚 ∈ 𝐴 

 

Optimality is understood here in accordance with the 

principles of explicit maximization of margins - this 

means that a certain loss function L(yi,Fm (xi)) → min 

is introduced, showing how much the predicted answer 

Fm (xi)  differs from the correct answer yi. Next, you 

need to minimize the functionality of this error: 

 

𝑄 = ∑ 𝐿(𝑦𝑖 , 𝐹𝑚(𝑥𝑖)) → 𝑚𝑖𝑛

𝑁∑

𝑖=1

 

 

 

It should be noted that the error functional Q is a real 

function depending on the points {𝐹𝑚(𝑥𝑖)}𝑖=1
𝑁  in the N-

dimensional space, and this function is minimized by 

the gradient descent method. As the point for which 

the optimal increment should be found, we define 

𝐹𝑚−1 and the error gradient is expressed as follows: 

 

𝛻𝑄 = [
𝜕𝑄

𝜕𝐹𝑚−1
(𝑥𝑖)]

𝑖=1

𝑁

= [
𝜕(∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1))𝑁

𝑖=1

𝜕𝐹𝑚−1
(𝑥𝑖)]

𝑖=1

𝑁

= 

= [
𝜕𝐿(𝑦𝑖 , 𝐹𝑚−1)

𝜕𝐹𝑚−1
(𝑥𝑖)]

𝑖=1

𝑁

 

 

By virtue of the gradient descent method, it is most 

beneficial to add a new term as follows: 

𝐹𝑚 = 𝐹𝑚−1 − 𝑏𝑚𝛻𝑄, 𝑏𝑚 ∈ 𝑅, 

 

where bm is selected by linear search over real 

numbers R: 

 

𝑏𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝐹𝑚−1(𝑥𝑖) − 𝑏𝛻𝑄𝑖)

𝑁

𝑖=1

 

 

However, ∇Q is only a vector of optimal values for 

each object xi, and not a basic algorithm from the 
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family H, defined by ∀x∈X, so it is necessary to find 

h(x,am)∈H that is most similar to ∇Q. To do this, it is 

necessary to re-minimize the error functionality using 

an algorithm based on the principle of explicit 

minimization of indents: 

𝑎𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝛻𝑄𝑖 , ℎ(𝑥𝑖, 𝑎)) ≡

𝑁

𝑖=1

 

≡ 𝑡𝑟𝑎𝑖𝑛({𝑥𝑖}𝑖=1
𝑁 , {𝛻𝑄𝑖}𝑖=1

𝑁 ), 

 

which in turn corresponds to the basic learning 

algorithm. 

Next, you need to find the coefficient bm using linear 

search: 

 

𝑏𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝐹𝑚−1(𝑥𝑖) − 𝑏 ⋅ ℎ(𝑥𝑖, 𝑎𝑚)

𝑁

𝑖=1

 

 

The GradientBoostingClassifier implemented 

according to this algorithm with the parameters 

learning_rate = 0.3; n_estimators = 10; verbose = 1, 

subsample = 0.5 showed the following results: 

 

Accuracy 0.993 
 Precision Recall F1 score 

1 0.94 0.99 0.97 

0 1.0 0.99 1.0 

Walltime: 3.95s 

 

The gradient boosting method, like the decision tree 

method, is a method of enumerating classification 

parameters, which, in turn, determines their relative 

comparability in terms of training duration. However, 

the time spent in boosting to determine the ensemble 

of decision trees has a colossal effect - the accuracy in 

terms of the final state classes is the highest for this 

method. 

9. Neural network 

 
Taking into account the available analysis of data 

sources of the considered IT infrastructure monitoring 

system and the nature of this data, the MLP (Multi-

Layer Perceptron) type was defined as a neural 

network - due to the absence of video surveillance 

systems as sources, and, consequently, the problem of 

video recognition of the classical verbose neural 

network of direct distribution will be sufficient to 

determine the effectiveness of its application. [10] 

An MLP network is any multilayer neural network 

with a linear conductance function and a monotone 

limited activation function gv common to all hidden 

neurons, depending only on the variety t=s(v)-wv, 

which is a "smoothed step", as a rule, a hyperbolic 

tangent: 
 

𝑡𝑛𝑔(𝑡) =
𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 + 𝑒−𝑡
 

 

or logistic function: 

𝜎(𝑡) =
𝑡𝑛𝑔(

𝑡

2
)+1

2
=

1

1+𝑒−𝑡. 

 

The activation function of output neurons can also be 

the same "smoothed step", or it can be identical 

gv(t)=t, that is, each neuron v calculates the function: 
 

𝑢(𝑣) = 𝑔𝑣((∑ 𝑤𝑒𝑢(𝑒)) − 𝑤𝑣). 

 

The parameters of the edges we are called their 

weights, and the parameters of the vertices wv are 

called displacements. In this case, which activation 

function is chosen - hiberbolic tangent or logistic - is 

indifferent: for any multilayer perceptron with an 

activation function tng calculating the function 

Ftng(w,x), the same perceptron, in which the activation 

function in intermediate layers is replaced by a logical 

function σ, calculates the same the function itself for 

some other value of the parameter w ': 
 

𝐹𝑡𝑛𝑔(𝑤, 𝑥) = 𝐹𝜎(𝑤 ′, 𝑥). 

 

In accordance with the ideology of minimizing 

empirical risk with regularization of training of the 

perceptron calculating the function F(w,x), this is the 

search for a vector of weights and biases that 

minimizes the regularized total error: 
 

𝐸𝑇(𝑤) = 𝜑(𝑤) + ∑ 𝐸(𝐹(𝑤, 𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

 

 

on some training set T=((x1,y1),...(xn,yn)). [11] 

Training is most often carried out by the classical 

method of gradient descent; for its applicability, the 

activation functions of all neurons and the error and 

regularization functions must be differentiable. 

Practice shows that the speed of this algorithm is often 

inferior to others because of the huge dimension of the 

parameter w and the absence of explicit formulas for 

the derivatives of the function F with respect to w. [11] 

The results of applying the MLPClassifier (max_iter = 

100, random_state = 10) are as follows: 

Accuracy 0.992 
 Precision Recall F1 score 

1 0.93 0.99 0.95 

0 1.0 0.99 1.0 

Wall time: 1 min 5 s 

The neural network, as the user often expects, has 

shown high results of a qualitative assessment - they 

are essentially equal to the results of gradient boosting. 
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However, the duration of training and forecasting for a 

neural network is much longer than for methods based 

on building ensembles of decision trees - 1 minute 

versus several seconds. 
 

10. Conclusion 

 
The results of the application of various machine 

learning methods clearly prove the postulate of the 

"NoFreeLunch" theorem - it is the experimental tests 

that allow you to choose the most appropriate 

algorithm for solving a specific problem, taking into 

account specific initial data. In this case, it should be 

noted once again that the Accuracy characteristic is 

practically useless in comparing the results - it is more 

correct to evaluate the results by F-measure, and this 

should be done separately for each class. 

Based on the applied sense of the task - to provide 

better monitoring of the IT infrastructure operation - 

the characteristics of training methods for data class 

"1" are more important, that is, for cases of real 

failures and infrastructure failures. At the same time, 

errors for class "0", in fact, will be additional incidents 

and, therefore, require additional labor from technical 

support specialists, which is certainly critical, but less 

important in comparison with the omission of real 

failures and failures. It is also worth noting the time 

parameters of the methods - the spread is truly 

colossal, from 289 milliseconds to 1 minute 15 

seconds. 

When comparing the comparison criteria, it is clearly 

seen that the gradient boosting method showed the 

optimal results of work - with a higher speed of this 

algorithm, it was able to learn better than other 

algorithms. When replicating an application on already 

large data sets (all IT services, a larger analysis 

horizon), training time is extremely important. 

Understanding this and the nature of the initial data, 

namely the absence of video and photo images in the 

initial data, allow us to conclude that the gradient 

boosting method is more than sufficient for solving the 

problem and using a neural network (showed similar 

results with a longer training duration) at this stage 

development of the considered IT infrastructure 

monitoring system in terms of the method of collecting 

information is not required. 
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