
142

Comparative analysis of machine learning methods to assess the

quality of IT services

Maksim A. Bolshakova, Igor A. Molodkina and Sergei V. Pugacheva

a Saint Petersburg Railway Transport University of Emperor Alexander I, 9 Moskovsky Ave., Saint-Petersburg, 190031,

Russia

Abstract

The article considers the issue of choosing a machine learning method for solving the applied

problem of assessing the current state of the quality of IT services. As a method of choice, a

comparative analysis of the generally accepted methods of machine learning was carried out using a

set of criteria that made it possible to evaluate their effectiveness and efficiency. F-measure is

considered as the main criteria, as a generalizing concept of the completeness and accuracy of

classification, for each class of states separately and the duration of the training and prediction

procedure. All operations were carried out on the same dataset, namely, on the data of the

centralized monitoring and management system for the IT infrastructure of Russian Railways in

terms of the ETRAN IT service. Due to their heterogeneity and taking into account the practice of

applying the Barlow hypothesis, the initial data went through preliminary processing, the algorithm

of which is also described in detail in the article

Keywords

machine learning, Barlow hypothesis, F-measure, dataset, data heterogeneity.

1. Introduction

The requirement for software developers and device

manufacturers in terms of mandatory monitoring of

their performance is an established and mandatory

norm. As a result, most of the IT services provided by

operating organizations can be assessed not only by

the final failure state, but also by the current local

characteristics of their work.

Consider the currently operating centralized system for

monitoring and managing the IT infrastructure of

Russian Railways, which is operated by the Main

Computer Center. The huge array of accumulated and

constantly updated data of the specified monitoring

system allows us to assume the success of using

machine learning methods to solve the problem of

assessing the quality of IT services by determining the

current state of the specified infrastructure and the

service applications implemented on it.

It is possible to assess the state of the IT infrastructure

at a certain point in time by predicting its final

performance based on the current data of the

monitoring system. To do this, it is necessary to solve

the problem of classifying the final state of the IT

infrastructure, that is, to determine the class label (the

type of the final state of the incident / regular

operation) based on the current values of the

monitoring system metrics. At the same time, for the

choice of the implementation method, the number of

available classes is not so important - the binary

classification is a special case of the multiclass

classification, and is not a decisive characteristic when

choosing a teaching method. Typically, the nature of

the input data, namely the types and formats, have a

significant impact on the choice of machine learning

methods. At the same time, data preprocessing

algorithms do not depend on the chosen training

method itself and must ensure the correct use of the

initial data as training and test samples for all further

methods of solving the problem. [1]

2. Primary data processing

Primary data is understood as the whole set of the

characteristics of the IT infrastructure involved in the

__

Models and Methods for Researching Information Systems

in Transport, Dec. 11-12, St. Petersburg, Russia
EMAIL: bolshakovm@yandex.ru (Maksim A. Bolshakov);

molodkin@pgups.ru (Igor A. Molodkin); nki.pugachev@yandex.ru

(Sergei V. Pugachev)

©️ 2020 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-

WS.org)

143

operability of the specified system, taken by the

current monitoring and management system, and the

set of service characteristics that make it possible to

define this automated system as an IT service. The

quality of the obtained primary data, namely their

heterogeneity, imply additional processing regardless

of the choice of a specific machine learning method.

For the correct formation of the training sample, the

most suitable programming language is Python version

3.7.4 and the following imported libraries: Pandas and

Numpy. The specified libraries must be installed on

the script execution server as Site-package libraries.

Initially, the data received from the monitoring system

is presented as a csv file with a separator | and a set of

columns in the following order:mon_obj

metric_name

metric_value

value_time

isIncident

These columns contain the following information:

mon_obj — monitoring object name

metric_name — metric’s name

metric_value — metric value at the time of data

collection

value_time — date / time when data was collected

isIncident — critical state indicator (at the first stage, a

binary classification is highlighted: 1 - critical state, 0

- normal operation).

After that via variable small_columns_list =

['mon_obj','metric_name','metric_value',

'value_time','isIncident'] and using pandas library new

DataFrame is formed, which is suitable for usage.

d = pd.read_csv('data/data.csv', sep='|', encoding='utf-

8', skipinitialspace=True, skiprows=1,

names=small_columns_list, low_memory=False)

Next, you need to define a new

composite_metric_name column in DataFrame d,

which will have a composite name from the values of

the columns with the data about the object of

monitoring and the name of the metric for each

current:

row.d['composite_metric_name']=['mon_obj']+'_'+d['m

etric_name]

Then a new variable column_names is declared,

consisting of the unique values of the newly generated

column

'composite_metric_name'column_names=d['composite

_metric_name'].unique()

These steps are necessary to unambiguously compare

the metric and its values at any given time.

Further, after transposing the DataFrame into a more

convenient form and removing unnecessary columns,

it will be possible to remove static data as a method to

reduce the dimensionality and optimize the use of

computing resources without losing data quality:

defdelete_cols_w_static_value():

column_names_with_static_value = []

forcol_name in column_names:

if (merged_df[col_name].nunique() == 1):

column_names_with_static_value.append(col_name)

if 'isIncident' in column_names_with_static_value:

column_names_with_static_value.remove('isIncident')

merged_df.drop(column_names_with_static_value,

axis = 1, inplace = True)

After reducing the dimension in this way, it is

necessary to recode the text values, that is, replace the

existing text values of the metrics with numeric ones

by entering new arguments of the objective function.

For each current text value, a separate column is

created in the current dataset and a value of 1 or 0 is

determined, thus obtaining the correct data for analysis

and comparability.

def find_strings_column():

df_cols = merged_df.columns

ret_col_names = [];

for col in df_cols:

if (merged_df[col].dtypes == 'object'):

ret_col_names.append(col)

returnret_col_names

The variable string_columns stored list of names of the

columns that contain the string values. Next step is to

form a dictionary of string values. Values in columns

should then be replaced by indexes of elements from

the dictionary.

def make_dict_with_strings_column():

ret = {}

forsc in strings_column:

ret[sc] = list(merged_df[sc].unique())

returnret

By using the Save function of the NumPy library, this

dictionary is saved to a file.

np.save('data/dict_of_string_values.npy',

dict_of_string_values)

And further, using the function

def modify_value_string_column():

for c in dict_of_string_values.keys():

merged_df[c] = merged_df[c].map(lambda x:

dict_of_string_values[c].index(x)), all text values are

changed to numeric values.

At the end of the primary data processing, the data

frame values are standardized so that the variance is

unitary, and the average value of the series is 0 - this

can be done using the built-in Standardscaler tool or

through a self-written function:

def normalize_df():

cols = list(merged_df.columns)

for cl in cols:

x_min = min(list(merged_df[cl]))

x_max = max(list(merged_df[cl]))

merged_df[cl]= merged_df[cl].map(lambda x: ((x -

x_min)/(x_max - x_min)))

144

For the convenience, the final result should be saved to

a file.

merged_df.to_csv(path_or_buf='data/normalised_df.cs

v', sep='|',index=False)

As a result of the actions performed, a dataset was

obtained that is suitable for applying various machine

learning models with the following characteristics:

• The number of records in the training set is 10815

(9323 class 0, 1492 class 1);

• The number of records in the test set is 3605 (3297 of

class 0, 308 of class 1).

3. Criteria for comparing results

When solving any supervised learning problem, there

is no most suitable machine learning algorithm - there

is such a thing as the "No Free Lunch" theorem, the

essence of which is the impossibility to

unambiguously approve the best machine learning

method for a specific task in advance. The

applicability of this theorem extends, among other

things, to the well-studied area of problems of binary

classification, therefore, it is imperative to consider a

set of methods and, based on the results of practical

tests, evaluate the effectiveness and applicability of

each of them. [2]

The effectiveness and efficiency will be primarily

assessed by the most common and user-understandable

criterion Accuracy.

Accuracy is a measure that indicates the proportion of

correct decisions of the classifier:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑃

𝑁
,

where P is the number of states correctly identified by

the system, and N is the total number of states in the

test sample.

However, for the problem being solved, this criterion

is not enough, since in its calculation it assigns the

same weight to all final states (classes), which may be

incorrect in the considered case of non-uniform

distribution of time moments over the final states.

Thus, for a more correct comparison and taking into

account the fact that in the example under

consideration the share of normal states is much

greater than the share of critical states, the assessment

of the classifiers should be based, among other things,

according to the following criteria: Precision (accuracy

- in a calculation other than Accuracy), and Recall

(completeness).

These criteria are calculated separately for each

summary class, where Precison is the proportion of

situations that really belong to this class relative to all

situations that the system has assigned to this class.

System completeness (Recall) is the proportion of

situations found by the classifier that belong to a class

relative to all situations of this class in the test sample.

More clearly, these criteria can be presented through

the contingency (contingency) table, also built

separately for each final class [3]

Class (1/0)
Training Sample

Positive Negative

Result
Positive 𝑇𝑃 𝐹𝑃

Negative 𝐹𝑁 𝑇𝑁

These results are used directly in the calculation of the

criteria for the classifier as follows:

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
;

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

As can be seen from the calculation algorithm, these

criteria provide a more complete understanding of the

quality of the classifier's work. It would be logical to

say that the higher the accuracy and completeness, the

better, but in reality, maximum accuracy and

completeness are not achievable at the same time and

it is necessary to find a balance between these

characteristics. To do this, you need to use the F

measure, which is the following calculated value:

𝐹 = (𝛽2 + 1) ⋅
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒 𝑐𝑎𝑙𝑙

𝛽2⋅𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
,

where 0<β<1, if the greater weight for the selection of

the classifier has accuracy and β> 1 with the

preference for completeness. In the case β = 1, a

balanced F-measure is obtained, denoted as:

𝐹1 = 2 ⋅
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒 𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
.

In addition, for all classifiers, we will apply an

estimate of the duration of the execution of Wall time

operations, by which we will count the time from the

moment the model is created and the beginning of

training until the moment the values of the

performance assessment metrics are issued based on

the comparison of the predicted results with the test

sample.

All work is carried out on a computer complex with

the following characteristics:

Intel Core i9-9980XE 3.00 Ghz, 128 Mb, 4xNVIDIA

RTX 2080Ti 11 Gb, 1 TB PCIe SSD.

4. K-nearest neighbors (knn) algorithm

The specified algorithm works as follows - let a

training sample of pairs "object (state characteristic) -

response (state class)" be given:

145

𝑋𝑚 = {(𝑥1, 𝑦1), . . . (𝑥𝑚, 𝑦𝑚)},

then the distance function P (x, x ') is given on the set

of objects. This function should be a reasonably

adequate model of object similarity. The larger the

value of this function, the less similar two objects x, x

'are [4]. For an arbitrary object μ, we arrange the

objects of the training sample in the order of

increasing distances to μ:

𝑃(𝜇1; 𝑝(𝜇𝑖, 𝑥1;𝜇) < 𝑝(𝜇𝑖, 𝑥2;𝜇). . . < 𝑝(𝜇𝑖, 𝑥𝑚;𝜇),

where some x (1; μ) denotes the object of the training

sample that is the i-th neighbor of the object μ. We

introduce a similar notation for the answer to the i-th

neighbor y (i; μ). Thus, an arbitrary object μ generates

a new renumbering of the sample. In its most general

form, the nearest neighbors algorithm is:

𝑎(𝜇) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 ∑ [𝑦(𝑥𝑖;𝜇) = 𝑦]𝑚
𝑖=1 ⋅ 𝑤(𝑖, 𝜇),

where w (i, μ) is a given weight function that estimates

the degree of importance of the i-th neighbor for

classifying the object μ, while this function cannot be

negative and does not increase with respect to i.

For the k nearest neighbors method:

(𝑖; 𝜂) = [𝑖 ≤ 𝑘]

The qualitative characteristics of using the

KNeighborsClassifier algorithm with the n_neighboors

= 10 parameter are as follows:

Accuracy 0.949
 Precision Recall F1 score

1 0.63 0.97 0.77

0 1.0 0.95 0.97

Wall time: 1 min 15 s

It is clearly seen that the accuracy assessment in the

form of Accuracy is not enough for a comparative

analysis - with a value of this indicator of 0.949 -

almost 95% accuracy - we see that the accuracy of

determining the final state 1 (inoperability) through the

Precision characteristic is only 63%. As a result of the

work, one should record the F-Measure value for each

class and the total duration of the classifier's work.

5. Logistic regression

To predict the probability of occurrence of a certain

event by the values of the set of signs, a dependent

variable Y is introduced, which takes values 0 or 1 and

a set of independent variables x1, ... xn, based on the

values of which it is required to calculate the

probability of accepting a particular value of the

dependent variable. [5]

Let the objects be specified by numerical features:

𝑓𝑗: 𝑋 → 𝑅, 𝑗 = 1. . . 𝑛

and the space of feature descriptions in this case X=Rn.

Let Y in this case be a set of class labels and a training

set of object-response pairs
𝑋𝑚 = {(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)}.

Consider the case of two classes: Y={-1,+1}. In

logistic regression, a linear classification algorithm

aX→Y of the form:

𝑎(𝑥, 𝑤) = 𝑠𝑖𝑔𝑛 (∑ 𝑤𝑗𝑓𝑖(𝑥) − 𝑤0

𝑛

𝑗=1

) = 𝑠𝑖𝑔𝑛〈 𝑥, 𝑤〉,

where wj – scale of j-th feature, w0 − decision

threshold w=(w0,...,wn) − scales vector, ⟨x,w⟩ − dot

product of the feature description of an object by a

vector of weights. It is assumed that the zero feature is

artificially introduced: f0(x) = −1.

The task of training a linear classifier is to adjust the

weight vector w based on the sample Xm. In logistic

regression, for this, the problem of minimizing

empirical risk is solved with a loss function of the

following form:

𝑄(𝑤) = ∑ 𝑙𝑛(1 + 𝑒𝑥𝑝(− 𝑦𝑖 < 𝑥𝑖 , 𝑤 >)) → 𝑚𝑖𝑛 𝑤

𝑚

𝑖=1

After the solution w is found, it becomes possible not

only to perform classification for an arbitrary object x,

but also to estimate the posterior probabilities of its

belonging to the existing classes:

𝛲{𝑦|𝑥} = 𝜎(𝑦 < 𝑥, 𝑤 >), 𝑦 ∈ 𝑌,

𝜎(𝑧) =
1

1 + 𝑒𝑥𝑝−𝑧
− 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Qualitative characteristics of the application of the

specified model with the following parameters

LogisticRegression (multi_class='ovr', solver='lbfgs'):

Accuracy 0.971
 Precision Recall F1 score

1 0.76 0.98 0.85

0 1.0 0.97 0.98

Wall time: 1 min 10 s

The results shown by this classifier are better relative

to the previous method with a comparable duration of

operation, however, the work on identifying faulty

situations (class 1) does not yet guarantee satisfactory

operation in industrial mode.

146

6. Naive Bayesian classifier

The Bayesian classification is based on the maximum

probability hypothesis, that is, an object d is

considered to belong to the class cj (cj ∈ C) if the

highest posterior probability is achieved:

𝑚𝑎𝑥 𝑃 (𝑐𝑗|𝑑).[6]

Bayesian formula:

𝑃(𝑐𝑗|𝑑) =
𝑃(𝑐𝑗)⋅𝑃(𝑑|𝑐𝑗)

𝑃(𝑑)
≈ 𝑃(𝑐𝑗)𝑃(𝑑|𝑐𝑗),

where P(d|cj)- the probability of encountering an

object d among objects of class cj, and P(cj),P(d) –

prior probabilities of the class cj and d.

Under the "naive" assumption that all features

describing the classified objects are completely equal

and not related to each other, then P (d | cj) can be

calculated as the product of the probabilities of

encountering a feature xi (xi∈X) among objects of

class cj:

𝑃(𝑑|𝑐𝑗) = ∏𝑖=1
|𝑥|

𝑃(𝑥𝑖|𝑐𝑗),

where 𝑃(𝑥𝑖|𝑐𝑗) - probabilistic assessment of the

contribution of a feature xi to the fact that d ∈ cj.[7]

In practice, when multiplying very small conditional

probabilities, there can be a loss of significant digits,

and therefore, instead of the estimates of the

probabilities P (xi | cj), the logarithms of these

probabilities should be used. The logarithm is a

monotonically increasing function, and, therefore, the

class cj with the largest value of the logarithm will

remain the most probable. In this case, the decision

rule of the naive Bayesian classifier takes the

following form:

𝐶∗ = 𝑎𝑟𝑔𝑐𝑗∈𝐶 𝑚𝑎𝑥 [𝑙𝑜𝑔 𝑃 (𝑐𝑗) + ∑ 𝑃(𝑥𝑖|𝑐𝑗)

𝑥

𝑖=1

]

.

The resulting values of the MultinomialNB classifier

from the Sklearn library turned out to be the following:

Accuracy 0.874
 Precision Recall F1 score

1 0.40 0.96 0.57

0 1.0 0.87 0.93

Wall time: 289 ms

The considered classifier, based on its description,

works fundamentally differently - the speed of its

work is much higher - however, the qualitative criteria,

the main of which F-measure, are inferior to past

classifiers.

7. Decision tree methodology

With this algorithm, the tree is built from top to

bottom - from the root node to the leaves. At the first

step of training, an "empty" tree is formed, which

consists only of the root node, which in turn contains

the entire training set. Next, you need to split the root

node into subsets, from which the descendant nodes

will be formed. For this, one of the attributes is

selected and rules are formed that divide the training

set into subsets, the number of which is equal to the

number of unique values of the selected attribute. [8]

As a result of splitting, p (according to the number of

attribute values) subsets are obtained and, therefore, p

descendants of the root node are formed, each of

which is assigned its own subset. Then this procedure

is recursively applied to all subsets until the stop

condition is reached.

For example, a partitioning rule should be applied to

the training set, in which the attribute A, which can

take p values: a1, a2, ..., ap, creates p subsets S1, S2, ...,

Sp, where examples will be distributed, in which the

attribute A takes the corresponding value.

Moreover, N (Cj, S) is the number of examples of the

class Cj in the set S, then the probability of the class Cj

in this set is determined by the expression:

𝑃 =
𝑁(𝐶𝑗𝑆)

𝑁(𝑆)
 ,

where N (S) is the total number of examples in the set

S.

The entropy of the sets S will be expressed as:

𝐼 𝑛 𝑓𝑜(𝑆) = − ∑
𝑁(𝑆𝑖)

𝑁(𝑆)

𝑚

𝑖=1

⋅ 𝑙𝑜𝑔(
𝑁(𝐶𝑗𝑆)

𝑁(𝑆)
)

It will demonstrate the average amount of information

required to determine the class of an example from the

set S.

The same estimate, obtained after partitioning the set S

by attribute A, can be written as:

𝐼𝑛𝑓𝑜𝐴(𝑆) = ∑
𝑁(𝐶𝑗𝑆)

𝑁(𝑆)

𝑘

𝑖=1

⋅ 𝐼𝑛𝑓𝑜(𝑆𝑖),

where Si - i-th node, obtained by splitting by attribute

A. After that, to choose the best branching attribute,

you should use the criterion of the form:

147

𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝑆) − 𝐼𝑛𝑓𝑜𝐴(𝑆)

This criterion is called the criterion of information

gain. This value is calculated for all potential split

attributes and the one that maximizes the specified

criterion is selected for the division operation.

The described procedure is applied to subsets Si and

further, until the values of the criterion cease to

increase significantly with new partitions or a different

stopping condition is met. In this case, when in the

process of building a tree, an "empty" node is

obtained, where not a single example will fall, then it

must be converted into a leaf that is associated with

the class most often found in the immediate ancestor

of this node.

The DecisionTreeRegressor classifier with parameters

Random_state = 15 and Min_samples_leaf = 25

showed the following characteristics:

Accuracy 0.964
 Precision Recall F1 score

1 0.71 0.97 0.85

0 1.0 0.97 0.98

Wall time: 975ms

When working with the decision tree method, the

results are similar to the logistic regression method,

however, the duration of training and forecasting in the

decision tree method is much longer, which, with

equal qualitative characteristics, puts the results of this

method higher than others.

8. Gradient boosting method

Gradient boosting is a machine learning method that

creates a decisive forecasting model in the form of an

ensemble of weak forecasting models, usually decision

trees, essentially developing the decision tree method.

During boosting, the model is built in stages - an

arbitrary differentiable loss function is also optimized

in stages. [9]

For the problem of object recognition from a

multidimensional space X with a label space Y, a

training sample {𝑥𝑖}𝑖=1
𝑁 is given, where 𝑥𝑖 ∈ 𝑋. In

addition, the true values of the class labels for each

object {𝑦𝑖}𝑖=1
𝑁 are known, where yi∈Y. The solution to

the prediction problem is reduced in this case to the

search for a recognizing operator who can predict the

labels as accurately as possible for each new object

from the set X.

Let a family of basic algorithms H be given, each

element h(x,a)∈H:X→R of which defined by some

vector of parameters a∈A.

In this case, it is necessary to find the final

classification algorithm in the form of the following

composition: 𝐹𝑀(𝑥) = ∑ 𝑏𝑚ℎ(𝑥, 𝑎𝑚), 𝑏𝑚 ∈𝑀
𝑚=1

𝑅, 𝑎𝑚 ∈ 𝐴.

However, the selection of the optimal set of

parameters {𝑎𝑚, 𝑏𝑚}𝑚=1
𝑀 is an extremely time-

consuming task, therefore the construction of this

composition should be carried out by means of

"greedy" growth, each time adding the summand,

which is the most optimal algorithm, to the sum.

At the step when the optimal classifier F(m-1) of length

m - 1 has already been assembled, the task is reduced

to finding a pair of the most optimal parameters

{am,bm} for the classifier of length m:

 𝐹𝑀(𝑥) = 𝐹𝑚−1(𝑥) + 𝑏𝑚ℎ(𝑥, 𝑎𝑚), 𝑏𝑚 ∈ 𝑅, 𝑎𝑚 ∈ 𝐴

Optimality is understood here in accordance with the

principles of explicit maximization of margins - this

means that a certain loss function L(yi,Fm (xi)) → min

is introduced, showing how much the predicted answer

Fm (xi) differs from the correct answer yi. Next, you

need to minimize the functionality of this error:

𝑄 = ∑ 𝐿(𝑦𝑖 , 𝐹𝑚(𝑥𝑖)) → 𝑚𝑖𝑛

𝑁∑

𝑖=1

It should be noted that the error functional Q is a real

function depending on the points {𝐹𝑚(𝑥𝑖)}𝑖=1
𝑁 in the N-

dimensional space, and this function is minimized by

the gradient descent method. As the point for which

the optimal increment should be found, we define

𝐹𝑚−1 and the error gradient is expressed as follows:

𝛻𝑄 = [
𝜕𝑄

𝜕𝐹𝑚−1
(𝑥𝑖)]

𝑖=1

𝑁

= [
𝜕(∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1))𝑁

𝑖=1

𝜕𝐹𝑚−1
(𝑥𝑖)]

𝑖=1

𝑁

=

= [
𝜕𝐿(𝑦𝑖 , 𝐹𝑚−1)

𝜕𝐹𝑚−1
(𝑥𝑖)]

𝑖=1

𝑁

By virtue of the gradient descent method, it is most

beneficial to add a new term as follows:

𝐹𝑚 = 𝐹𝑚−1 − 𝑏𝑚𝛻𝑄, 𝑏𝑚 ∈ 𝑅,

where bm is selected by linear search over real

numbers R:

𝑏𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝐹𝑚−1(𝑥𝑖) − 𝑏𝛻𝑄𝑖)

𝑁

𝑖=1

However, ∇Q is only a vector of optimal values for

each object xi, and not a basic algorithm from the

148

family H, defined by ∀x∈X, so it is necessary to find

h(x,am)∈H that is most similar to ∇Q. To do this, it is

necessary to re-minimize the error functionality using

an algorithm based on the principle of explicit

minimization of indents:

𝑎𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝛻𝑄𝑖 , ℎ(𝑥𝑖, 𝑎)) ≡

𝑁

𝑖=1

≡ 𝑡𝑟𝑎𝑖𝑛({𝑥𝑖}𝑖=1
𝑁 , {𝛻𝑄𝑖}𝑖=1

𝑁),

which in turn corresponds to the basic learning

algorithm.

Next, you need to find the coefficient bm using linear

search:

𝑏𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝐹𝑚−1(𝑥𝑖) − 𝑏 ⋅ ℎ(𝑥𝑖, 𝑎𝑚)

𝑁

𝑖=1

The GradientBoostingClassifier implemented

according to this algorithm with the parameters

learning_rate = 0.3; n_estimators = 10; verbose = 1,

subsample = 0.5 showed the following results:

Accuracy 0.993
 Precision Recall F1 score

1 0.94 0.99 0.97

0 1.0 0.99 1.0

Walltime: 3.95s

The gradient boosting method, like the decision tree

method, is a method of enumerating classification

parameters, which, in turn, determines their relative

comparability in terms of training duration. However,

the time spent in boosting to determine the ensemble

of decision trees has a colossal effect - the accuracy in

terms of the final state classes is the highest for this

method.

9. Neural network

Taking into account the available analysis of data

sources of the considered IT infrastructure monitoring

system and the nature of this data, the MLP (Multi-

Layer Perceptron) type was defined as a neural

network - due to the absence of video surveillance

systems as sources, and, consequently, the problem of

video recognition of the classical verbose neural

network of direct distribution will be sufficient to

determine the effectiveness of its application. [10]

An MLP network is any multilayer neural network

with a linear conductance function and a monotone

limited activation function gv common to all hidden

neurons, depending only on the variety t=s(v)-wv,

which is a "smoothed step", as a rule, a hyperbolic

tangent:

𝑡𝑛𝑔(𝑡) =
𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 + 𝑒−𝑡

or logistic function:

𝜎(𝑡) =
𝑡𝑛𝑔(

𝑡

2
)+1

2
=

1

1+𝑒−𝑡.

The activation function of output neurons can also be

the same "smoothed step", or it can be identical

gv(t)=t, that is, each neuron v calculates the function:

𝑢(𝑣) = 𝑔𝑣((∑ 𝑤𝑒𝑢(𝑒)) − 𝑤𝑣).

The parameters of the edges we are called their

weights, and the parameters of the vertices wv are

called displacements. In this case, which activation

function is chosen - hiberbolic tangent or logistic - is

indifferent: for any multilayer perceptron with an

activation function tng calculating the function

Ftng(w,x), the same perceptron, in which the activation

function in intermediate layers is replaced by a logical

function σ, calculates the same the function itself for

some other value of the parameter w ':

𝐹𝑡𝑛𝑔(𝑤, 𝑥) = 𝐹𝜎(𝑤 ′, 𝑥).

In accordance with the ideology of minimizing

empirical risk with regularization of training of the

perceptron calculating the function F(w,x), this is the

search for a vector of weights and biases that

minimizes the regularized total error:

𝐸𝑇(𝑤) = 𝜑(𝑤) + ∑ 𝐸(𝐹(𝑤, 𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

on some training set T=((x1,y1),...(xn,yn)). [11]

Training is most often carried out by the classical

method of gradient descent; for its applicability, the

activation functions of all neurons and the error and

regularization functions must be differentiable.

Practice shows that the speed of this algorithm is often

inferior to others because of the huge dimension of the

parameter w and the absence of explicit formulas for

the derivatives of the function F with respect to w. [11]

The results of applying the MLPClassifier (max_iter =

100, random_state = 10) are as follows:

Accuracy 0.992
 Precision Recall F1 score

1 0.93 0.99 0.95

0 1.0 0.99 1.0

Wall time: 1 min 5 s

The neural network, as the user often expects, has

shown high results of a qualitative assessment - they

are essentially equal to the results of gradient boosting.

149

However, the duration of training and forecasting for a

neural network is much longer than for methods based

on building ensembles of decision trees - 1 minute

versus several seconds.

10. Conclusion

The results of the application of various machine

learning methods clearly prove the postulate of the

"NoFreeLunch" theorem - it is the experimental tests

that allow you to choose the most appropriate

algorithm for solving a specific problem, taking into

account specific initial data. In this case, it should be

noted once again that the Accuracy characteristic is

practically useless in comparing the results - it is more

correct to evaluate the results by F-measure, and this

should be done separately for each class.

Based on the applied sense of the task - to provide

better monitoring of the IT infrastructure operation -

the characteristics of training methods for data class

"1" are more important, that is, for cases of real

failures and infrastructure failures. At the same time,

errors for class "0", in fact, will be additional incidents

and, therefore, require additional labor from technical

support specialists, which is certainly critical, but less

important in comparison with the omission of real

failures and failures. It is also worth noting the time

parameters of the methods - the spread is truly

colossal, from 289 milliseconds to 1 minute 15

seconds.

When comparing the comparison criteria, it is clearly

seen that the gradient boosting method showed the

optimal results of work - with a higher speed of this

algorithm, it was able to learn better than other

algorithms. When replicating an application on already

large data sets (all IT services, a larger analysis

horizon), training time is extremely important.

Understanding this and the nature of the initial data,

namely the absence of video and photo images in the

initial data, allow us to conclude that the gradient

boosting method is more than sufficient for solving the

problem and using a neural network (showed similar

results with a longer training duration) at this stage

development of the considered IT infrastructure

monitoring system in terms of the method of collecting

information is not required.

References

[1] Bolshakov M.A. Preparation of a monitoring

system for IT infrastructure for models of

critical states based on neural networks //

Science-intensive technologies in space

research of the Earth. 2019. No. 4. p. 65-71.

[2] D.H. Wolpert, W.G. Macready No Free Lunch

Theorems for Optimization // IEEE

Transactions on Evolutionary Computation.

1997. №1. С. 1.

[3] G. Upton. Analysis of contingency tables.

Translated from English and preface by Yu. P.

Adler. Moscow. Finance and statistics. 1982.

143 p.

[4] M. Parsian Data Algorithms. Newton: O'Reilly

Media, Inc., 2015. 778 с.

[5] D.W. Hosmer, S. Lemeshow Applied Logistic

Regression. 2nd Ed. New York: John Wiley &

sons, INC, 2000. 397 с.

[6] S. Ranganathan, K. Nakai, C. Schonbach

Bayes' Theorem and Naive Bayes Classifier.

Encyclopedia of Bioinformatics and

Computational Biology, Volume 1, Elsevier,

с. 403-412. 2017

[7] Barber D. Bayesian Reasoning and Machine

Learning. Cambridge University Press, с.

2012.

[8] T. Hastie The Elements of Statistical Learning

// Trevor Hastie, Robert Tibshirani, Jerome

Friedman, 2 изд. Springer, 2008. 764 с.

[9] J.H. Friedman, Stochastic Gradient Boosting.

Technical report. Dept. of Statistics, Stanford

University, 1999.

[10] T. Windeatt Ensemble MLP Classifier Design.

In: Jain L.C., Sato-Ilic M., Virvou M.,

Tsihrintzis G.A., Balas V.E., Abeynayake C.

(eds) Computational Intelligence Paradigms.

Studies in Computational Intelligence, vol

137. Springer, Berlin, Heidelberg

[11] V. Vapnik Principles of Risk Minimization for

Learning Theory // Advances in Neural

Information Processing Systems 4 (NIPS

1991). 1992. №4. С. 831-838.

[12] Gasnikov A.V. Modern numerical

optimization methods. Universal Gradient

Descent Method: A Tutorial. Moscow: MFTI,

2018.286 p. 2nd Ed

