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Abstract. Disasters often result in mass casualty incidents, which trigger a series 
of complex decisions made at casualty collection points and advanced medical 
posts. The essential components in a disaster management chain are triage and 
casualty evacuation.  Casualty evacuation without effective coordination may lead 
to overcrowding at hospitals and result in an increasing number of casualties. 
Thus, guidance for rapid transportation is needed according to triage categories, 
needed/available ambulances, human resources, and destination hospital 
capabilities. At casualty collection points, the process of medical decision-making 
is very complex as a significant amount of blood can be lost to internal bleeding, 
for example in the peritoneal, pleural, or pericardial areas, without any noticeable 
signs. This paper reviews several studies focusing on triage and evacuation 
guidance for a mass casualty incident (MCI) based on artificial intelligence. 
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1 Introduction 

MCIs are events in which the number of casualties exceed the available resources in the 
local area. They are often caused by transportation accidents, terrorism, fire, or natural 
disasters, called hazards [1]. A hazard is an event (natural or human-made) that can cause 
harm or loss [1]. They raise terrible destruction to physical structures, fatalities, and a 
massive demand of intervention to be handled when interacting with the community. 
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Mass casualty management (MCM) describes the process of attending to the victims of 
a MCI in order to minimize morbidity and mortality [2]. There are pre-established 
procedures for mobilizing resources, managing field, and hospital reception [3]. A multi-
sectional approach is employed for the MCM model. This approach represents a form of a 
strongly linked rescue chain of responders for triage, field stabilization, and evacuation with 
healthcare facilities. The responders can be police, fire, search and rescue, an ambulance, 
or a pre-hospital team to name a few. Disasters in small isolated areas with limited 
resources, scarcity of materials, poor communication, and lack of preparedness often pose 
severe challenges to the management of victims [2]. MCM relies on expert knowledge of 
responders and incorporated links between the field and healthcare facilities through a 
command post [3]. 

A standardized system is required for managing communication and command and 
control (CCC) between response units in MCM.  The incident command system (ICS) is a 
standardized structure responsible for a conjunctive response by multiple agencies. Disaster 
response can incorporate action from many different agencies. ICS ensures an effective 
response that the most pressing needs are satisfied, and the valuable resources are used 
efficiently. 

Responsibilities of ICS include allocating an incident commander. ICS responsibilities 
are managed by the incident commander until delegated. They must oversee overall 
coordination of field operations, to include receiving reports from all other officers, 
continuously evaluating the general situation, coordinating requests between sectors in the 
field, and ensuring linkages between sectors.  

When needed, the incident commander can delegate emergency management 
responsibilities. Thus, they will maintain the necessary focus on the overall picture of the 
disaster situation. The incident commander is often the local fire chief or commissioner. 

Because of the multi-sectional structure of MCM, having a decision-making support 
system with real-time information is necessary for effective response in MCI events. AI-
based decision support tools are aimed to assist in some areas of resource management in 
disaster response concerning a broad range of objectives and decision variables. These tools 
help people command faster and more efficiently. 

In each phase of MCM, e.g., the search and rescue phase, several tools for decision-
support can be used. Mishra et al. [4] proposed a state-of-the-art detection method based on 
computer vision and developed a large dataset for search and rescue in natural disasters 
utilizing drone surveillance. Perry et al. [5] introduced a triage method based on computer 
vision to provide real-time casualty information at the disaster scene for the MCI 
commander and the Emergency Medical Services (EMS) dispatch. More examples are 
given by Gaindric et al. [6]. 

The challenges presented by mass casualty events are much different from those faced 
by the daily healthcare system. In a MCI, the number of critically injured patients can be 
significantly larger and the injuries are typically quite varied. Effective decisions regarding 
the evacuation of mass casualty patients to the hospital must consider the distance from the 
MCI scene to the healthcare facility as well as its capacity. The healthcare facility capacity 
refers to the availability of beds when dealing with an overload of patients. Information 
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regarding the real-time bed capacity of hospitals is one essential key to controlling the flow 
of patients from an MCI. In this case, it allows for evidence-based decision making 
regarding the evacuation of patients. Various decision support models have been proposed 
for resource management in disaster response. Several factors need to be considered to 
integrate into the triage process, such as available resources and disaster scale. This work 
focuses on three categories of AI-based decision support approaches: (1) traditional 
optimization-based decision support approaches; (2) reinforcement learning-based 
optimization techniques; (3) transport congestion detection methods. 

2 Traditional optimization-based decision support approaches 

Kamali et al. [7] developed a mathematical model based on resource-constraints to show 
how the scale of a disaster and availability of the resources affect the outcome of triage 
operations. The model analysis provided decision makers with optimal prioritization 
policies to maximize the expected number of survivors. Results are achieved with minimal 
data requirements; more specifically, the number of casualties in each category, the service 
times, and the number of servers available. Several main contributions to this work are: 1) 
Developing a tractable model that determines the optimal service considering the variation 
of casualties, service times, multiple servers, and multiple casualty types; 2) This model is 
compared with others in terms of both properties and performance; 3) Identifying structural 
properties of the optimal solution, extending and generalizing the work in other papers; and 
4) Discussing important data issues, and more realistic problems. 

Dean and Nair [8] proposed the Severity - Adjusted Victim Evacuation (SAVE) model. 
It focuses on the critical period immediately following the onset of a MCI and effectively 
evacuating victims to different hospitals, without overwhelming them. The “RPM” score 
evaluates the respiratory rate, pulse rate, and motor response. This model examines the 
hospital capacity and provides a guide to adjust evacuation decisions to increase survival 
rate. The causality severity levels affect the treatment time at hospitals, e.g., it takes more 
time to take care of severe cases with a lower score. Treatment capacities of hospitals are 
explicitly considered. The time and the location of the ambulance dispatch will determine 
their availability. The example scenarios assume three victim classes, each class consisting 
of fifteen victims. Finally,  a single hospital is assumed for this example. The three victim 
classes are described as red, yellow, and green. Each model terminates when all patients are 
delivered to treatment facilities. It can be considered an effective model; however, using 
the SAVE model in practice may be challenging. 

Mass Casualty Patient Allocation Model is presented in [9] can be used in two different 
ways: (1) to transfer real-time information concerning casualty counts, hospital driving 
time, and hospital bed capacity to enable more effective management of patient evacuation 
from one or more MCIs; (2) for training and planning as it allows for simulation exercises 
for evacuation from an MCI. 

Amram et al. [10] proposed a new model called the spatial decision support system 
(SDSS). This system considers variables at an incident location such as hospital proximity 
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and capacity and treatment specializations to help the incident commander in decision 
making. The SDSS system integrates road network and hospital information (e.g., beds 
availability) to estimate driving times in seconds to hospitals based on pre-computed times 
and displays the result in GUIs. The end-users can also point to the incident location on a 
map and make triage decisions with the assistance of the system. This model is constructed 
by two sets of data: road network data and hospital location data. The road network data 
from the Vancouver metro system with various variables such as traffic light and traffic 
sign locations for driving time calculations, and transportation control. These are essential 
because the travel time of an ambulance differs from that of a regular/commercial vehicle. 
The second set consists of Vancouver zone hospital information. This data set describes the 
capacity of a hospital and services it can provide. The GIS point features that represent these 
hospitals show the geocodes as close to the main accessible emergency facilities as possible. 

SDSS [10] is potentially valuable for the prioritization in MCI evacuation decision 
making. The pre-calculated driving times from each casualty collection point to each 
hospital is the key component of the system. The performance of this model can be further 
improved if integrated with real-time traffic information and hospital capacity. 

Treating and delivering casualties during a MCI needs to be made in a real-time and in 
sequential manner. Wilson et al. [11] described a novel combinational optimization model 
by employing a scheduling approach. The authors proposed a multi-objective optimization 
method that considers key factors in a MCI, such as the health level of casualties, the MCI 
scene, and appropriate hospital for each victim. They proposed a framework based on the 
Flexible Job-Shop Problem (FJSP) that can be adapted to accommodate the unique 
characteristics of the combinatorial optimization problem.  

Wilson et al. [11] describes the flexible job-shop scheduling problem as a given set of 
machines 𝑀𝑀 = {𝑀𝑀𝑘𝑘}, 1 ≤  𝑘𝑘 ≤  𝑚𝑚 and a set of Jobs 𝐽𝐽 = {𝐽𝐽𝑖𝑖}, 1 ≤  𝑖𝑖 ≤  𝑛𝑛. 𝐽𝐽𝑖𝑖 contains a 
set of 𝑛𝑛𝑖𝑖 operations 𝑂𝑂𝑖𝑖,𝑗𝑗, 1 ≤  𝑗𝑗 ≤  𝑛𝑛𝑖𝑖. Machine 𝑀𝑀𝑘𝑘 ∈  𝑀𝑀𝑖𝑖,𝑗𝑗 has time 𝑀𝑀𝑖𝑖,𝑗𝑗,𝑘𝑘 to process  𝑂𝑂𝑖𝑖,𝑗𝑗, 
where 𝑀𝑀𝑖𝑖,𝑗𝑗 is a set of machines. Assuming that all machines are free at the starting time of 
zero, each machine can only complete one operation at a time. The standard FJSP is aimed 
to optimize the total execution time by allocating the operations and machines optimally. 
Casualty processing is considered  a FJSP variant, but some adjustments need to be done 
before mapping this problem.  

1. Jobs → Casualties, 𝑐𝑐𝑖𝑖 ∈  𝐶𝐶, 1 ≤ 𝑖𝑖 ≤  𝑛𝑛𝑐𝑐, where 𝑛𝑛𝑐𝑐 is the total number of 
casualties. 
2. Operations → Tasks, 𝑡𝑡𝑖𝑖,𝑗𝑗  ∈  𝑇𝑇, 1 ≤  𝑗𝑗 ≤  𝑛𝑛𝑖𝑖,𝑗𝑗, 𝑛𝑛𝑖𝑖,𝑗𝑗 is denoted as the number of 
tasks related to casualty 𝑐𝑐𝑖𝑖. 
3. Machines → Responder units, 𝑟𝑟𝑘𝑘  ∈  𝑅𝑅, 1 ≤  𝑘𝑘 ≤  𝑛𝑛𝑟𝑟, where 𝑛𝑛𝑟𝑟 is the total 
number of responder units.  

According to [11], this model also considers additional variables. First, a set of hospitals 
𝐻𝐻 =  {ℎ𝑙𝑙}, 1 ≤  𝑙𝑙 ≤  𝑛𝑛ℎ to which casualties may be transported is required. Second, the 
transportation network is described as an undirected graph 𝐺𝐺 which contains hospital, 
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disaster zone, and emergency response station locations. Additionally, there are some 
variables about casualties that need to be consider such as the stabilization treatment 
requirement 𝑐𝑐𝑖𝑖𝑠𝑠, the extrication requirement 𝑐𝑐𝑖𝑖𝑒𝑒, and the triage level 𝑐𝑐𝑖𝑖𝑡𝑡. In this paper, four 
triage levels are assigned to casualties: T1, immediate, require immediate life-saving 
procedure; T2, urgent, require surgical or medical intervention within 2–4 hours; T3, 
delayed, cases that can be delayed beyond 4 hours; and T4, dead. A solution can be defined 
by a mapping 𝑆𝑆:𝑇𝑇 →  𝑅𝑅 ×  𝑁𝑁 ×  𝐻𝐻 ⋃ {0}, so that every task 𝑡𝑡𝑖𝑖,𝑗𝑗 ∈  𝑇𝑇 has an associated 
responder 𝑡𝑡𝑖𝑖,𝑗𝑗𝑟𝑟 ∈ 𝑅𝑅, priority level 𝑡𝑡𝑖𝑖,𝑗𝑗

𝑝𝑝 ∈ 𝑁𝑁 and hospital 𝑡𝑡𝑖𝑖,𝑗𝑗ℎ ∈ 𝐻𝐻 ⋃{0}, where ℎ =  0 for all 
tasks other than transportation tasks. The tasks within this model are distributed across a 
geographical area. It is also needed to calculate the driving time of response units from 
collection locations to pick up locations. Dijkstra’s algorithm can be used to optimize 
responder travel times. 

The five objectives considered in this multi-objective optimization method are [11]: 
 

Tab. 1. The tasks and responders considered in the model of Wilson et al. [11]. 

 Name Description 

Task 

Transport All casualties require transportation to a 
hospital. 

Pre-transport, 
treatment 

Before transportation, the casualties need to 
be stabilized or treated. 

Rescue Casualties need to be extricated from debris 
and moved to treatment points. 

Pre-rescue, 
treatment 

Some cases require stabilization before 
rescuing to ensure their safety. 

Responder 

Ambulance A medical unit with equipment for both 
casualty treatment and transportation. 

MERIT A mobile team that can travel to any MCI 
event and treat the casualties in place. 

HART 

A “Hazardous Area Response Team” 
includes paramedics with required equipment 
and training to take care of casualties in 
urgent situations.   

SAR 
A “Search and Rescue” team that is 
responsible for rescuing trapped casualties 
from dangerous environments. 
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1. 𝑓𝑓1(𝑠𝑠) – the expected number of fatalities;  
2. 𝑓𝑓2(𝑠𝑠) – time in which casualties are transported on the fastest route to hospitals;  
3. 𝑓𝑓3(𝑠𝑠) – appropriate degree in which the hospital is chosen; 
4. 𝑓𝑓4(𝑠𝑠) – the idle time of response units; 
5. 𝑓𝑓5(𝑠𝑠) – time when a casualty reaches a hospital.  
 

Predicting the number of fatalities 𝑓𝑓1(𝑠𝑠) resulting from a response operation helps to save 
lives. This work helps to prioritize victims in a disaster and increase the survival rate. 𝑓𝑓2(𝑠𝑠) 
helps the commander examine where a casualty needs to be transported. 𝑓𝑓3(𝑠𝑠) helps to 
determine which hospital is appropriate for a casualty. 𝑓𝑓4(𝑠𝑠) and 𝑓𝑓5(𝑠𝑠) helps to allocate the 
responders reasonably. Furthermore, two factors, the dynamic capacity of each hospital and 
the effect of overload, should be considered for evaluating causality-hospital assignments. 

The first decision that must be made is optimally assigning victims to hospitals.  The 
following definitions are used for this decision process [11]: Priority – casualty priority; 
Time – how soon the task can start; Dependency – the number of tasks affected by task 
completion; Location – the distance between the current location of responders and the new 
task location. The second decision is made using three variables [11]: hospital capacity, 
appropriate treatment equipment, and distance between the current location and hospital 
location. Hospitals are iterated through based on proximity and current capacity. 

3 Reinforcement learning-based optimization techniques 

Ji et al. [12] introduced an effective model, based on deep reinforcement learning, for 
redeploying ambulances to minimize transportation time and increase casualty survival rate. 
Whenever an ambulance is available, it must be redeployed to a proper ambulance station 
to pick up the next victim. The authors propose a deep neural network called the deep score 
network to deal with the dynamic factors of ambulance stations. 

This score [12] can dynamically redeploy a free ambulance with the highest score. The 
deep score network is trained using a policy gradient algorithm in order to minimize the 
pickup time of victims. Data is collected from the EMS system in Tianjin, China, consisting 
of EMS request records, road networks, ambulance stations, and hospitals. 

Based on the Twitter data collected during Hurricane Harvey in 2017, a novel algorithm 
is developed for a better response to the requests of victims during a disaster [13]. It is one 
of the first approaches to deal with a large-scale disaster rescue problem using multi-agent 
reinforcement learning with social network data. The authors [13] designed a heuristic 
multi-agent reinforcement learning scheduling approach to handle multiple volunteers to 
quickly and effectively rescue disaster victims. This model can respond to dynamic requests 
and maximize performance over space and time with limited resources in large-scale areas 
for various conditions. 

MobiRescue [14], or the human Mobility based Rescue team dispatching system, is 
based on a reinforcement learning application for disaster response. It maximizes the total 
number of responses for rescue requests and minimizes the driving time and the number of 
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rescue units. This research scenario consists of a flooding disaster and uses the city-scale 
human mobility data set for Hurricane Florence. Because of the different impacts of flood 
disasters in different regions and the movement of people, the driving routes of the rescue 
team should be adaptively adjusted. They used a Support Vector Machine (SVM) [14] to 
predict the distribution of potential requests on each road segment. Based on this 
distribution, a reinforcement learning method is used. The data set used is recorded during 
15 days in the Charlotte, North Carolina, and consists of the mobility of 8590 people.  

A higher disaster impact often results in a higher demand for rescue. Moreover, the 
distribution of the movement of people during a disaster is a dynamic factor. The following 
he problem statement is proposed [14]: “Given the available road network that vehicles 
can move after disaster in a form of satellite images (denoted as 𝐺𝐺� = (𝐸𝐸� ,𝑉𝑉�)) and real-time 
distribution of people estimated using phone call requests. Requirements: how to predict 
the density of potential rescue requests and the rescue teams needed to serve as many 
victims as possible while minimizing the wasting time to the victims’  position, and the 
number of rescue teams?”  

To solve this problem [14], they designed a system that consists of three stages (see Fig. 
1): human mobility information derivation, predicting the distribution of potential rescue 
requests, and reinforcement learning-based rescue team dispatching. 

 

 
Fig. 1. The framework of MobiRescue [14]. 

 
A SVM model is employed [14] to estimate the distribution of potential rescue requests 
concerning many parameters. It focuses on hurricane-related factors represented as a vector 
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h = (precipitation, wind speed, altitude). Wind speed and precipitation can be gained from 
the National Weather Service. Altitude can be extracted from the altimeter sensor on the 
cellphone of victims. The distribution of the movement of people also changes before, 
during, and after the disaster. The proposed reinforcement learning-based dispatching 
method determines the response of all rescue team requests in real-time. It runs on the 
predicted distribution of potential rescue requests. 

The reinforcement learning model [14] is used to optimally guide the movement of the 
rescue teams that maximize the reward. The guided rescue teams respond to the rescue 
requests of the victims appearing on their driving routes. A Deep Neural Network (DNN) 
is used to obtain the optimal solution for dispatching rescue teams. In the training phase, 
historical distribution of rescue requests and the historical positions of rescue teams from 
previous disasters are used. Finally, the model outputs are used to produce a routing plan 
for each team during the disaster. Under calamity situations, the GPS locations of people 
may not be available. The authors used the historical GPS locations or home/work addresses 
to estimate the approximate locations. In conclusion, the authors conducted extensive trace-
driven experiments to show the effectiveness of MobiRescue [14] to dispatch the rescue 
teams in real-time during a disaster. This practical approach can be applied to casualty 
transportation during MCIs with the output of this model as the routing guide for 
ambulances to available hospitals.  

4 AI-based transportation congestion detection 

During the casualty transportation process in MCIs, an important task needed to be 
considered is traffic state detection. In emergency situations, ambulances cannot transport 
casualties to hospitals in a timely fashion in order to receive further treatment if  the 
ambulance falls victim to a traffic jam or blocked road way. This is especially prevalent in 
urban cities or when the disaster scenario causes severe destruction. Traffic state detection 
plays a vital role in the MCI response. The incident commander needs to determine which 
routes an ambulance need to drive to deliver casualties to hospitals with the least time 
delays. A popular and effective solution is using computer vision (CV) to detect traffic jams 
and blocked ways in MCI. In this section some specific solutions for this problem are 
reviewed. 

In [15], the authors introduced a dynamic control system in Dhaka by measuring the 
traffic density from real-time video and image processing. The traffic density of a specific 
lane is estimated by detecting and counting the number of cars entering and leaving a lane 
with two cameras. The adaptive learning-based Mixture of Gaussian (MoG) method is 
employed to identify and count the number of cars in the lane. Once detecting and counting 
tasks have been done, the data is sent to traffic intersections hubs to estimate lane density. 

Following this method [15], a dynamic traffic light control system at intersections hubs 
is built to regulate the traffic lights at intersections. Before deciding to change the traffic 
light, the system must check the neighboring hubs whether the lanes in front are free. 
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Unmanned Aerial Vehicles (UAVs) are used popularly and effectively in CV with high 
portability advantages. A combination of a UAV platform with AI is proposed to solve 
traffic congestion recognition problems [16]. Using UAVs, the traffic monitors can see the 
traffic scenes from all angles, receiving data faster and more cost effective. Their platform 
can be applied for casualty transportation to treat patients in a timely manner when a mass 
casualty occurs. 

The framework in [16] consists of a monitoring system based on UAVs and a 
recognition system based on Convolutional Neural Networks (CNNs). In the former, a UAV 
embed route-planning technology captures the images of traffic scenes. These images are 
then transferred automatically to the recognition system by the UAVs. This module 
classifies whether these scenes are congestion or not. The result will be sent to the traffic-
management center to determine further actions. The CNNs-based recognition system is 
installed on UAVs and can be divided into two blocks: feature extraction and feature 
recognition. The feature extraction block produces high-level features for given captured 
images. The feature recognition block receives these high-level features and results in a 
traffic state. The authors [16] used the pre-trained ResNet-34 model and a transfer learning 
method for the feature recognition block. 

In casualty transportation, speed, density, and volume are the most crucial parameters 
for the commander to give a tactical decision in disaster response. Ke et al. [17] introduced 
a complete framework for estimating traffic flow parameters from UAV videos. This 
framework consists of four stages. The first two stages are for vehicle detection and the last 
two stages for traffic flow parameter estimation. 

In [18], the authors constructed a UAVs benchmark for three tasks: Detection (DET) 
task, Single Object Tracking (SOT) task, and Multiple Object Tracking (MOT) task. The 
benchmark aimed to solve high density, small objects, camera motion, and real-time UAV 
platform issues. The authors focused on vehicles and the dataset of 100 video sequences 
selected from 10 hours of videos taken by UAVs in complex scenarios. The parameters like 
weather condition, flying altitude, camera view, vehicle category, vehicle occlusion, and 
out-of-view are considered. This UAV benchmark is a real-time solution in the CV. This 
benchmark can be used in patient transportation to select a dataset and an algorithm for 
applying CV based on a UAVs platform for traffic state detection during a MCI in useful 
ways.  

Meng et al. [19] proposed a novel counting vehicle method based on expressway videos. 
This method mainly relies on four points: (1) constructing a new dataset named NOHWY 
that contains 7849 1920*1080 RGB images in diverse climatic conditions taken by Pan-
Tilt-Zoom cameras from expressway; (2) a new vehicle correlation-matched algorithm for 
tracking to deal with trajectory point instability problem and solve interruption and uneven 
problems; (3) employing a motion vehicle trajectory optimization method; (4) counting  
multiple types of vehicles  moving in different directions with a new multi-vehicle counting 
method.  

The framework [19] can work effectively based on video sequences under different 
climatic conditions. This work can be used to build a decision support system in traffic state 
detection during casualty transportation in a MCI. 
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5 Conclusions 

In a MCI, many victims often result in the overwhelming of emergency response resources 
for a particular area. In certain worst-case scenarios precious time is wasted when 
transporting seriously injured victims to a hospital.  

Managing the emergency response in a MCI requires making many decisions. 
Depending on the scale of the incident and the severity of the injuries of the patients, these 
decisions may include how many resources are needed to respond to the incident or 
incidents, how to classify patients, which patients should get priority for transportation to a 
hospital, and to which facility each victim should be sent. Because of the time-sensitive 
nature of emergency medicine and the chaotic environment present at the scene of a MCI, 
these decisions must be made quickly and often with limited information.  

Therefore, developing an effective framework is required. The models and solutions 
reviewed in this paper are some of the most effective frameworks dealing with this problem. 
However, these models still have some drawbacks when adapted to dynamic environments. 
With artificial intelligence development, building an AI framework for disaster response 
organizations can help incident commanders solve the crucial problems whenever disaster 
appear. 
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