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Abstract. This work is aimed at the study of ways to assess risk in complex in-
telligent systems, which do not involve a human and focused mainly on issues 
related to the joint activity of unmanned systems in a dynamic environment, 
where risk appears due to their interaction. A simple and fast qualitative risk as-
sessment method that can provide assessments reliably, efficiently and timely is 
proposed. The proposed method combines a matrix-based approach and a geo-
metric approach to process numerical data at the input. A soft set is proposed as 
a suitable tool to avoid uncertainties related to incomplete and inaccurate in-
formation. The model of a dynamic system under risk based on n-dimensional 
stateful interaction space and corresponding topological structures is defined. It 
is proposed to estimate numerically only inexpensive parameters and then pro-
vide sophisticated quantification of them to avoid extensive calculations. The 
risk levels are assessed with respect to the certain cells of the discretized n-
dimensional interaction space. The levels of risk assessed in different cells of 
interaction space allow assessing risk distributed over the interaction space to 
prioritize risks properly. Due to uncertainty and lack of sufficient data, a densi-
ty-based metric, which represents a relative density of interacting objects, is 
proposed to use instead of traditional probabilities or frequencies to estimate the 
chance of the object being exposed to the undesired event. The algorithm of the 
proposed risk assessment method is presented. The proposed method provides 
the acceptable performance of risk assessment enough to the real-time. 

Keywords: Qualitative Risk Assessment, Interaction space, Density-Based 
metric, Soft Set, Topological space, Risk Level, Unmanned Systems 

1 Introduction 

The world around us is a source of any risk. Most of the people’s usual activities are 
risky. Often, people are forced to cope with risk in order to make a proper and com-
prehensive decision in various ordinary activities such as driving a car, buying expen-
sive goods, lending from a bank, etc. In any case, to be responsible for the decisions, 
people must be aware of their consequences, that is why many people use risk as-
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sessment techniques explicitly or implicitly [1]. All of the above even more applies to 
institutions such as banks, insurance, logistic and trade companies, etc. Responsible 
persons of such institutions use various management methods based on a risk assess-
ment. Thus, most people aim to investigate, correctly assess, eliminate and minimize 
risk both in their life and business because this allows them to maintain the property, 
vital and business activity at the appropriate level, to save their health and even life in 
many dangerous cases, etc. Although the risk assessment and analysis are mainly 
subjective and uncertain, they are considered to be very important and difficult tasks 
[2]. This paper substantially addresses the real-world risk assessment problem. How-
ever, the paper is not about people making decisions under risk.  

Even though a person remains an important element of many complex systems 
since she manages them, makes important decisions, and, therefore, is responsible for 
their results, the modern level of technology development brings us new challenges. 
Unmanned systems are slowly but firmly and ruthlessly displacing people and taking 
full responsibility. Today, we are surrounded by lots of complex intelligent systems 
forced to make decisions on their own.  

In human-based (ergatic) systems, the decision-maker mitigates the effect of sub-
jectivity and uncertainty taking responsibility for the final result, but nobody can take 
control and responsibility in an autonomous unmanned system, so such a system must 
assess risk by itself. Thanks to intensive improvements, unmanned systems have be-
come more and more intelligent and cheaper. This ensures the start of the massive use 
of unmanned systems that work together. Performing certain functions simultaneous-
ly, they interact with each other in a complex way entailing risk, which must be as-
sessed reliably and timely.  

It is not surprising, but even the most perfect system based on artificial intelligence 
cannot be compared with a human in terms of the considered issues. Therefore, seri-
ous challenges related to the limited resources of such systems, their limitations in the 
computational performance, great sensitivity to incompleteness and inaccuracy of 
information [3] is an addition to other challenges related to the risk assessment by a 
human in human-based systems. An even greater challenge is the non-linearity of the 
methods of artificial intelligence since they are implemented by exhaustive algo-
rithms, which can not guarantee a final computation time during the risk assessment 
[4]. Obviously, methods of risk assessment, which can be efficiently used in complex 
intelligent systems, significantly differ from methods used in human-based systems, 
but such methods are not good enough studied for today. 

Thus, the study of ways to assess risk in complex intelligent systems, which do not 
involve a human, is a topic of our interest. In this paper, we focused mainly on issues 
related to the joint activity of unmanned systems in a dynamic environment, where 
risk appears due to their interaction. To assess risk in such conditions, we need a sim-
ple and fast method that can provide assessments reliably, efficiently, and timely. 



2 Related Works 

Understanding of risk is domain-dependent, so its definitions differ essentially [5]. In 
general, the risk is about unpleasant consequences caused by exposure to hazard and a 
chance of being exposed to the hazard. In most cases, risk can be defined as a product 
of the likelihood and the magnitude of harms or losses caused by hazard [6]. The 
consideration of harms and losses depends on the purpose and often can not be re-
duced to a money equivalent (e.g., the consequences are about the life and health of 
people).  

We consider dynamic systems that include a multitude of dynamic objects interact-
ing in an uncertain and unpredictable environment. Since risk arises directly from the 
interaction of dynamic objects, the following assumptions can be introduced: 

• there is no risk if there is no dynamic and, consequently, there is no interaction; 
• there is a risk as soon as objects interact;  
• since the system is dynamic, the risk is also dynamic (i.e., it is not constant); 
• the risk could be applied to all participants in the interaction but varying degrees. 

Thus, emerging risk should not be ignored and must be assessed on time to provide a 
corresponding influence on decision-making at each interacting object. Since the risk 
is almost always present, it is necessary to assess its acceptability in a certain context.  

Risk assessment is an important tool to minimize risks, and there are qualitative 
and quantitative approaches to assess risk [7].  

A quantitative approach has been proposed to estimate risk as a numerical value 
based on the exposure, frequency (or probability), and consequence (i.e., the severity 
of potential loss) [8]. The simplest way to determine the value of risk is to multipli-
cate severity and probability measures. The reliability of risk assessment depends on 
the availability of data, so this approach can be successfully used wherever it is possi-
ble to rely on sufficient data; insurance companies and banks are a prime example of 
its scope. However, if reliable data are unavailable or their retrieval is too expensive, 
the quantitative approach is weakly appropriate.  

A qualitative approach is most relied on the subjective judgment of the competent 
person to determine an overall risk and can be mainly applied whenever the quantita-
tive risk assessment cannot be used for ethical reasons because the consequences are 
harmful to people or death [9]. According to this approach, decision-makers often 
evaluate risk in comparison to another risk. In this case, an expert or decision-maker 
must compare risk and choose a decision (or, at least, define functions that allow such 
comparison). For example, subjective estimations are often modeled by fuzzy values 
[10] and their membership functions need to be determined by experts. Thus, the main 
disadvantage of the qualitative approach is its subjectivity: a human is always needed 
to assess the risk. Such subjectivity leads to unclear results of risk assessment. 

Let us make a small comparison. The qualitative approach is subjective but rela-
tively simple. It less depends on exactly measured data than quantitative one because 
experts’ judgments supplement and clarify unavailable data.  



The quantitative approach is very complex but more credible and more objective 
because they rely on meaningful statistics as well as on mathematical methods. 

It is known that unmanned systems usually receive information about themselves 
and the world around them using a variety of sensors. Some sensors provide meas-
urements, while others provide images, which require processing and analyzing. In 
any case, all types of sensors can not provide complete information about the world 
because they have limited accuracy [11]. As a result, the vast majority of information 
to cope with risks is incomplete, imprecise, inconsistent, and sometimes vague or 
fuzzy. Overall, the most common features of the considered dynamic system, which 
include a multitude of interacting dynamic objects, are the following: 

• dynamics of the interaction. 
• lack of information; 
• lack of communication;  
• lack of “last chance” decision-maker, i.e. person who could correct errors; 
• the unpredictability of the environment and behavior of dynamic objects. 

Taking into consideration above-mentioned features, we conclude that both pure qual-
itative and pure quantitative risk assessment approach is inappropriate for such kind 
of systems. Hence, we need to combine these approaches to develop a suitable risk 
assessment method.  

There are several well-known and widespread risk assessment methods, which can 
be used for this. Statistical methods [12] are based on descriptive statistics; they are 
quite simple, fast, and easy to apply. However, they cannot deal with incomplete, 
imprecise, and inconsistent information. If some numerical data are unavailable, they 
rely entirely on the expert’s opinions. 

Another well-known method is the matrix method [13], which has such advantages 
as simplicity, adjustability, and validity for the prioritization of hazards. The main 
drawbacks are required contingency and subjectivity in prioritizing risks.  

There is a wide range of geometric methods based on the multidimensional repre-
sentation of the state space of a certain system and the ranging of hazards using well-
defined space and time limits (minima) [14, 15], which are relatively simple and 
based on quantitative calculations. However, most of them rely on a weak assumption 
of static limits and constant state changes.  

Decision trees are used widely to assess risk [16] and have such advantages as 
well-applicability to combine the likelihood and impact of risks as well as flexibility 
in determining mitigation strategies. Their main disadvantages are a need for suffi-
cient historical data and an inability for risk criticality assessment. 

The Monte Carlo Simulation is another widespread risk assessment method [17] 
applicable to contingency modeling and generation of probability distributions but it 
requires a huge amount of data and it cannot establish an accurate estimate of the 
risks. 

Artificial neural networks are widely used to quantify risks [18] and have some ad-
vantages since their inputs and outputs can be defined subjectively and do not need 
statistical distributions. Their disadvantages are mainly related to an inability to apply 
risk mitigation strategies. 



Sensitivity analysis [19] is another method to assess risks that enables the defini-
tion of risk dimensions and ranking of hazards in their order of significance. Howev-
er, it relies on a weak assumption that hazards arise one-at-a-time. 

Fault tree analysis [20] provides experts a possibility to use linguistic terms rather 
than numerals to assess the probability of occurrence of hazards. Despite some ad-
vantages, this method depends only on experts’ opinions to analyze the hazards.  

Fuzzy logic [21] is a method capable to deal with the vagueness and imprecision 
relevant to the qualitative risk assessment process but it also relies on the subjective 
opinions of experts in the definition of fuzzy membership functions. 

Considering the advantages and disadvantages of the above-mentioned methods 
with respect to the objective of the research at hand, all methods that rely on statistics 
or the subjective opinion of experts are unacceptable since unmanned systems have 
neither statistics nor experts. Since the risk assessment in the context of our consid-
eration is not concerned with obtaining precise outcomes, a qualitative assessment is 
quite acceptable at the output, but the main requirement is to prioritize risks in the 
order of their mitigation. At the same time, most of the available information is nu-
merical but has limited accuracy and maybe blurred. 

Thus, the use of the matrix method could be a good idea. It is also reasonable to 
combine the matrix method with the geometric one for processing numerical infor-
mation at the input. Furthermore, a proper tool must supplement such a combination 
to process incomplete and inaccurate information. Since complicated problems cannot 
be solved using classical methods, there are several well-known tools to describe 
various kinds of uncertainty, such as fuzzy sets [10], rough sets [22], vague sets [23], 
and others, but all of them have difficulties [24] in a deal with uncertainties due to 
their essential nonlinearity and computational complexity, which prevents their effi-
cient use in the conditions of strong time constraints. Soft sets that have been intro-
duced in [25] to overcome such difficulties seem to be quite suitable.  

3 Model of a Dynamic System under Risk 

Consider an abstract dynamic system Ω  within a certain n -dimensional stateful 
space Ξ . Suppose the system Ω  includes a set of m  dynamic objects { }1,... mω ω , each 
of which has an explicitly described state mX ∈Ξ  that can change in time. Suppose 
such objects i ∈Ωω  can interact in a certain way within a given state space Ξ . 

Suppose the n -dimensional space Ξ  is Euclidean, linear, and uniform.  
Let Y  be a set of certain elements { }1,... zy y . Let T  be an infinite set of time points 

)0 ,... yt t  strictly ordered by T< , 0t  be an initial count, and t∆  is a time slice. Thus, 

( )0, , , TT t t∆ <  is a timescale defined over T . 

Suppose Tξ  is a metric defined on T  such that i j T
t t− →τ  endowed with the fol-

lowing properties:  

1. ( ), 0T i j i jt t t tξ = ⇔ = ; 



2. ( ) ( ), ,T i j T j it t t tξ ξ= ; 

3. ( ) ( ) ( ), , ,T i k T i j T j kt t t t t tξ ξ ξ+„ , 

, ,i j kt t t T∀ ∈ . 

Suppose a norm 
[ )

( )( )
0,

min
t T

y y t
Ξ ∈
=  within space Ξ , where y Y∈ , t T∈ . Let us de-

fine a corresponding metric ( )1 2 1 2,y y y yΞ = −ξ  endowed with the properties: 

1. ( )1 2 1 2 1 2, 0  y y y y y yΞ = − = ⇔ =ξ ;  

2. ( ) ( )1 2 1 2 2 1 2 1, ,y y y y y y y yΞ Ξ= − = − =ξ ξ ;  
3. ( ) ( )1 2 1 2, ,y y y a y aΞ Ξ= + +ξ ξ ;  

4. ( ) ( )1 2 1 2, ,y y y yΞ Ξ= ⋅ξ λ λ λ ξ  where 1 2, ,y y a Y∈  

Suppose a certain basis 1,..., ne e  holds uniformity of the metric Ξξ  within n -
dimensional space Ξ . Thus, a certain state iX  within space Ξ  of the dynamic object 

i ∈Ωω  can be described as ( )1 ,...,i i niX x x=  whereas 1 ,...,i nix x  are the state parameters 
that correspond to the given basis 1,..., ne e .  

Let us discretize space Ξ  by a metric grid D  using certain lines spaced with size 
δ . Suppose a linear mapping :f DΞ →  transforms the given space Ξ  into a grid of 
n -dimensional cells of size δ  in each n  dimension.  

As the result, we obtain the grid { },...x zD d=  of isometric n -dimensional cells ,...x zd , 
where ,...x z  correspond to the cell state parameters 1,..., nx x . In this way, each n -
dimensional cell ,...x zd D∈  is the smallest (discrete) subspace of the space Ξ . There-
fore, the discrete state of each dynamic object i ∈Ωω  is referenced to the correspond-
ing cell within space Ξ . The size δ  cell can usually be determined by the technical 
capabilities of sensors and the computing capabilities of onboard computers. 

Suppose the proposed discretized model of space is consistent with the information 
captured by sensors. Let us build the corresponding topology. 

Let D  be a non-empty n -dimensional set of cells, 0R≥  be a set of non-negative 
real numbers, and Dξ  be a function 0RD D ≥× → . Obviously, Dξ  can be a suitable 
distance function (metric), if its values satisfy the conditions:  

1. ( )1 1, 0D d dξ =  if and only if 1 2d d= ; 
2. ( ) ( )1 2 2 1, ,D Dd d d dξ ξ= ; 
3. ( ) ( ) ( )1 2 2 3 1 3, , ,D D Dd d d d d dξ ξ ξ+ ≥  

for each 1 2 3, ,d d d D∈ . In this case, the function ( )1 2 1 2,D d d d dξ = −  provides a certain 
distance from a cell 1d  to a cell 2d  within the grid D , and a couple ( ), DD ξ  is a met-
ric space.  



Let D D Dℜ ⊆ ×  be a reflexive, symmetric, and transitive relation defined on the 
n -dimensional set of cells D . It represents an indiscernibility relation ( )1 2,D d dℜ  
between two cells 1d  and 2d  such that 1 2,d d D∈  in terms of certain value y Y∈ , if 

( )( ) ( ) ( )1 2 1 2,d d D y Y y d y d∀ ∈ ∀ ∈  =   . In this case, the cells 1d  and 2d  are y -
indiscernible. Since the indiscernibility relation ( )1 2,D d dℜ  is definitely an equiva-

lence relation, it helps us to determine equivalence classes of D  with respect to Dℜ .  
Suppose / DD ℜ  is a factor set that consists of all equivalence classes of D  with 

respect to Dℜ . Let D  be a universal set and ( ),D Dapr D= ℜ  be an approximation 
space defined by a composite set that is a finite union of elementary sets, each of 
which corresponds to an empty set or an element of the factor set. Thus, the equiva-
lence class ( )D dℜ  containing a specified cell d D∈  clearly determines a family of all 
composite sets ( )DDef apr  that, in turn, uniquely determines a topological space 

( )( ), DD Def apr=T  based on the approximation space ( ),D Dapr D= ℜ .  

In this case, ( )DDef apr  is a topology on D  and ( )( ), DD Def apr=T  is a corre-
sponding topological space, if all subsets of the set ( )DDef apr  satisfy the conditions:  

1. ( ),DDef apr∅∈ ( )DD Def apr∈ ;  
2. , ( ) ( )D DA B Def apr A B Def apr∈ ⇒ ∩ ∈ ;  
3. , ( ) ( )D DA B Def apr A B Def apr∈ ⇒ ∪ ∈ .  

Certainly, each cell d D∈  is an element of the topological space T . 
Suppose each dynamic object i ∈Ωω  performs a certain function changing its state 
( )iX t ∈Ξ  over time. The state of the system Ω  is defined by a set of states of all 

dynamic objects { }1,... m ∈Ωω ω  that constitute this system, so that ( ) ( ){ } 1

n
i i

X t X tΩ =
= . 

Since the state ( )iX t  of each dynamic object i ∈Ωω  is uniquely determined by a 
correspondent cell ,...ix izd  of the grid D , as well as the overall state ( )X tΩ  of the sys-

tem Ω  is determined by a set of cells{ },... 1

n
ix iz i

d
=

, the topological space T  based on D  

can be a relevant tool for risk assessment within space Ξ . 

4 Proposed Method of Risk Assessment 

In the human-based system, a responsible person has to decide under risk rationally 
taking into account moral, ethics, and other reasons. In contrast, unmanned systems 
are based solely on feasibility expressed through the prism of given criteria. If there 
are many such criteria set simultaneously, then decision making will be multi-criteria. 

Thus, the risk assessment is considered to be a very important task of a complex in-
telligent unmanned system. As we found out above, “no risk” situations are not most-



ly observed in the considered class of dynamical systems. Indeed, such a system is 
dynamic because its objects interact generating various threats and risks. Hence, for 
such a system, achieving the “near zero risk” is either impossible or too expensive. 
Thus, a much more important and achievable task for each of the dynamic objects is 
establishing an acceptable level of risk and use risk assessment methods to minimize 
risk during decision-making.  

It should be noted that the dynamic object does not need to calculate the degree of 
risk quantitatively, but it needs to evaluate risk qualitatively in comparison to another 
risk to prioritize them. Therefore, even if there are ways to calculate risk parameters 
accurately, the use of complex time-consuming algorithms is not necessary.  

In this paper, it is proposed to use a simple and fast qualitative method based on a 
risk matrix. The risk matrix should correspond to the available data and the exposure, 
frequency (probability, possibility), and consequences (severity of potential loss). 
Quantitative risk assessment requires numerical estimations of such parameters. 

We propose to estimate numerically only inexpensive parameters and then provide 
sophisticated quantification of them to avoid extensive calculations. Such quantified 
values can then be used as inputs to assess a risk level at the output based on the risk 
matrix. In this way, we assess the risk level with respect to the certain cells ,...ix izd  of 
the discretized interaction space D . Ultimately, knowing the levels of risk in different 
cells of space, we can assess risk distributed over this space to prioritize risks proper-
ly. To mitigate the effect of quantification, we use soft sets, which allow us to con-
struct a distribution of risk levels over the space D . 

4.1 The Algorithm of the Risk Assessment 

The risk assessment is a continuous process that includes (Fig. 1): 

• determination of the risk context; 
• identifications of threats; 
• risk estimation: 

1. estimation of exposure; 
2. estimation of possibility; 
3. estimation of consequences; 

• risk evaluation; 
• risk prioritization. 

Determination of the risk context is aimed at analyzing possible interactions between 
dynamic objects and evaluating all three components necessary for the risk assess-
ment. 

At the next stage, some of these interactions, which can pose risk, are identified as 
threats. Since threats can cause injury, damage, or loss, the purpose is to identify as 
many threats as possible. 

 



 

Risk Context 
Determination 

Threats Identification 

Risk Estimation 

Density 

Severity 

Exposure 

Risk Evaluation 

Risk 
Analysis 

Risk is 
Tolerable? 

 

Risk Prioritization 

Sensors 

Risk 
Assessment 

Yes 

No 

 
Fig. 1. The Algorithm of the Risk Assessment 

At the next stage, the qualitative assessment is provided to determine the level of risk 
associated with each specific threat identified at the previous stage. Usually, this stage 
is based on the estimations of probability, exposure, and severity of loss as the conse-
quences of an undesirable event. In our case, the exposure and severity can be esti-
mated using the interaction analysis, but the probability can not be estimated due to a 
lack of sufficient data, so we propose to use density estimations instead of probability 
estimations.  

Finally, risks must be evaluated and prioritized to reduce, mitigate, or eliminate 
them in the context of all components. Since such components of risk (e.g., density, 
exposure, and severity) usually cannot be identified unequivocally, we use quantified 
levels that can be estimated using ordered scales of limits. Thus, in our case, the risk 
assessment can be reduced to a matrix based on levels of all three components. 

4.2 Determination of the Risk Context  

Suppose dynamic objects ,i j ∈Ωω ω  interact within space D  during their joint activi-
ty. The trajectory ( )iTr ω  of each object iω  can be represented as a continuous se-

quence of its states ( ) ( ),...i j i kX t X t    on a time interval ,...j kt t T  ∈  , while the state 

( )iX t  of the iω  at the moment t T∈  corresponds to the certain cell ,...ix izd D∈  deter-
mined by its parameters within D .  



The objects, which states are within the interaction space D  do not necessarily in-
teract. Their trajectories at different time points can approach, intersect, or diverge 
from each other. Basically, their interaction can be defined based on the local proxim-
ity D∗  of the dynamic objects within the interaction space D , which can be estimated 
based on the given metric Dξ  (Fig. 2).  

Thus, D∗  is a subspace of the interaction space D , D D∗ ⊆ , usually represented 
by a closed n -dimensional figure having the maximum surface distance R  from a 
certain base point 0d  such that ( )0  ,Dd D d d∗∈ ⇔ ξ „ R .  
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Fig. 2. The interaction space 

Let ( ),Ω Ωc  be a relation between two dynamic objects ,i j ∈Ωω ω  that restricts a 

subset of interacting objects Ωc , i.e. { } ( )i j i j∈Ω ↔ω ω ω ω, ,c c . Due to the dynamics 

of the interaction, the composition Ωc  also changes dynamically.  
Let ( ) ( ) ( ){ }0 ,...i i ilr t r t r t=  be a set of n -dimensional margins evaluated for a certain 

object iω  at the time t  based on the above-mentioned metric Dξ  such that 

( ) ( ) ( )1 ,...ij ij ijnr t r t r t =   . Since the trajectory ( )iTr ω  of each object iω  is characterized 

by the different dynamic (e.g., speed and acceleration) and functional parameters 
(e.g., prudence or persistence), each of the interacting objects will simultaneously 
have its own set of margins that can differ from the set of margins for other objects. 

Suppose a function ( ),i tΧ ω  returns the state ( )iX t  of the object iω  at the time t  
as well as the function ( ),k tΧ ω  returns the state ( )kX t  of the object kω  at this time. 
Thus, a certain distance ( ),i k∆ ω ω  between their trajectories can be evaluated by 

( ) ( ), ,i kt tΧ − Χω ω  for each couple ( ),i kω ω  of objects with respect to the object iω . 
Clearly, the distance ( ),k i∆ ω ω  with respect to the object kω  can differ from 
( ),i k∆ ω ω . 



Assume that unpleasant consequences are concerned with an excessive rap-
prochement or intersection of the trajectories of interacting objects iω  and kω . 

Thus, we define interaction function :i ijD r→c , which describes a subset of ob-

jects iΩ ⊆ Ωc  interacting with iω , as a surjective anisometric mapping based on the 
evaluated sets of n -dimensional margins ( )ir t  and ( )kr t  (Fig. 3). 

Suppose ( ) ( ) ( ){ }0 ,...ik qt t t=τ τ τ  is a set of time limits given with respect to the in-

teraction of iω  and kω  based on the metric Tξ  over T  such that i k T
t t− →τ .  
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Fig. 3. Interaction Metrics 

Let rґ  be a partial order ( ) ( ) ( )0 1 ...i r i r r izr t r t r tґ ґ ґ  given on the set ( )ir t  that implies 

the corresponding ordinal scale ( ) ( ) ( ){ }0 ,...i i izt r t r t=R . Suppose iµ  is a function that 
uniquely takes each distance ( ),i k∆ ω ω  onto a certain level of the scale ( )i tR , such 

that ( ) ( ) ( ) ( ): , ,i i k ij it t r t tΧ − Χ → ∈µ ω ω R . Thus, the function iµ  can be used for quan-
tification of the states’ distances onto the scale ( )i tR . 

The dynamic object iω  interacts with jω  (in other words, there is a relation 

( ),i i jω ωc ), if and only if ( ) ( ) ( )1, ,i k it t r tΧ − Χ ≥ω ω . Consequently, 

1,    , i
i k i i i kr∀ > ⇔ ∈ω ω ω ω cc A .  

The dynamic object iω  interacts with jω  dangerously, if 

( ) ( ) ( )2, ,i k it t r tΧ − Χ ≥ω ω , and interacts with jω  critically, if 

( ) ( ) ( )3, ,i k it t r tΧ − Χ ≥ω ω .  

Thus, the interaction set iΩc  around iω  includes all objects  j j i∈Ω ∀ ≠ω , , which 
have established the interaction with iω  based on ic .  

Clearly, the margin limits outline n -dimensional areas within subspace D∗ , which 
represent exposure levels needed for the risk assessment. Definitely, all objects that 
interact with the object iω  (i.e., their distances are equal or greater than ( )1ir t ) pose 
risk to iω , so the object iω  is exposed to risk. 

Let us use margin limits as it is shown in Table 1. 



Table 1. Margin limits and corresponding exposure levels 

 Level Exposure due to the interaction 
0 0ir  «no interaction» 

1 1ir  «safe interaction» 
2 2ir  «dangerous interaction» 
3 3ir  «critical interaction» 

 
At the same time, severity levels can be evaluated based on the inertial properties of 
the objects within the interaction space D . Indeed, to avoid the intersection of trajec-
tories objects can speed up, slow down, or deviate, while the environment can both 
increase the inertial force or weaken it. Thus, the time-to-intersect ( )ik tτ  can be a 
relevant measure, which makes it possible to assess how great is the influence of the 
dynamics of the objects’ iω  and kω  interaction on its possible consequences. 

Let tґ  be a partial order ( ) ( ) ( )0 1 ...ik t ik t t ikqt t tτ τ τґ ґ ґ  given on the set ( )ik tτ  that 

implies the corresponding ordinal scale ( ) ( ) ( ){ }0 ,...ik ik ikqt t t= τ τU . Suppose ikη  is a 

function that uniquely takes time-to-intersect ( )ik tτ  onto a certain level of the scale 

( )ik tU , such that ( ) ( ) ( ):ik ik ikj ikt t t→ ∈η τ τ U . Thus, the function ikη  can be used for 
quantification of the remaining time during the interaction onto the scale ( )ik tU . 

Based on the time-to-intersect ( )ik tτ  and the scale ( )ik tU , the interaction space D  
can be divided into the subspaces of easy activity 0

ikD , restricted activity 1
ikD , desired 

deviation 2
ikD , and obligatory deviation 3

ikD , which can be outlined around the state 
( ),iX tω  of the object i ∈Ωω c  at the time t , i.e., around the cell that reflect the cur-

rent state of the object iω  within D .  
Naturally, the less time it takes to prevent an undesirable event, the less is the pos-

sibility of preventing such event and the more serious are its consequences. Hence, we 
can define the severity levels based on the time-to-intersect limits. 

Let us use time limits as it is shown in Table 2. 

Table 2. Time limits and corresponding severity levels 

 Level Severity Activity 
3 3ikτ  Critical «obligatory deviant» 
2 2ikτ  Major «recommended deviant» 
1 1ikτ  Minor «restricted» 
0 0ikτ  Minimal «mutually free» 

The next and last component of risk assessment is a chance to the object of being 
exposed to the unpleasant event and its consequences. Usually, this chance can be 
accurately estimated using the probability of an event or the frequency of occurrence 
of an unpleasant event. However, as shown above, it is not always possible to obtain 



such estimates. Moreover, in the considered class of dynamic systems, the statistics of 
the occurrence of undesirable events are unavailable due to the non-representativeness 
of the sample. Therefore, we propose to use density-based metrics to estimate the 
chance of the object being exposed to an unpleasant event. The relative density of 
interacting objects is the simplest density metric that can be easily applied to the risk 
assessment. Consider the interaction set iΩc  for the object iω . This set includes all 
objects that interact with iω  based on the relation ic . These objects are dispersed 
over the subspace D∗  of the interaction space defined as the closed n -dimensional 
area described by the maximum surface distance R  starting from the point 0d , which 
can be spatially aligned with the cell id  that represents the state ( )iX t  of the object 

iω  within the interaction space D . 
Obviously, the higher is the density of objects within the subspace D∗ , the higher 

is the likelihood of an unpleasant event. Therefore, the relative density of interacting 
objects ( )is t  with respect to the object iω  can be estimated as the ratio of the number 

of interacting objects N  that constitute the interaction set iΩc  to the relative volume 
of the subspace D∗ , which can be obtained as the number of cells within the grid D  
that are inscribed in the subspace D∗ . Consequently, ( ) i

is t D∗= Ωc , where ⋅  is the 

cardinality of the corresponding set. 
Let sґ  be a partial order ( ) ( ) ( )0 1 ...i s i s s iut t tσ σ σґ ґ ґ  given on the set ( )is t  that 

implies the corresponding ordinal scale ( ) ( ) ( ){ }0 ,...i i iqt t t= σ σS . Suppose iγ  is a func-

tion that uniquely takes the relative density ( )is t  onto a certain level of the scale 

( )i tS , such that ( ) ( ) ( ):i i ij is t t t→ ∈γ σ S . Thus, the function iγ  can be used for quanti-
fication of the relative density of interacting objects within the interaction space D .  

We can use a limited number of density levels to speed up the risk assessment as is 
shown in Table 3. 

Table 3. Density levels 

 Level Density 
0 0iσ  Sparse 

1 1iσ  Low 
2 2iσ  Medium 
3 3iσ  High 

 
Thus, we have three components of risk represented qualitatively by certain levels and 
we are ready to assess the risk level.  

4.3 Risk Assessment 

The goal of risk assessment is to determine risk acceptability, often by comparison to 
similar risks. Thus, risk assessment is relative. 



Table 4 shows the risk categories and correspondent risk levels ensured by the pro-
posed method. 

Table 4. Risk categories (levels) 

  Level Category 
5 5y  X - Extreme Fatal 

4 4y  H - High Unacceptable 

3 3y  M - Medium Unacceptable 

2 2y  L - Low Tolerable 

1 1y  I - Minor Acceptable 

0 0y  Z - Near Zero Negligible 

 
Estimated levels of all three components of risk intersected by rows and columns 
create a Risk Assessment Matrix. Risk Assessment Matrix is a generally accepted 
definition for risk levels given in Table 5.  

Table 5. Risk Assessment Matrix 

Density Exposure Severity 
Minimal Minor Major Critical 

0 

0 Z Z M H 
1 I I M H 
2 I I M H 
3 I L H H 

1 

0 Z I M H 
1 I L M H 
2 I L H H 
3 I L H X 

2 

0 I L M H 
1 I L H X 
2 L M H X 
3 L M H X 

3 

0 I L H X 
1 L M H X 
2 L M X X 
3 L M X X 

4.4 Soft Risk Assessment 

Soft sets enable to approximately represent risk levels distributed over the interaction 
space using the topologies defined in Section 3.  

Let iy  be an i -th risk level and { }5

0i i
Y y

=
=  be an ordered set of risk levels. Suppose 

D  is a universe and ϒ  is a mapping that takes Y  onto a set of all subsets of the set 
D , i.e. : 2D

iyϒ → . Thus, a pair ( ),Yϒ  represents a soft set of cells [24]. In other 



words, the pair ( ),Yϒ  is a family of subsets of the set of cells D , all of which are 
parameterized by the set Y . Each value iy Y∈  defines a certain set of iy -
approximated elements of the soft set (called iy -elements of the soft set [25]). Let us 
denote such iy -elements by iϒ . 

Soft set ( ),Yϒ  divides the universe D  into the set of iy -elements such that 

{ } 1

k
i i=ϒ = ∪ ϒ . A dynamic iy -indiscernibility relation ( )iy

D tℜ  can be defined on the 

universe D  as ( ) ( ) ( ) ( ) ( ){ } ,   , ,iy
i D m n i m i ny Y t d d D D y d t y d t∀ ∈ ℜ = ∈ × = . Using this rela-

tion, each iy -element of the soft set iϒ  represents a certain equivalence class at the 
moment t . Thus, the parameterized family of subsets of the universe D  constitutes 
the iy -element of the set iϒ , which uniquely determines a factor-set ( )/ iy

DD tℜ . The 

factor-set consists of all equivalence classes of D  induced by the relation ( )iy
D tℜ . 

Therefore, a pair ( )( ), iy
D Dapr D t= ℜ  defines the dynamic approximation space. Defi-

nitely, ( )DDef apr  is a family of all compound sets and ( ) ( )( ),
yi
D

D Dt D Def aprℜ =T  is a 
dynamic soft topological space, which uniquely corresponds to the dynamic approxi-
mation space.  

Each iy -element of the soft set iϒ  enumerates cells, which corresponds to the cer-
tain i -th risk level. Thus, different iy -elements of the soft set have distinctive risk 
levels. The cells, which belong to the iy -element of the soft set iϒ , constitute the 
topologic structure represented by the corresponding equivalence class ( )/ iy

DD tℜ . 
Since the assessments of risk usually change over time, the soft set ( ),Yϒ  of cells is 
dynamic as well as risk assessments. The representation of the dynamic soft set of risk 
assessments distributed over the interaction space is shown in Fig. 4. 

 
Fig. 4. Representation of the dynamic soft set of risk distributed over the interaction space 

5 Results 

The proposed method has been tested in the unmanned vehicle’s onboard system 
Breeze [26] based on embedded microcontroller STM32F429 (180 MHz Cortex M4, 



2Mb Flash/256Kb RAM internal, QSPI Flash N25Q512). The proposed algorithm of 
the risk assessment has been implemented using the C++ programming language as 
well as the ToPo and SoFTo library, which offer a set of operations for topologies 
including their addition and subtraction, determining unions, intersections, closures, 
and interiors, and a wide range of operations with soft sets.  

The efficiency of the proposed method has been examined based on its comparison 
with traditional geometric (quantitative) and decision-tree based (qualitative) risk 
assessment methods. The total time of the risk assessment has been evaluated with 
respect to the number of interacting dynamic objects varied from 10 to 100. The re-
sults are shown in Fig. 5, they show that the proposed method provides acceptable 
performance, which allows it to be used in real-time unmanned systems. 

 
Fig. 5. Simulation results  

6 Conclusions 

The problem of risk assessment in complex intelligent systems, which do not involve 
a human is addressed in the paper. The paper is focused on issues related to the joint 
activity of unmanned systems in a dynamic environment, where risk appears due to 
their interaction. The authors propose the method that combines a matrix-based ap-
proach and a geometric approach to process numerical data at the input and uses soft 
sets as a suitable tool to avoid uncertainties related to incomplete and inaccurate in-
formation. The proposed method is based on the model of a dynamic system under 
risk based on n-dimensional stateful interaction space and corresponding topological 
structures. Authors propose to estimate numerically only inexpensive parameters and 
then provide their quantification to avoid extensive calculations. The risk levels are 
assessed with respect to the certain cells of the discretized n-dimensional interaction 
space. The levels of risk assessed in different cells of interaction space allow as-
sessing risk distributed over the interaction space to prioritize risks properly. Due to 
uncertainty and lack of data, a density-based metric, which represents a relative densi-
ty of interacting objects, is proposed to use instead of traditional probabilities or fre-



quencies to estimate the chance of the object being exposed to the undesired event. 
The proposed qualitative method is simple and fast, it provides the acceptable per-

formance of risk assessment enough to the real-time unmanned systems.  
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