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Abstract. The procedure is proposed for analyzing the risk factor interaction in 
financial systems. The procedure is based upon the results of eigenvalues distri-
bution analysis and distances between the eigenvalues for empirical and theo-
retical dependency matrices. Some results of the theory of random matrices are 
used to interpret the results achieved in the process of empirical studies for the 
correlation matrices of different kind. The results of computational experiments 
show that for small eigenvalues the results of theoretical analysis for random 
matrices are similar to the empirical matrices. The number of eigenvalues that 
exceed theoretical thresholds corresponds to the principal factors in a model. 
The difference between theoretical and empirical distributions of distances be-
tween eigenvalues means that in practice there almost always exist a large ei-
genvalue indicating (in economic interpretation) on existence of dominating 
generalized market factor. It was also established that no extra internal influ-
ence factors exist when the widely used models of derivative costs are hired. 
This result provides a possibility for determining correctly the number of prin-
cipal factors to construct mathematical models necessary for practical applica-
tions.  

Keywords: risk factor, financial systems, correlation coefficients, correlation 
matrices, multivariate model 

1 Introduction 

Modern financial instruments are basically characterized as nonlinear non-stationary 
processes functioning in complex conditions of multiple stochastic disturbances. Such 
conditions require development and application of non-traditional mathematical mod-
els for adequate describing the processes necessary for solving the tasks of forecast-
ing, risk estimation and decision making. This is especially true to financial risk anal-
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ysis in a case of multivariate problem statement. Simultaneous influence of risk fac-
tors and their interaction may result in much higher losses than available simplified 
models indicate that do not take into account possible interactions. That is why mod-
eling of risks in the problems of risk management especially in a case of large scale 
systems should not be limited to analysis of separate factors. Such models should also 
take into consideration possible interactions between the risk factors [1-3]. The cost of 
some financial instrument (position) usually depends on a set of exogenous risk fac-
tors that are generated by the current state of an enterprise, economy branch or macro-
economy as a whole. On the other side they are endogenous regarding to the function-
ing of specific market. Emerging of the endogenous factors is a feature of self-
organization in large scale systems [4]. Larger number of risk factors results in higher 
frequency of extreme events and in distributions with heavier tails. At the same time 
existence of links between the cost of financial instrument and the relevant risk in 
practice does not produce noticeable tendency to income growth with growing risks.  

The models constructed by selecting some (usually not large) number of principal 
factors of influence are popular in economy and finances thanks to simplicity of con-
structing procedure and their convenient low dimension. When modeling specific 
markets usually the following external factors are selected: general market factor, 
specific economy branch factors, and the factors that influence directly the market 
position. For example, relationship between nominal and market stock price, as well 
as characteristics of specific transaction such as its volume, conditions of payment 
etc.  

The group risk model for stock markets was proposed in the study [5]. According 
to the assumption of the model the market consists of several separate groups that 
include specific financial instruments the prices of which are correlated with the other 
stock prices belonging to the same group. Usually when model constructing for com-
plex systems is performed the principal risk factors are selected on the basis of exist-
ing economic theory. An alternative approach is based on detecting of available risk 
factors using mathematical techniques [6]. In this study we propose to characterize 
dependences between the stock prices using the results of random matrix theory [7] 
by application of the results to the matrices of dependency measures and coordination 
between the systems of financial instruments. The study [8] is based on analysis of 
concentration of especially large eigenvalues of random symmetric matrices. In the 
study [9] it was found the correspondence between eigenvalues distribution with the 
theoretical results from the theory of random matrices using empirical matrices of 
linear correlations for 406 stock prices of selected USA companies in the period of 
time 1991-1996 without taking into consideration the 6% of the largest eigenvalues.  

The study [10] stresses the correspondence between the results achieved for the 
symmetric random matrix and distribution of distances between the eigenvalues of 
empirical matrix of linear correlations for 1000 US stocks within two year period. In 
the work [11] the method is proposed for cleaning the noise from the empirical matrix 
of linear correlation coefficients.  

The linear correlation coefficients exhibit some drawbacks regarding application in 
risk management systems. That is why we considered application of some results 
from the random matrices theory to analysis of risk measures dependency. Taking 
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into consideration the necessity of determining effectiveness of application the meth-
ods of random matrices analysis to risk management problems the multivariable mod-
el of financial instruments was constructed with known dependency structure. Further 
on we studied how well the results achieved for non-random empirical matrices with 
adding some noise are similar to the theoretical results relevant to random matrices. 
An important problem related to the factor model building is establishing the links 
between numerical description of the dependency and the number of principal factors. 

2 Statement of problem  

The purpose of the study includes solving the following tasks: (1) constructing multi-
variate statistical model with known mutually dependent principal factors on the basis 
of copulas and distribution functions; (2) studying the possibilities for application of 
the methods related to random matrices theory to analysis of the dependency 
measures; (3) analyzing the possibility of application the eigenvalue distribution of 
correlation matrices related to different dependency measures and distribution of dis-
tances between the eigenvalues with the final purpose of determining the number of 
principal factors in a model. 

3 Estimation of risk dependencies  

The proper probabilistic description of a system including a set of stochastic process-
es is the following probability: 𝑃𝑃(𝑋𝑋1 ≤ 𝑥𝑥1; … ; 𝑋𝑋𝑛𝑛 ≤ 𝑥𝑥𝑛𝑛), i.e. their joint probability 
distribution, (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). The distribution contains information related to the processes 
dependency structure and marginal distributions of each random variable. To distin-
guish between descriptions of dependency between these random variables the special 
link functions can be used known as copulas. 

Definition 1: the function, 𝐶𝐶: [0,1]𝑛𝑛 → [0,1], is called n-copula if the following 
conditions are hold:  

1. 𝐶𝐶(𝐹𝐹1, … ,𝐹𝐹𝑛𝑛) = 0, if there exists j such that 𝐹𝐹𝑗𝑗 = 0;  
2. 𝐶𝐶(1, … ,1,𝐹𝐹𝑖𝑖 , 1, … , 1) = 𝐹𝐹𝑖𝑖  ;   
3. 𝐶𝐶 is n-increasing function.  

Theorem 1 [12]:  Let H is n-dimensional joint distribution function with marginal 
distributions, F1, … , Fn. Then there exists such n-copula C that for all x�⃗ ∈ Rn the fol-
lowing equality holds: 

 𝐻𝐻(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝐶𝐶�𝐹𝐹1(𝑥𝑥1), … ,𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛)�. (1) 

If the functions, F1, … , Fn, are continuous then, C, is unique; otherwise, the functions, 
C, are uniquely determined on the Rng[F1] × Rng[Fn]. And vice versa: 
when, F1, … , Fn, are distributions and C is n-copula, then, H(x1, … , xn)  is n-
dimensional joint distribution function with marginal distributions, F1, … , Fn.  



4 

Thus, copula is sufficiently (completely) defining the dependency structure be-
tween the random variables selected. However, the direct practical application of 
copulas to description of tens or hundreds random variables meets definite difficul-
ties. First, selection of appropriate copula family suitable for determining the copula 
forming the dependency structure by some parameter estimation is rather difficult. 
When the dimensionality is high the number of copula parameters is growing substan-
tially and the problem of parameter estimation arises due to incomplete observations, 
for example, maximum likelihood procedure for parameter estimation may not work. 
If risk measures are estimated for high dimensional copulas the Monte Carlo proce-
dures cannot be effective.  

To solve the high dimension dependency modeling problem it is proposed to detect 
principal factors in the manner as it is being done in the economic and financial model 
building procedures. Then the influence factors can be modeled via copulas and mar-
ginal distributions, and appropriate dependency measures. Though here the problem 
comes to being of determining the number of principal variables for which the joint 
distribution is constructed.  

There are several specific features that are desirable for a dependency measure to 
possess [13]: 

1. it should be defined for any pair of continuous or discrete random variables X and 
Y;  
2. the measure should be symmetric;  
3. it should be equal to zero in a case of independent random variables;  
4. it should be limited to the range of [–1; 1] and reach the lowest and the highest 
values when both random variables are, respectively, counter monotonic and equally 
monotonic;  
5. it can be expressed via the Pearson linear correlation coefficient in a case of two-
dimensional normal distribution;  
6. it distinguishes not only between random variables but also provides a measure of 
distance between them;  
7. it should be invariant relatively continuous strictly increasing transforms.  

If a measure exhibits all the features mentioned above it is called the dependence 
metrics (measure).  

One of the widely used dependency measures when modeling multivariate risks 
with elliptical distributions is linear correlation. For example, it is used in the case of 
normal and t-distributions. The linear correlation coefficient between two random 
variables X and Y with finite standard deviations is determined via the expression: 

 𝜌𝜌(𝑋𝑋,𝑌𝑌) = 𝐸𝐸[𝑋𝑋𝑋𝑋]−𝐸𝐸[𝑋𝑋]𝐸𝐸[𝑌𝑌]
�𝜎𝜎2[𝑋𝑋]𝜎𝜎2[𝑌𝑌]

, (2) 

where, 𝜎𝜎[𝑋𝑋] and 𝜎𝜎[𝑌𝑌], are standard deviations for X and Y, respectively.  
The linear correlation coefficient cannot be the dependency metric because there 

exist distributions with infinite standard deviation, and expression (2) is not defined in 
such cases. It means that the first characteristic defined above does not exist for the 
coefficient. The coefficient of linear correlation is commutative, i.e. 𝜌𝜌(𝑋𝑋,𝑌𝑌) =
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𝜌𝜌(𝑌𝑌,𝑋𝑋). In the case of independent random variables the following condition holds: 
𝜌𝜌(𝑋𝑋,𝑌𝑌) = 0, though it does not follow from the equality, 𝜌𝜌(𝑋𝑋,𝑌𝑌) = 0, that the varia-
bles are independent. The coefficient of linear correlation is limited by the values: 
−1 ≤ 𝜌𝜌(𝑋𝑋,𝑌𝑌) ≤ 1, and equality is reached when the two random variables are com-
pletely dependent. The coefficient is invariant to strictly increasing linear transforms, 
though in general case it is not invariant to nonlinear strictly increasing transforms.  
The random variables are considered to be in concordance when a tendency exists to 
simultaneous increasing or decreasing of their values. The observations, (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), and, 
(𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗), belonging to the vector or random variable, (X,Y), are considered to be in 
concordance if 𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑗𝑗 ,    𝑦𝑦𝑖𝑖 < 𝑦𝑦𝑗𝑗 or 𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑗𝑗 ,    𝑦𝑦𝑖𝑖 > 𝑦𝑦𝑗𝑗. The observations concordance 
condition can also be written in the way: �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗� > 0; and the non-
concordance condition is as follows:  �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗� < 0. 

The Kendall rank correlation, τ, and the rank Spearman correlation coefficient, ρS, 
are numerical characteristics of dependency that are related to the concordance 
measures. The Kendall, τ, is concordance measure for a sample of two random varia-
bles, X and Y, which is calculated as a difference between the number of coordinated 
and non-coordinated pairs of two-dimensional observations divided by the general 
number of pairs of the two-dimensional observations. Let, (𝑋𝑋′,𝑌𝑌′) and,  (𝑋𝑋′′,𝑌𝑌′′), are 
independent random vectors having the same joint distribution functions. Then, for 
the general sample of the random vector components with such joint distribution the 
concordance measure of Kendall τ  is written as follows:  

 𝜏𝜏 = 𝑃𝑃[(𝑋𝑋′ − 𝑋𝑋′′)(𝑌𝑌′ − 𝑌𝑌′′) > 0] − 𝑃𝑃[(𝑋𝑋′ − 𝑋𝑋′′)(𝑌𝑌′ − 𝑌𝑌′′) < 0]. 

For the increasing transforms ψ, φ  with 𝑋𝑋′ ≥ 𝑋𝑋′′  the following inequality holds: 
ψ(𝑋𝑋′) ≥ ψ(𝑋𝑋′′), and for 𝑌𝑌′ ≥ 𝑌𝑌′′  the following condition holds: φ(𝑌𝑌′) ≥ φ(𝑌𝑌′′). 
Thus, according to definition, we have invariance of Kendall τ to increasing trans-
forms.  

For the two-dimensional normal distribution as well as for any other random vari-
able exhibiting dependency structure described by elliptical copula, the Kendall τ can 
be expressed via linear correlation coefficient, ρ, as follows:  

 𝜏𝜏 = 2
𝜋𝜋

arcsin𝜌𝜌. 

The Spearman coefficient of rank correlation, ρS, is also related to the notions of 
concordance and non-concordance. But the measure also takes into consideration 
marginal distributions of random variables. Let, (𝑋𝑋′,𝑌𝑌′), (𝑋𝑋′′,𝑌𝑌′′),  and, (𝑋𝑋′′′,𝑌𝑌′′′) 
are independent random vectors having the same joint distribution functions, then the 
Spearman coordination measure, ρS,   is defined as follows:  

 𝜌𝜌𝑆𝑆 = 𝑃𝑃[(𝑋𝑋′ − 𝑋𝑋′′)(𝑌𝑌′ − 𝑌𝑌′′′) > 0] − 𝑃𝑃[(𝑋𝑋′ − 𝑋𝑋′′)(𝑌𝑌′ − 𝑌𝑌′′′) < 0]. 

The dependency measure can be defined in the same way via another component 
of some third vector,  𝑋𝑋′′′.  

The Spearman rank correlation can be expressed via linear Pearson correlation co-
efficient, ρ, as follows [12]:  
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 𝜌𝜌𝑆𝑆 = 𝐸𝐸(𝐹𝐹𝐹𝐹)−1/4
1/12

= 𝐸𝐸[𝐹𝐹𝐹𝐹]−𝐸𝐸[𝐹𝐹]𝐸𝐸[𝐺𝐺]
�𝜎𝜎2[𝐹𝐹]𝜎𝜎2[𝐺𝐺]

= 𝜌𝜌(𝐹𝐹,𝐺𝐺), 

where, F and G  are marginal distribution functions for the random variables X  and Y, 
respectively.  

The coefficients of rank correlation, 𝜏𝜏, and, 𝜌𝜌𝑆𝑆, are commutative: 𝜏𝜏(𝑋𝑋,𝑌𝑌) =
𝜏𝜏(𝑌𝑌,𝑋𝑋), 𝜌𝜌𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝜌𝜌𝑆𝑆(𝑦𝑦,𝑋𝑋). For completely independent random variables, 
𝜏𝜏(𝑋𝑋,𝑌𝑌) = 𝜌𝜌𝑆𝑆(𝑋𝑋,𝑌𝑌) = 0. The values of both rank correlation coefficients belong to the 
interval: [-1, 1]. These concordance measures can be expressed via copulas.  

Theorem 2 [14]: If X and Y are continuous random variables with joint distribution 
function H and marginal distribution functions F and G, respectively, and C is a copu-
la such that 𝐻𝐻(𝑥𝑥,𝑦𝑦) = 𝐶𝐶�𝐹𝐹(𝑥𝑥),𝐺𝐺(𝑦𝑦)�, then Kendall rank correlation coefficient is 
defined as follows:  

 𝜏𝜏 = 4∫ 𝐶𝐶(𝑢𝑢, 𝑣𝑣)𝑑𝑑𝑑𝑑(𝑢𝑢, 𝑣𝑣) − 1,[0,1]2  

and Spearman rank correlation coefficient can be computed via the expression:   

 𝜌𝜌𝑆𝑆 = 12∫ 𝑢𝑢, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑢𝑢, 𝑣𝑣) − 3 = 12 ∫ 𝐶𝐶(𝑢𝑢, 𝑣𝑣)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 3.[0,1]2[0,1]2  

Thus, if for the two pairs of random variables (𝑋𝑋1,𝑌𝑌1) and (𝑋𝑋2,𝑌𝑌2) the dependences 
between which have a copula form of, C1, and C2, respectively, and such that the fol-
lowing inequality holds:  

 𝐶𝐶1(𝑢𝑢1,𝑢𝑢2) ≥ 𝐶𝐶2(𝑢𝑢1,𝑢𝑢2), ∀𝑢𝑢1,𝑢𝑢2 ∈ [0; 1], 

then, the concordance measure for the pair of random variables (𝑋𝑋1,𝑌𝑌1) is greater than 
for the pair of variables (𝑋𝑋2,𝑌𝑌2).  

4 The matrices of correlation coefficients  

A dependence measure characterizes the dependence structure between two random 
variables with one number. Generalization of the measure for the case of N >2 ran-
dom variables is N×N matrix of paired dependency measures. The correlation matrix 
can be theoretical and empirical that is used in practice. For example, empirical linear 
correlation matrix is a key part of the model for estimation of the Value-at-Risk 
measure for the normally distributed risks, and Markowitz optimal portfolio corre-
sponds to small eigenvalues of the correlation matrix [15, 16].  

For the model of mean correlations when all elements of the correlation matrix are 
equal to, ρ, but for the “1-s” on the main diagonal, there is one large eigenvalue, λ1 =
1 + (𝑁𝑁 − 1)𝜌𝜌, and all other eigenvalues are equal to λ𝑖𝑖≥1 = 1 − 𝜌𝜌. A similar result 
was achieved in the case when all non-diagonal elements of correlation matrix are 
random values with expectation, ρ, and standard deviation, σ: 

 𝐸𝐸[λ1] = (𝑁𝑁 − 1)𝜌𝜌 + 𝜎𝜎2

𝜌𝜌
+ 1 + ο(1). 
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Thus, when, ρ > 0, the largest eigenvalue is increasing with growth of a system di-
mensionality N. The dominating eigenvalue corresponds to equally distributed over 
its component’s eigenvector, ν1 = (1/�N)(1,1, … ,1). This vector has an economic 
importance as a factor that influences simultaneously all financial positions or gener-
alized market index. The factor can be hired to explain, for example, high generalized 
market crises. Such interpretation finds a support in the studies of empirical financial 
correlation matrices [10, 17]. However, in practice we observe availability of several 
eigenvalues in the interval the order of which is overcoming by 5 – 10 times the basic 
part of the matrix eigenvalues. This fact can be explained by influence of not only 
generalized market factor but by the separate branch factors too that influence on 
some part of the positions available. In such cases the correlation matrix approaches 
to the block-diagonal one each block of which corresponds to the specific branch of 
economy. Usually the correlations within the block are higher than the correlations 
outside of the block.  

Such situation can be characterized by the matrix containing N1 × N1 blocks on the 
main diagonal with the following values of correlations: “1-s” on the diagonal; 𝜌𝜌1 for 
the non-diagonal elements, and 𝜌𝜌0 outside of the blocks. The highest eigenvalue of 
the correlation matrix is determined in such case by the expression:  

 λ1 = 1 + (𝑁𝑁1 − 1)𝜌𝜌1 + (𝑁𝑁 − 𝑁𝑁1)𝜌𝜌0. 

There are eigenvalues that correspond to the eigenvectors that characterize basic in-
fluence of the economy branch:  

 λ𝑖𝑖=2… 𝑁𝑁
𝑁𝑁1

= 1 + (𝑁𝑁1 − 1)𝜌𝜌1 − 𝑁𝑁1𝜌𝜌0; 

and other eigenvalues:  

 λ𝑖𝑖= 𝑁𝑁
𝑁𝑁1

+1…𝑁𝑁 = 1 − 𝜌𝜌1. 

To determine statistical characteristics of the correlation matrix eigenvalue spectrum 
the results of the random matrices theory can be used. The theory was developed in 
1950-s for the needs of physicists who studied the complex quantum system spectra. 
The matrices of Pearson, Kendall, and Spearman correlation coefficients are symmet-
ric what is suitable for considering the case of maximum statistical independence that 
can be reached in symmetry conditions. The possible deviations from the random 
matrices theory point out to existence of specific dependences for the systems under 
consideration.  

Theorem 3 [7]: Let H is real-valued symmetric random N×N matrix with non-
diagonal elements, 𝐻𝐻𝑖𝑖,𝑗𝑗, 𝑖𝑖 > 𝑗𝑗, that are zero mean independent and identically distrib-
uted with nonzero standard deviations. Then distribution density of the random matrix 
H is defined as follows: 

 𝑃𝑃(𝐻𝐻) = exp(−𝑎𝑎 ∙ 𝑡𝑡𝑡𝑡𝐻𝐻2 + 𝑏𝑏 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐), (3) 
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where, a>0, b and c are real constants. The N×N symmetric random matrix is com-
pletely characterized by 𝑁𝑁(𝑁𝑁 + 1)/2 random values that determine all, 𝜌𝜌𝑖𝑖𝑖𝑖. Recollect 
that the eigenvalues, λ1, … , λ𝑁𝑁, of a random matrix are also random. Taking into con-
sideration that the elements of the right-hand side of expression (3) are determined as  

 𝑡𝑡𝑡𝑡 𝐻𝐻2 = ∑ λ𝑗𝑗
2𝑁𝑁

1 ,             𝑡𝑡𝑡𝑡 𝐻𝐻 = ∑ λ𝑗𝑗𝑁𝑁
1 , 

we have:  

 𝑃𝑃 �λ1, … , λ𝑁𝑁; ν1, … , ν𝑁𝑁(𝑁𝑁−1)
2 −𝑁𝑁

� = 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑎𝑎 ∙ ∑ λ𝑗𝑗
2 + 𝑏𝑏 ∙ ∑ λ𝑗𝑗 + 𝑐𝑐𝑁𝑁

1
𝑁𝑁
1 �𝐽𝐽�λ�⃗ , ν�⃗ �,  (4) 

where, ν1, … , ν𝑁𝑁(𝑁𝑁−1)
2 −𝑁𝑁

 are independent random values, that together with the eigen-

values, λ1, … , λ𝑁𝑁, define random matrix, Jacobean:  

 𝐽𝐽�λ�⃗ , ν�⃗ � = � ∂(𝐻𝐻11,…,𝐻𝐻𝑁𝑁𝑁𝑁)
∂(λ1,…,λ𝑁𝑁;ν1,…,ν𝑁𝑁(𝑁𝑁−1)

2 −𝑁𝑁
)
�. 

It is shown in [7] that for symmetric random matrix such Jacobean can represented in 
the form of a product of eigenvalues function and the function of introduced parame-
ters, ν1, … , ν𝑁𝑁(𝑁𝑁−1)

2 −𝑁𝑁
, as follows:  

 𝐽𝐽�λ�⃗ , ν�⃗ � = 𝑓𝑓(ν�⃗ )∏ �λ𝑘𝑘 − λ𝑗𝑗�1≤𝑗𝑗<𝑘𝑘≤𝑁𝑁 . 

If we substitute this expression into (4) and integrate both parts over, ν1, … , ν𝑁𝑁(𝑁𝑁−1)
2 −𝑁𝑁

, 

then we’ll get the joint density distribution for eigenvalues of the matrix:  

 𝑃𝑃(λ1, … , λ𝑁𝑁) = exp�−∑ �𝑎𝑎 ∙ λ𝑗𝑗
2 − 𝑏𝑏 ∙ λ𝑗𝑗 − 𝑐𝑐�𝑁𝑁

𝑗𝑗=1 �∏ �λ𝑘𝑘 − λ𝑗𝑗�1≤𝑗𝑗<𝑘𝑘≤𝑁𝑁 . 

Having replaced λ𝑗𝑗 = � 1
√2𝑎𝑎

� 𝑥𝑥𝑗𝑗 + 𝑏𝑏
2𝑎𝑎

, the joint density distribution will be proportional 
to the expression:  

 𝑒𝑒𝑒𝑒𝑒𝑒 �−∑
𝑥𝑥𝑗𝑗
2

2
𝑁𝑁
𝑗𝑗=1 �∏ �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑘𝑘�1≤𝑗𝑗<𝑘𝑘≤𝑁𝑁 . 

In this case the density distribution for the distances between neighboring eigenval-
ues, 𝑠𝑠 = λ𝑘𝑘+1 − λ𝑘𝑘, of a random symmetric matrix is defined as follows [10]:  

 𝑃𝑃(𝑠𝑠) = 𝜋𝜋𝜋𝜋
2
𝑒𝑒𝑒𝑒𝑒𝑒 �−𝜋𝜋

4
𝑠𝑠2�. (5) 

The eigenvalues should be transformed in the way that their distribution approached 
the uniform one using the procedure of Gaussian expansion [19].  

The random 𝑝𝑝 × 𝑞𝑞 matrix in asymptotic form, 𝑝𝑝, 𝑞𝑞 → ∞, with constant relation 𝑝𝑝
𝑞𝑞
, 

and standard deviation of the matrix elements, 𝜎𝜎 → 0, such that the limit, 𝜎𝜎2𝑞𝑞, is 
finite, exhibits the following distribution of eigenvalues [20]:  
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 𝑃𝑃(λ) = 1
2𝜋𝜋λσ

��λ𝑚𝑚𝑚𝑚𝑚𝑚
2 − λ2��λ2 − λ𝑚𝑚𝑚𝑚𝑚𝑚

2 �, (6) 

for, λ𝑚𝑚𝑚𝑚𝑚𝑚 < λ < λ𝑚𝑚𝑚𝑚𝑚𝑚, and is zero otherwise; here, λ𝑚𝑚𝑚𝑚𝑚𝑚 = √2𝜎𝜎��𝑝𝑝+𝑞𝑞
2
� + �𝑝𝑝𝑝𝑝, 

λ𝑚𝑚𝑚𝑚𝑚𝑚 = √2𝜎𝜎��𝑝𝑝+𝑞𝑞
2
� − �𝑝𝑝𝑝𝑝. Thus, all eigenvalues of correlation matrix satisfying the 

conditions given above are positive and restricted in their values. Also for a correla-
tion matrix the following equality holds: p=q=N. Exceeding the interval is possible 
for finite N, though substantial exceeding by eigenvalue the value of 𝑑𝑑𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 means 
deviation from theoretical results produced in suggestion of independence of the ran-
dom values. That is why such exceeding points out to dependency between observa-
tions in the sense of the correlation coefficients for which the matrix was built.  

5 Expanded multivariate model 

To create a model for multivariate financial system functioning under influence of 
external factors and dependent on them financial instruments we hired a model on the 
basis of combined marginal distributions and copulas for the basic observable varia-
bles. Further on the model was expanded with dependent variables. As dependent 
variables the financial derivatives were used. It should be noted that the model is not 
limited by the independency requirement for the basic factors; their joint distribution 
can be written in the form: 

 𝐻𝐻(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑃𝑃[𝑋𝑋1 ≤ 𝑥𝑥1, … ,𝑋𝑋𝑛𝑛 ≤ 𝑥𝑥𝑛𝑛] = 𝐶𝐶(𝐹𝐹1(𝑥𝑥1), … ,𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛)), 

where, 𝐹𝐹1, … ,𝐹𝐹𝑛𝑛 are marginal distribution function for separate risks; C is n-copula, 
that characterizes the dependency structure between the risks.  

Consider as an example Archimedean copula that can presented in the form: 
𝐶𝐶(𝑢𝑢1, … , 𝑢𝑢𝑛𝑛) = 𝜑𝜑[−1](𝜑𝜑(𝑢𝑢1) + ⋯+ 𝜑𝜑(𝑢𝑢𝑛𝑛)). The universal copula generating algo-
rithm is based upon the following representation: 

 𝐶𝐶(𝑢𝑢1, … , 𝑢𝑢𝑛𝑛) = 𝐶𝐶𝑛𝑛(𝑢𝑢𝑛𝑛|𝑢𝑢1, … ,𝑢𝑢𝑛𝑛−1) …𝐶𝐶2(𝑢𝑢2|𝑢𝑢1)𝐶𝐶1(𝑢𝑢1), 

where, C2, is a copula for the first k components, C1(u1)=u1. To generate the data from 
the joint distribution the following steps should be performed:  

─ generate n independent random values, ν1, … , ν𝑛𝑛; 
─ then sequentially compute the following values: 𝑢𝑢1 = ν1, 𝑢𝑢2 = 𝐶𝐶2−1(ν2|𝑢𝑢1), ..., 
𝑢𝑢𝑛𝑛 = 𝐶𝐶𝑛𝑛−1(ν𝑛𝑛|𝑢𝑢1, … ,𝑢𝑢𝑛𝑛−1). 

The algorithm presented is simplified for Archimedean copulas, for example, to the 
following:  

 𝑢𝑢2 = 𝜑𝜑2
[−1] �𝜑𝜑2 �𝜑𝜑1

[−1] �𝜑𝜑1(𝑢𝑢1)
ν2

�� − 𝜑𝜑2(𝑢𝑢1)�. 
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The model application is oriented to elliptical, Archimedean, and extreme value copu-
las. The right tails of the marginal distributions are described by the generalized Pare-
to distribution of the form:  

 𝐺𝐺𝐺𝐺𝐺𝐺ξ,β(𝑥𝑥) = �
1 − �1 + ξ𝑥𝑥

β
�
−1ξ , ξ≠0

1 − exp �− 𝑥𝑥
β
� ,       ξ = 0,

 

where 𝛽𝛽 > 0, and 𝑥𝑥 ≥ 0 with ξ > 0, and, 0 ≤ 𝑥𝑥 ≤ −𝛽𝛽
ξ

, with ξ<0; ξ is parameter of 
distribution form; β is scale parameter. The marginal distributions of the central ob-
servations are described by normal distributions. 

6 The derivative financial instruments 

To derivative financial instruments are related the contracts, the cost of which de-
pends on some other financial instrument, stock index or actual interest rate. To study 
the possibility of modeling the financial system with such derivatives as options, for-
wards, and futures in conditions of large data bases the model should be expanded 
with actual computed costs according to the methodologies used in practice.  

Option is a standard financial document that proves a right to buy (sell) financial 
instruments (goods, currencies) on predetermined conditions in the future with fixed 
price related to the time of signing the option agreement or other moment of time 
according to decision of the contract sides. In practice, for analytical description of 
currency options the Garmin-Colhagen formula is often used that is a special case of 
the Black-Scholes expression for determining an option price [21]. The Garmin-
Colhagen model is based upon the three basic restrictions:  

• absence of tax or restrictions for the market operations;  
• invariability of riskless interest rates within the period of a contract;  
• actual exchange rates for currencies accept random values having lognormal distri-

bution with constant standard deviation σ. 

The third restriction influences joint distribution of costs and can create a source for 
generating internal influence factors in financial system. The option cost for purchas-
ing (call option) can be is computed as follows:  

 𝑉𝑉𝐶𝐶�𝑥𝑥,𝐾𝐾,𝜎𝜎, 𝑟𝑟𝑑𝑑 ,𝑇𝑇, 𝑟𝑟𝑓𝑓� = 𝑥𝑥𝑒𝑒−𝑟𝑟𝑓𝑓𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝑒𝑒−𝑟𝑟𝑑𝑑𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑑𝑑2), (7) 

and the option cost for selling (put option) is determined via the expression:  

 𝑉𝑉𝑃𝑃�𝑥𝑥,𝐾𝐾,𝜎𝜎, 𝑟𝑟𝑑𝑑 ,𝑇𝑇, 𝑟𝑟𝑓𝑓� = −𝑥𝑥𝑒𝑒−𝑟𝑟𝑓𝑓𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(−𝑑𝑑1) + 𝐾𝐾𝑒𝑒−𝑟𝑟𝑑𝑑𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(−𝑑𝑑2), 

where 𝑉𝑉𝐶𝐶 is theoretical option cost for purchasing; 𝑉𝑉𝑃𝑃 is theoretical option cost for 
selling; x is current exchange rate; K is exchange rate used for creating an option; T  is 
time to the end of option; rd is riskless interest rate for the first currency; rf is riskless 
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interest rate related to the second currency; σ is standard deviation of the exchange 
rate. Normal – means a distribution function for normal distribution; the coefficients, 
d1, d2, are determined as follows: 

 𝑑𝑑1,𝑑𝑑2 =
𝑙𝑙𝑙𝑙𝑥𝑥𝐾𝐾+�𝑟𝑟𝑑𝑑−𝑟𝑟𝑓𝑓±1

2𝜎𝜎
2�𝑇𝑇

𝜎𝜎√𝑇𝑇
. 

The forward contract is a standard document that proves obligations of a person to 
purchase (sell) stocks, goods or currency at some predetermined moment of time in 
the future, and on predetermined conditions with the price fixed at the moment of 
signing the contract. The cost of a forward contract for a selected currency is calculat-
ed according to the following formula [22]:  

 𝑉𝑉𝑡𝑡 = 𝑥𝑥𝑒𝑒−𝑟𝑟𝑓𝑓𝑇𝑇 − 𝐾𝐾𝑒𝑒−𝑟𝑟𝑑𝑑𝑇𝑇, (8) 

where, 𝑥𝑥,𝐾𝐾, 𝑟𝑟𝑓𝑓, 𝑟𝑟𝑑𝑑 ,𝑇𝑇, are the same parameters that were used for calculating an option 
cost. 

The futures contract is a standard document that proves an obligation to purchase 
(sell) stocks, goods or currency at the predetermined moment of time and on prede-
termined conditions in the future with fixed price at the moment of fulfilling the obli-
gations by the contract sides. The futures of Eurodollar type are the futures contracts 
with averaged interest rate according to the interbank credits LIBOR (London Inter-
bank Offered Rate). There also exist the futures contracts for other currency pairs. The 
Euroyen futures are nominated in Japanese yens, the Euroswiss are nominated in 
Swiss francs etc. These contracts are based upon three-month interest rate and are 
distinguishing by the terms of their action from several months to tens of years. The 
contract cost is computed via the following formula: 

 𝑉𝑉𝑡𝑡 = 10000 × [100 − 1,25𝑓𝑓𝑡𝑡], 

where, ft, is interest rate; the coefficient 0,25 is related to the three-month contract. To 
model the systems with the futures contracts of Eurodollar type the model should take 
into account the dependency structure for the currency rates, and the LIBOR interest 
rate as a separate random value. The traditional futures contracts have a cost formula 
similar to the forward contracts, and the use of the formula provides the model with 
the same features that are characteristic for the forward contracts only.  

7 Computational experiment 

As statistical data the following daily exchange rates were taken: US dollar (USD), 
English pound (GBP), Swiss franc (CHF), and Japanese yen (JYN) with respect to 
euro (EUR) for the period from 2000 to 2007. The joint exchange rates distribution 
model was constructed on the basis of Gumbel copula.  

To develop experimentally multivariate model the futures and options were used 
as derivatives with linear and nonlinear costs with respect to the basic financial in-
struments. In the formulae for cost the following riskless values of interest rates pro-
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posed by central banks were used: JYN 0.5%, CHF 2.75%, GBP 5.0% (Bank of Eng-
land Bank Rate), USD 3.25% (Federal Funds Rate), EUR 3.0% (Eurozone Refinanc-
ing Rate). 

 
Fig. 1. The matrix of Kendall rank correlation coefficients for the noiseless model  

The main point of the study was to consider the dependences that are available in such 
system of financial instruments; that is why the total contract sums were normalized 
to the unit of respective currency. The normally distributed zero mean random values 
were added to the cost of derivative instruments using (7) and (8). The standard devia-
tion of the random value was selected to be equal to 0.1 of the standard deviation for 
the cost of each instrument. To each exchange rate were added 60 forwards and 60 
options with different future costs and final terms of the contracts. For the samples 
compiled this way with adding noise and without it the empirical 484×484 matrices 
were computed containing linear correlation coefficients, ρ; linear Kendall rank corre-
lation coefficients, τ (Figs. 1 and 2); and rank correlation Spearman coefficients, ρS. 

The comparison was performed for the empirical density of the matrix eigenvalues 
distribution: 

 𝑃𝑃(λ) = 1
𝑁𝑁
𝑑𝑑𝑑𝑑(λ)
𝑑𝑑λ

, 

where, n(λ), is a number of matrix eigenvalues that are less than λ, with theoretical 
distribution of eigenvalues under suggestion of randomness of matrix (6). For all de-
pendency measures the main bulk of the eigenvalues corresponds to theoretical re-
strictions. Four of the eigenvalues in all cases exceed the theoretically maximum val-
ues for all empirical correlation matrices. For example, the matrix of linear correla-
tions contained, λmax=8.8475. Generally, the four maximum eigenvalues were as fol-
lows:318.7, 69.6, 16.6, and 12.5, and all other 480 eigenvalues exhibited positive 
values less than 1.02.  
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Fig. 2.  The matrix of Kendall rank correlation coefficients for the model with noise 

For the empirical correlation matrices was computed empirical distribution of dis-
tances between the eigenvalues transformed via Gaussian expansion and theoretical 
distribution of distances for the corresponding symmetric random matrix in (5). The 
empirical distributions for correlation matrix and theoretical distributions for the ran-
dom matrices turned out to be the same for the main bulk of eigenvalues except for 
the largest eigenvalue of empirical correlation matrix. This eigenvalue was much 
larger in comparison to the theoretical distribution. For the linear correlations it was 
equal to the level of, 99.9992%. In the right tail of the distribution 5% of the eigen-
values exceed theoretical threshold for 95% of observations, and theoretical threshold 
of 97% exceed 2.7% of the eigenvalues (Fig. 3). 
 

 
Fig. 3. Empirical density of distribution for distances between the eigenvalues of empirical 

matrix of linear Pearson coefficients and theoretical density of distribution for distances 

As a result of performing the computational experiments it was established the fol-
lowing: the distributions of eigenvalues and distances between the eigenvalues for 
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empirical correlation matrices with the use of different dependence measures demon-
strated quite similar behavior. The computed distributions of the eigenvalues provide 
a possibility for further correct determining the principal factors for constructing ade-
quate models for the processes under consideration and risk estimation. 

8 Conclusion 

As a result of the studies performed it was established that the spectra of relatively 
small eigenvalues for the linear correlation coefficients, ρ, rank correlation Kendall 
coefficients, τ, and rank correlation Spearman coefficients, 𝜌𝜌𝑆𝑆, in a case of adding 
some noise are practically similar to the theoretical spectra of random matrices. That 
is why the optimal Markowitz portfolio that corresponds to small eigenvalues should 
be compiled only after filtering of statistical data.  

The number of eigenvalues that exceed theoretical thresholds corresponds to the 
principal factors in a model. This result provides a possibility for determining correct-
ly the number of principal factors to construct mathematical models for practical ap-
plications. The difference between theoretical and empirical distributions of distances 
between eigenvalues means that in practice there almost always exist a large eigen-
value indicating (in economic interpretation) on existence of dominating generalized 
market factor.  

It was also established that no extra internal influence factors exist when the wide-
ly used models of derivative costs are hired. This is a positive sign for carrying out 
simplified computations.  

To our opinion, it would be logically concentrate the future research on refining the 
results achieved for computing theoretical distributions of the eigenvalues and the 
distances between them for symmetric positively defined matrices, the elements of 
which are restricted with the interval of, [-1,1]. The problem to be solved is also 
touching upon investigation of influence of nonlinear strictly increasing transforms on 
the distributions of empirical dependency measures matrix eigenvalues. And, it would 
also be interesting to study the dependency measure in the form of Matsusita-
Hellinger metrics as well as compile other possible measures.  
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