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Abstract
We present and discuss a human-robot collaboration system suitable for supervising the execution of
structured manipulation tasks in industrial assembly scenarios. As a case study, we consider the appli-
cation domain proposed in the context of the project (PON R& I 2014-2020) ICOSAF (Integrated collab-
orative systems for Smart Factory) in which a human operator physically interacts with a collaborative
robot (Cobot) to perform multiple item insertion tasks in a shared workspace. The proposed system
combines hierarchical task orchestration and human intention recognition during human-robot inter-
action through hand-guidance. We provide an overview of the system discussing an initial experimental
evaluation.
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1. Introduction

Collaborative robotic systems (CoBots) enable humans and robots to safely work in close prox-
imity during the execution of shared tasks [1] merging their complementary abilities [2]. In
this work, we address these issues considering an industrial assembly scenario in which a hu-
man operator interacts with a lightweight robotic manipulator through hand-guidance in order
to accomplish multiple and structured operations in a shared workspace. Specifically, in the
proposed application domain a CoBot should support a human worker during the insertion of
accessories into carbon-fiber monocoque cells for car production. This case study is provided
by the Italian project (PON R& I 2014-2020) ICOSAF (Integrated collaborative systems for Smart
Factory), whose aim is the design and development of models and methods for collaborative
factories. In order to accomplish these tasks, we propose to deploy a collaborative human-
robot interaction system that combines task supervision and orchestration with continuous
interpretation of the human physical guidance. In the proposed framework, the intentions
conveyed with the operator physical interventions are interpreted with respect to the planned
activities and motions, while the robot behavior is suitably adapted by switching tasks, chang-
ing targets, adjusting trajectories, and regulating the robot compliance to the human guidance.
Flexible task execution and fluent human-robot interaction are supported exploiting the ex-
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ecutive framework proposed in [3, 4, 5], which exploits supervisory attention and contention
scheduling [6, 7] to monitor human behaviors and suitably orchestrate multiple hierarchically
structured tasks. In particular, supervisory attention permits to smoothly integrate plan guid-
ance and human guidance through top-down and bottom-up regulations. Collaborative task
execution is also affected by the interpretation of the human guidance with respect to the su-
pervised activities. Following the approach by [8, 9], depending on the operational state, the
supervisory system enables possible subtasks, targets and trajectories, which are continuously
evaluated by intention recognition processes. Each possible trajectory is assessed by a LSTM
network that infers the intention of the operator to follow/contrast the manipulator motion
towards a target point, deviate from the latter, or use the robot manipulator in direct manual
control. In this paper, we provide an overview of the system at work in the industrial assem-
bly case studies describing an experimental setup used to perform an initial assessment of the
proposed framework.

2. Case Study

We consider an industrial assembly case study, proposed in the context of the Italian project
(PON R& I 2014-2020) ICOSAF (Integrated collaborative systems for Smart Factory) project,
whose aim is the design and development of models and methods for collaborative factories. In
the assembly operative scenario, a CoBot should support human workers during the insertion
of accessories into carbon-fiber monocoque cells for car production. Specifically, we focused
on the task of inserting metallic items (called bigheads) on the monocoque, which is usually
manually executed. Human-robot collaboration is particularly suitable for this task since both
the human dexterity and the robot precision are required. Indeed, the main requirements are:
positioning accuracy, repeatability, supervision systems for the application of the correct item,
safety, improvement of the operator’s ergonomics. During task execution, both the human
and the robot should be able to work on the monocoque, hence concurrent insertion of items
should be possible. The operator should always be allowed to hand guide the robot to point
the end-effector towards a different target or a different working area.

3. System Architecture

The architecture of the human-robot collaborative system is illustrated in Fig. 1. The High-
Level Control System (HL) is responsible for task generation, supervision and execution, while
the Low-Level Control System (LL) manages the execution of the trajectories proposed by the
high-level system integrating the human physical guidance. Task supervision and orchestra-
tion relies on the attention-based executive framework proposed in [3, 4, 5]. During task ex-
ecution, the human operator can physically interact with the CoBot (force/position feedback)
and these interventions are simultaneously interpreted at the different layers of the architec-
ture. Depending on the task, the environmental context, and the human interventions, the
Executive System (top-down) retrieves hierarchical tasks in the Long Term Memory (LTM)
and allocates them in the Working Memory (WM) (see Fig. 2). The primitive operations are
associate with behaviors/processes that compete for the execution (Behavior-based System). In
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Figure 1: System Architecture. The High-Level Control System manages task generation, supervision
and execution; the Low-Level Control System (LL) manages compliant trajectory execution.

Figure 2: Tasks allocated in working memory during human-robot collaboration. Red, green, and blue
ovals are for disabled, enabled, and executed activities, respectively.

this case, motion behaviors (e.g., pick, place) are associated with target positions and a tra-
jectories (generated by the Trajectory Planner), while each possible trajectory is continuously
monitored in order to estimate (Intention Estimation) the one more aligned with respect to the
human guidance. Intention estimation relies on LSTM networks, one for each trajectory, that
classify the operator interventions as aligned, deviating, opposed, opposed deviating. The clas-
sification results (along with the top-down attentional regulations provided by the WM) are
then exploited to influence the CoBot selection of targets and trajectories (Targret Selection).



Figure 3: Experimental setup. The operator can hand-guide the end-effector towards the desired target
points while the supervisory system interprets the human interventions in the context of the task
allocated and enabled in WM (bottom-left rectangle).

Finally, the lowest level of the architecture implements a Shared Controller aimed at mixing
the inputs generated by the the human operator (Shared force) and the ones needed to perform
robot motion. An (Admittance Controller) integrates the human and the robot guidance.

4. Experimental setup

In order to test the proposed human-robot collaboration system, we implemented the test-
bed depicted in Fig. 3, which illustrates a mockup representing a surface with positions where
operations must be executed. Since our main interest was to test human-robot collaboration,
we considered only end-effector movements towards target positions, while the final insertion
operations were simulated. We deployed the Kuka LBR IIWA manipulator, controlled via ROS
middleware running on a standard version of Ubuntu 18.04 GNU/Linux OS. The ATI Mini 45
Force sensor has been used to detect the human input to command the robot. As for the LSTM
network, it has been implemented using TensorFlow1 library through Keras2.

In this setting, we focused on the system ability in following the operator hand-guided op-
erations considering both quantitative (effort and execution time) and qualitative (NASA-TLX
[10] inspired questionnaire) assessments. The task assigned consisted in the execution of mul-
tiple simulated operations (5 ordered item insertions) on target positions (see Fig. 3). Since the
operations’ sequence is provided to the operator, but this is unknown to the robot, the human
co-worker is requested to continuously correct the manipulator trajectories via hand-guidance

1https://www.tensorflow.org
2https://keras.io
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to obtain the requested order of execution. We compared three interaction modalities: proac-
tive, guided, and passive. In the proactive mode, the robot directly heads to the next target
without human confirmation, while in the guided mode the robot always waits for an operator
physical input to reach the next target. The passive mode is used as a baseline; in this case
the robot is fully compliant with respect to the human physical guidance. The experiment was
carried out by 40 testers (graduate or post-graduate students). Preliminary results in this ex-
perimental setting show the advantage of the proactive and guided modalities with respect to
the passive one, with a slight preference for the guided mode. Specifically, as expected, we ob-
served that both guided and proactive modes significantly reduce the operator physical effort
(measured as the cumulative impulse applied to the robot) with respect to the passive mode,
with less effort measured in the proactive mode (we observed an average effort of 29, 52, 97
𝑁𝑠 for the proactive, guided and passive modes, respectively). On the other hand, qualitative
evaluation results show that guided mode was considered as more reliable, readable and sat-
isfactory; users also estimated less pressure and mental demand. In this respect, the guided
mode seems preferred to the proactive mode because it provides the users with more control
during task execution.

5. Conclusion

We presented a human-robot collaboration system for CoBots that supports hand-guided hu-
man interventions during the execution of structured tasks in an industrial assembly scenario.
The proposed system combines hierarchical task orchestration and human intention recogni-
tion during physical interaction. We described the application domain and the system design
discussing different interaction modes (passive, guided, proactive). The collected results show
the advantage of the proposed assisted modalities with respect to the passive one. We are
currently designing and developing tasks for the real industrial workspace considering issues
like positioning accuracy, task reliability, safety, and ergonomics. We are also investigating
adaptive multimodal extensions of the framework [11, 12] including additional communica-
tion channels [13] (e.g. gestures and speech) along with associated fusion methods [14] and
adaptive interfaces [15].
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