
Optimal control of point-to-point navigation in
turbulent flows using Reinforcement Learning
M. Buzzicottia, L. Biferalea, F. Bonaccorsoa,b, P. Clark di Leonic and K. Gustavssond

aDept. Physiscs and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome -Italy
bCenter for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161 Roma, Italy
cDepartment of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
dDept. of Physics, University of Gothenburg, Gothenburg, 41296, Sweden.

Abstract
We present theoretical and numerical results concerning the problem to find the path that minimizes
the time to navigate between two given points in a complex fluid and under realistic navigation con-
straints. We contrast deterministic Optimal Navigation (ON) control with stochastic policies obtained
by Reinforcement Learning (RL) algorithms. We show that Actor-Critic RL algorithms are able to find
quasi-optimal solutions in the presence of either time-independent or chaotically evolving flow configu-
rations. For our application, ON solutions develop unstable behaviour within the typical duration of
the navigation process, and are therefore not useful in practice. The explored setup consists of using a
constant propulsion speed to navigate a turbulent flow. Based on a discretized phase-space the propulsion
direction is adjusted with the aim to minimize the time spent to reach the target. Our approach can
be generalized to other set-ups, for example unmanned navigation with minimal energy consumption
under imperfect environmental forecast or with different models for the moving vessel.
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1. Introduction

Controlling and planning paths of small autonomous marine vehicles [1] such as wave and
current gliders [2], active drifters [3], buoyant underwater explorers, and small swimming
drones is important for many geo-physical [4] and engineering [5] applications. In realistic
open environments, these vessels are affected by disturbances like wind, waves and ocean
currents, characterized by unpredictable (chaotic) trajectories. Furthermore, active control is
also limited by engineering and budget aspects as for the important case of unmanned drifters
for oceanic exploration [6, 7]. The problem of (time) optimal point-to-point navigation in a
flow, known as Zermelo’s problem [8], is interesting per se in the framework of Optimal Control
Theory [9]. In this paper, we report the results from a recent theoretical and numerical study
[10], tackling the Zermelo’s problem for the navigation in a two-dimensional fully turbulent
flow in the presence of an inverse energy cascade, i.e. with chaotic, multi-scale and rough
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Figure 1: Left: Image of one turbulent snapshot used as the advecting flow, with the starting, 𝑥𝐴,
and ending point, 𝑥𝐵, of our problem. We also show an illustrative navigation trajectory 𝑋𝑡. The flow
is obtained from a spatially periodic snapshot of a 2D turbulent configuration in the inverse energy
cascade regime with a multi-scale power-law Fourier spectrum, 𝐸(𝑘) = ∑𝑘<𝑘<𝑘+1 |𝑢(𝑘)|2 ∼ 𝑘−5/3. For
RL optimization, the initial conditions are taken randomly inside a circle of radius 𝑑𝐴 centered around
𝑥𝐴. Similarly, the final target is the circle of radius 𝑑𝐵 centered around 𝑥𝐵. The flow area is covered
by a grid-world with tiles 𝑠𝑖 with 𝑖 = 1, … , 𝑁𝑠 and 𝑁𝑠 = 900 of size 𝛿 × 𝛿 which identify the state-space
for the RL protocol. The large-scale periodicity of the underlying flow is 𝐿, and we fixed 𝛿 = 𝐿/10.
Every time interval Δ𝑡, the unmanned vessel selects one of the 8 possible actions 𝑎𝑗 with 𝑗 = 1… 8 (the
steering directions 𝜃𝑗 depicted in left top inset according to a policy 𝜋(𝑎|𝑠), where 𝜋 is the probability
distribution of the action 𝑎 given the current state 𝑠 of the agent at that time. The policy is optimized
during the learning to maximizes the total reward, 𝑟𝑡𝑜𝑡, proportional to minus the navigation time,
𝑟𝑡𝑜𝑡 ∼ −𝑇𝑥𝐴→𝑥𝐵 , such as the maximum reward corresponds to the time-optimal trajectory. To reach the
policy convergence the actor-critic method requires to accumulate experience over a number of the
order of 1000 different trajectories, with small variations depending on the values of �̃�s and the specific
flow properties. Right: spatial concentrations of trajectories for three values of �̃�s. The flow region is
color coded proportionally to the time the trajectories spend in each pixel area for both ON (red) and RL
(blue). Light colors refer to low occupation and bright to high occupation. The green-dashed line shows
the best ON out the 20000 trajectories. Right histograms: arrival time distribution for ON (red) and RL
(blue). Probability of not reaching the target within the upper time limit is plotted in the Fail bar.

velocity distributions [11], see Fig. 1 for a summary of the problem. In such a flow, even for
time-independent configurations, trivial or naive navigation policies can be extremely inefficient
and ineffective if the set of actions by the vessel are limited. We show that an approach based
on semi-supervised AI algorithms using actor-critic Reinforcement Learning (RL) [12] is able
to find robust quasi-optimal -stochastic- policies that accomplish the task. Furthermore, we
compare RL with solutions from Optimal Navigation (ON) theory [13] and show that the latter is
of almost no practical use for the case of navigation in turbulent waters due to strong sensitivity



to the initial (and final) conditions, in contrast to what happens for simpler advecting flows
[14]. RL has shown to have promising potential to similar problems, such as the training of
smart inertial particles or swimming objects navigating intense vortex regions [15, 16, 17].
We present here results from navigating one static snapshot of 2D turbulence (for time-

dependent flows see [10]). In Fig. 1 we show a sketch of the set-up. Our goal is to find (if they
exist) trajectories that join the region close to 𝑥𝐴 with a target close to 𝑥𝐵 in the shortest time
supposing that the vessels obey the following equations of motion:

{
̇𝑋𝑡 = 𝑢(𝑋𝑡, 𝑡) + 𝑈 𝑐𝑡𝑟 𝑙(𝑋𝑡)

𝑈 𝑐𝑡𝑟 𝑙(𝑋𝑡) = 𝑉s𝑛(𝑋𝑡)
(1)

where 𝑢(𝑋𝑡, 𝑡) is the velocity of the underlying 2D advecting flow, and 𝑈 𝑐𝑡𝑟 𝑙(𝑋𝑡) = 𝑉s𝑛(𝑋𝑡) is
the control slip velocity of the vessel with fixed intensity 𝑉s and varying steering direction:
𝑛(𝑋𝑡) = (cos[𝜃𝑡], sin[𝜃𝑡]), where the angle is evaluated along the trajectory, 𝜃𝑡 = 𝜃(𝑋𝑡). We
introduce a dimensionless slip velocity by normalizing with the maximum velocity 𝑢max of the
underlying flow: �̃�s = 𝑉s/𝑢max. Zermelo’s problem reduces to optimize the steering direction 𝜃
in order to reach the target [8]. For time independent flows, optimal navigation (ON) control
theory gives a general solution[18, 19]. Assuming that the angle 𝜃 is controlled continuously in
time, the optimal steering angle must satisfy the following time-evolution:

̇𝜃𝑡 = 𝐴21 sin
2 𝜃𝑡 − 𝐴12 cos2 𝜃𝑡 + (𝐴11 − 𝐴22) cos 𝜃𝑡 sin 𝜃𝑡 , (2)

where 𝐴𝑖𝑗 = 𝜕𝑗𝑢𝑖(𝑋𝑡) is evaluated along the agent trajectory 𝑋𝑡 obtained from Eq. (1). The set of
equations (1-2) may lead to chaotic dynamics even for time-independent flows in two spatial
dimensions. Due to the sensitivity to small perturbations in chaotic systems the ON approach
becomes useless for many practical applications.

2. Methods

RL applications [12] are based on the idea that an optimal solution can be obtained by learning
from continuous interactions of an agent with its environment. The agent interacts with the
environment by sampling its states 𝑠, performing actions 𝑎 and collecting rewards 𝑟. In our case
the vessel acts as the agent and the two-dimensional flow as the environment. In the approach
used here, actions are chosen randomly with a probability that is given by the policy 𝜋(𝑎|𝑠),
given the current flow-state 𝑠. The goal is to find the optimal policy 𝜋∗(𝑎|𝑠) that maximizes the
total reward, 𝑟tot = ∑𝑡 𝑟𝑡 , accumulated along one episode, see Fig. 1 for precise definition of
flow-states and agent-actions. To identify a time-optimal trajectory we use a potential based
reward shaping [20] at each time 𝑡 during the learning process, see [10] for details. An episode
is finalized when the trajectory reaches the circle of radius 𝑑𝐵 around the target. In order to
converge to robust policies each episode is started with a uniformly random position within a
given radius, 𝑑𝐴, from the starting point. To estimate the expected total future reward we follow
the one-step actor-critic method [12] based on a gradient ascent in the policy parametrization.



3. Results

In the right part of Fig. 1 we show the main results comparing RL and ON approaches [10].
The minimum time taken by the best trajectory to reach the target is of the same order for
the two methods. The most important difference between RL and ON lies in their robustness
as seen by plotting the spatial density of trajectories in the right part of Fig. 1 for the optimal
policies of ON and RL with three values of �̃�s. We observe that the RL trajectories (blue coloured
area) form a much more coherent cloud in space, while the ON trajectories (red coloured area)
fill space almost uniformly. Moreover, for small navigation velocities, many trajectories in
the ON system approach regular attractors, as visible by the high-concentration regions. The
rightmost histograms in Fig. 1 show a comparison between the probability of arrival times for
the trajectories illustrated in the two-dimensional domain, providing a quantitative estimation
of the better robustness of RL compared to ON. Other RL algorithms, such as Q-learning[12],
could also be implemented and compared with other path search algorithms such as 𝐴∗ which
is often used in many fields of computer science [21, 22].
To conclude, we have discussed a systematic investigation of Zermelo’s time-optimal navigation
problem in a realistic 2D turbulent flow, comparing both RL and ON approaches [10]. We
showed that RL stochastic algorithms are key to bypass unavoidable instability given by the
chaoticity of the environment and/or by the strong sensitivity of ON approaches in the presence
of non-linear flow configurations. RL methods offer also a wider flexibility, being applicable
also to energy-minimization problems and in situation where the flow evolution is known only
in statistical sense as in partially observable Markov processes. Let us stress that it is possible
to implement RL strategies aimed to improve a-priori policy designed to particular problems
instead of staring from a completely random policy. For example one can imagine to use an RL
approach to optimize an initial “trivial” policy, where the navigation angle is selected as the
action that points most directly toward the target.

Acknowledgments

L.B. and M.B. acknowledge funding from the European Union Programme (FP7/2007-2013)
AdG ERC grant No.339032. K.G. acknowledges funding from the Knut and Alice Wallenberg
Foundation, Grant No. KAW 2014.0048, and Vetenskapsrådet, Grant No. 2018-03974. F.B
acknowledges funding from the European Research Council under the European Union’s
Horizon 2020 Framework Programme (No. FP/2014-2020) ERC Grant Agreement No.739964
(COPMAT).

References

[1] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, D. Lane, Path planning for autonomous
underwater vehicles, IEEE Transactions on Robotics 23 (2007) 331–341.

[2] N. D. Kraus, Wave glider dynamic modeling, parameter identification and simulation, Ph.D.
thesis, [Honolulu]:[University of Hawaii at Manoa],[May 2012], 2012.

[3] R. Lumpkin, M. Pazos, Measuring surface currents with surface velocity program drifters:



the instrument, its data, and some recent results, Lagrangian analysis and prediction of
coastal and ocean dynamics (2007) 39–67.

[4] P. F. Lermusiaux, D. Subramani, J. Lin, C. Kulkarni, A. Gupta, A. Dutt, T. Lolla, P. Haley,
W. Ali, C. Mirabito, et al., A future for intelligent autonomous ocean observing systems,
Journal of Marine Research 75 (2017) 765–813.

[5] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles
in complex and crowded environments, Reviews of Modern Physics 88 (2016) 045006.

[6] L. R. Centurioni, Drifter technology and impacts for sea surface temperature, sea-level
pressure, and ocean circulation studies, in: Observing the Oceans in Real Time, Springer,
2018, pp. 37–57.

[7] D. Roemmich, G. C. Johnson, S. Riser, R. Davis, J. Gilson, W. B. Owens, S. L. Garzoli,
C. Schmid, M. Ignaszewski, The argo program: Observing the global ocean with profiling
floats, Oceanography 22 (2009) 34–43.

[8] E. Zermelo, Über das navigationsproblem bei ruhender oder veränderlicher windverteilung,
ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Math-
ematik und Mechanik 11 (1931) 114–124.

[9] A. E. Bryson, Y. Ho, Applied optimal control: optimization, estimation and control, New
York: Routledge, 1975.

[10] L. Biferale, F. Bonaccorso, M. Buzzicotti, P. Clark Di Leoni, K. Gustavsson, Zermelo’s
problem: Optimal point-to-point navigation in 2d turbulent flows using reinforcement
learning, Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (2019) 103138.

[11] A. Alexakis, L. Biferale, Cascades and transitions in turbulent flows, Physics Reports
767-769 (2018) 1 – 101.

[12] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.
[13] L. S. Pontryagin, Mathematical theory of optimal processes, Routledge, 2018.
[14] E. Schneider, H. Stark, Optimal steering of a smart active particle, arXiv preprint

arXiv:1909.03243 (2019).
[15] S. Colabrese, K. Gustavsson, A. Celani, L. Biferale, Smart inertial particles, Physical Review

Fluids 3 (2018) 084301.
[16] S. Colabrese, K. Gustavsson, A. Celani, L. Biferale, Flow navigation by smart microswim-

mers via reinforcement learning, Physical review letters 118 (2017) 158004.
[17] K. Gustavsson, L. Biferale, A. Celani, S. Colabrese, Finding efficient swimming strategies

in a three-dimensional chaotic flow by reinforcement learning, The European Physical
Journal E 40 (2017) 110.

[18] L. Techy, Optimal navigation in planar time-varying flow: Zermelo’s problem revisited,
Intelligent Service Robotics 4 (2011) 271–283.

[19] G. Mannarini, N. Pinardi, G. Coppini, P. Oddo, A. Iafrati, Visir-i: small vessels–least-time
nautical routes using wave forecasts, Geoscientific Model Development 9 (2016) 1597–1625.

[20] Y. N. Andrew, D. Harada, S. Russelt, Policy invariance under reward transformations:
Theory and application to reward shaping, ICML 99 (1999) 278.

[21] S. Russell, P. Norvig, Artificial intelligence: a modern approach (2002).
[22] J. Lerner, D. Wagner, K. Zweig, Algorithmics of large and complex networks: design,

analysis, and simulation, volume 5515, Springer, 2009.


	1 Introduction
	2 Methods
	3 Results

