CEUR-WS.org/Vol-2806/short9.pdf

Policy Interpretation for Partially Observable
Monte-Carlo Planning: A Rule-Based Approach

Giulio Mazzi? Alberto Castellini® and Alessandro Farinelli®

“Universita degli Studi di Verona, Department of Computer Science, Strada Le Grazie 15, 37134, Verona, Italy

Abstract

Partially Observable Monte-Carlo Planning (POMCP) is a powerful online algorithm that can generate
online policies for large Partially Observable Markov Decision Processes. The lack of an explicit repre-
sentation of the policy, however, hinders interpretability. In this work, we present a MAX-SMT based
methodology to iteratively explore local properties of the policy. Our approach generates a compact and
informative representation that describes the system under investigation.

Keywords
POMDPs, POMCP, MAX-SMT, explainable planning, planning under uncertainty

1. Introduction

Planning in a partially observable environment is an important problem in artificial intelli-
gence and robotics. A popular framework to model such a problem is Partially Observable
Markov Decision Processes (POMDPs) [1] which encode dynamic systems where the state is not
directly observable but must be inferred from observations. Computing optimal policies, namely
functions that map beliefs (i.e., probability distributions over states) to actions, in this context
is PSPACE-complete [2]. However, recent approximate and online methods allow handling
many real-world problems. A pioneering algorithm for this purpose is Partially Observable
Monte-Carlo Planning (POMCP) [3] which uses a particle filter to represent the belief and a
Monte-Carlo Tree Search based strategy to compute the policy online. The local representation
of the policy made by this algorithm, however, hinders the interpretation and explanation of
the policy itself [4, 5, 6]. Interpretability [7] is becoming a key feature for artificial intelligence
systems since in several contexts humans need to understand why specific decisions are taken
by the agent. Specifically, explainable planning (XAIP) [8, 9, 10] focuses on interpreting and
explaining the decisions taken by a planning method.

In this work, we present the use of a methodology for interpreting POMCP policies and de-
tecting their unexpected decisions. Using this approach, experts provide qualitative information
on system behaviors (e.g., “the robot should move fast if it is highly confident that the path
is not cluttered”) and the proposed methodology supplies quantitative details of these state-
ments based on evidence observed in an execution trace. For example, the proposed approach
computes that the robot moves fast if the probability to be in a cluttered segment is lower

The 7th Italian Workshop on Artificial Intelligence and Robotics (AIRO 2020), November 26, Online

& giulio.mazzi@univr.it (G. Mazzi); alberto.castellini@univr.it (A. Castellini); alessandro.farinelli@univr.it
(A. Farinelli)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

[+ == CEUR Workshop Proceedings (CEUR-WS.org)

mailto:giulio.mazzi@univr.it
mailto:alberto.castellini@univr.it
mailto:alessandro.farinelli@univr.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

& L

—> Traces Rule synthesis lOutliers Analysis

(real execution) (SMT-based) (distance from rule)
POMCP agent
0 ! v

....... Rule template Rule Unexpected

(expert insight) (expert insight + + Decisions
Expert real execution) i | (violate the insight)
A Interpretation

Figure 1: Methodology overview.

than 5%. To answer this kind of questions our approach allows expressing partially defined
assumptions employing logical formulas, called rule templates. The quantitative details are
computed by encoding the template into a MAX-SMT [11, 12] problem, and by analyzing the
execution trace, a set of POMCP executions stored as (belief, action) pairs for each decision of the
policy. The result is a compact and informative representation of the system called rule. Another
key feature of the methodology is to identify states in which the planner does not respect the
assumptions of the expert (“Is there a state in which the robot moves at high speed even if it
is likely that the environment is cluttered?”). To achieve this, our methodology quantifies the
divergence between rule decision boundaries and decisions that do not satisfy the rules and
identifies decisions that violate expert assumptions. In this work, we describe the methodology,
and we show how to use the approach to interpret a policy generated by POMCP. As a case
study, we consider a problem in which a robot moves as fast as possible in a (possibly) cluttered
environment while avoiding collisions.

2. Method

Figure 1 provides a summary of our methodology. As a first step, a logical formula with free
variables is defined (see box 2 in Figure 1) to describe a property of interest of the policy under
investigation. This formula, called rule template, defines a relationship between some properties
of the belief (e.g., the probability to be in a specific state) and an action. Free variables in the
formula allow the expert to avoid quantifying the limits of this relationship. These limits are
then determined by analyzing a trace (see box 1). For instance, a template saying “Do this when
the probability of avoiding collisions is at least X", with X free variable, is transformed into “Do
this when the probability of avoiding collisions is at least 0.85”. By defining a rule template
the expert provides useful prior knowledge about the structure of the investigated property.
We encode the template as a MAX-SMT problem (see box 3) which computes optimal values
for the free variables to make the formula explain as many decisions as possible (without the
requirement of describing every single decision). The result of the computation is a rule (see box
4) that provides a human-readable local representation of the policy function that incorporates
the prior knowledge specified by the expert. The approach then analyzes the unsatisfiable steps
to identify unexpected decisions (see box 6), related to actions that violate the logical rule (i.e.,
that do not verify the expert’s assumption). The approach quantifies the violation, i.e., the
distance between the rule boundary and the unsatisfiable step, to support the analysis.

ple=1|f.a)
0.0

0.0

0.028

0.0

0.056

0.1

0.0

0.14

0.25

Subseg 8.12
1.0 | 1.4 | 1.2 | 1.2 | 1.2 | 1.2 |142 | 1.2 | 1.2 | 1.1 |1.1 L(:.z

= f plo=11f)
r': 10 [09 |09 o 0 0.65
Q @ - : SR 0.83
' 2

1.15 | 0.9 | 1.2 | 1.0 | 1.0

0.9

1 | 1.1
OGIOG

1.0 | 0.9 |0.9 |

1
—_
=
~

0.95 | o.gl o.gl 1.0 | 14 Subseg 2.3

=

—

°

I

—_

=

—
NNN = = 20O Ol
NSO N = ON = O

(@)
(©)

Figure 2: Velocity regulation problem. (a) Path map. The map presents the length (in meters) for each
subsegment. (b) Occupancy model p(o| f) (c) Collision model p(c| f,a)

3. Results

We present a problem of velocity regulation in robotic platforms as a case study. A robot travels
on a pre-specified path divided into eight segments which are in turn divided into subsegments
of different sizes, as shown in Figure 2. Each segment has a (hidden) difficulty value among clear
(f = 0, where fis used to identify the difficulty), lightly obstructed (f = 1) or heavily obstructed
(f = 2). All subsegments share the same difficulty, hence the hidden state-space has 32 states.
The goal of the robot is to travel on this path as fast as possible while avoiding collisions. In
each subsegment, the robot must decide a speed level a (i.e., action). We consider three different
speed levels, namely 0 (slow), 1 (medium speed), and 2 (fast). The reward received for traversing
a subsegment is equal to the length of the subsegment multiplied by 1 + a, where a is the speed
of the agent, namely the action that it selects. The higher the speed, the higher the reward, but
a higher speed suffers a greater risk of collision (see the collision probability table p(c = 1| f,a)
in Figure 2.c). The real difficulty of each segment is unknown to the robot (i.e., hidden part of
the state), but in each subsegment, the robot receives an observation, which is 0 (no obstacles)
or 1 (obstacles) with a probability depending on segment difficulty (see Figure 2.b). The state
of the problem contains eight hidden variables (i.e., the difficulty of each segment), and two
observable variables (current segment and subsegment).

To obtain rules that are compact and informative, we want them to be a local approximation
of the behavior of the robot. We introduce the diff function which takes a distribution on the
possible difficulties distr, a segment seg, and a required difficulty value d as input, and returns
the probability that segment s has difficulty d in the distribution distr.

Iteration 1. We start with a rule describing when the robot travels at maximum speed (i.e.,
a = 2). We expect that the robot should move at that speed only if it is confident enough to be
in an easy-to-navigate segment. We express this with the template:

ry ¢ select ay when py > X1V py < Xo;

where X; > 0.8 A py = diff(distr, seg, 0) A py = diff(distr, seg, 2)

this template can be satisfied if the probability of being in a clear segment (py) is above a certain
threshold or the probability of being in a heavily obstructed segment (p,) is below another

threshold. We expect X; to be above 0.8, thus we add this information in the where statement.
Our methodology provides the rule:

ro : select ay when: py > 0.858 v py < 0.004;

that fails to satisify 6 out of the 370 steps.

Iteration 2. By analyzing the unsatisfiable steps, we notice that three of them are in subseg-
ment 8.12 (the robot moves at low speed with belief [py = 0.895, p; = 0.102, p, = 0.003], [py =
0.955, p; = 0.045, p, = 0.0],[py = 0.879, and p; = 0.120, p, = 0.002] respectively). Figure 2
shows that this step is the shortest subsegment on the map. Our template is approximate and
does not consider the length of the subsegment. This local rule cannot describe the behavior of
the policy in segment 8.12, it is too short and POMCP decides that it is better to move slowly even
if it is nearly certain that the subsegment is safe. Hence, we want to exclude the subsegment
from the rule. Finally, by analyzing the other three steps which do not satisfy the rule, we
notice that they are close to the rule, but cannot be described with this simple template (in these
steps, the robot move a speed 2 with belief [py = 0.789, p; = 0.181, p, = 0.031,[p, = 0.819, p; =
0.164, py = 0.017], and [p, = 0.828, p; = 0.162, p, = 0.010]). To improve the template, we add
a more complex literal (py > X3 A p; > Xy), that use both difficulty 0 (clear) and 1 (lightly

obstructed) to describe the behavior of the policy. We obtain the template:

ry select as when (Subseg * 812) N (po > il \Y pz < iz \Y (po > iS AN pl > i4)),
where X > 0.8 A p; = diff(distr, seg, 1i),i€{1,2,3}

and the rule:
ry : select ay when (subseg # 8.12) A (py > 0.841 v py < 0.004 v (pg > 0.789 A py > 0.156));

that only fails to satisfy 2 steps (speed 1 with belief [p, = 0.801, p; = 0.190, p, = 0.009], and
speed 0 with belief [py = 0.826, p; = 0.162, p, = 0.013]). These steps were satisfied by the first
iteration of the template, but now we have a stronger rule that describes more steps. We further
refine the template, but this result is a good compromise between simplicity and correctness.
Iteration 3. We write a template to describe when the robot moves at slow speed. We
identify three important situations that can lead the robot to move at slow speed i) the robot is
uncertain about the current difficulty (the belief is close to a uniform distribution), ii) the robot
knows that the current segment is hard iii) the robot is in the short subsegment 8.12. We try to
use p; >y, and p, > y,) to describe the first two situations. The template is the following:

ry : select a, when (subseg # 8.12) A (pg = X1V Py < Xp V(P = X3 A Py = Xy4));
ro © select ay when (subseg = 8.12) v p; >y, V Py > ¥y
where X; > 0.8 A p; = diff(distr, seg, i),i€ {1,2,3}

that yields the rule:

ry : select ay when (subseg # 8.12) A (pg > 0.841 v py < 0.004 v (py > 0.789 A p; > 0.156));
ro : select ay when (subseg = 8.12) v p; > 0.244 v p, > 0.024

which fail to satisfy 38 out of 370 steps. Notice that the low value for y;,y, (i.e., 0.244,0.024)
describes all the belief close to the uniform distribution. By analyzing the 38 unsatisfiable
steps, we notice that 35 of them are situations in which the robot decides to move at speed 1
even if the condition for moving at speed 0 are satisfied (e.g, three of these steps have belief
[po = 0319, p; = 0.342, p, = 0.338], [py = 0.345, p; = 0.337, p, = 0.318], and [p, = 0.335, p; =
0.333, py = 0.332] respectively). This analysis tell us that the POMCP considers a worthy risk
to move at medium speed (i.e., speed 1) even if it does not have strong understanding of the
current difficulty. If we consider this to be a non acceptable risk, we should modify the design
of POMCP, e.g., by increasing the number of particles used in the simulation.

4. Conclusions and future work

In this work, we present a methodology that combines high-level indications provided by a
human expert with an automatic procedure that analyzes an execution trace to synthesize key
properties of a policy in the form of rules. This work paves the way towards several research
directions. We aim at improving the expressiveness of the logical formulas used to formalize
the indications of the expert and to integrate POMCP and the methodology online.

References

[1] A. Cassandra, M. L. Littman, N. L. Zhang, Incremental Pruning: A Simple, Fast, Exact
Method for Partially Observable Markov Decision Processes, in: UAI *97, 1997, pp. 54-61.

[2] C.H. Papadimitriou, J. N. Tsitsiklis, The Complexity of Markov Decision Processes, Math.
Oper. Res. 12 (1987) 441-450.

[3] D. Silver, J. Veness, Monte-Carlo Planning in large POMDPs, in: NIPS 2010, Curran
Associates, Inc., 2010, pp. 2164-2172.

[4] A. Castellini, G. Chalkiadakis, A. Farinelli, Influence of State-Variable Constraints on
Partially Observable Monte Carlo Planning, in: [JCAI-19, 2019, pp. 5540-5546.

[5] A. Castellini, E. Marchesini, A. Farinelli, Online monte carlo planning for autonomous
robots: Exploiting prior knowledge on task similarities, in: Proceedings of AIRO 2019,
volume 2594 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 25-32.

[6] A. Castellini, E. Marchesini, G. Mazzi, A. Farinelli, Explaining the influence of prior
knowledge on POMCP policies, in: EUMAS 2020, Springer, Cham, 2020, pp. 261-276.

[7] D. Gunning, DARPA’s Explainable Artificial Intelligence (XAI) Program, 2019, pp. ii—-ii.

[8] M. Fox, D. Long, D. Magazzeni, Explainable Planning, CoRR abs/1709.10256 (2017).

[9] M. Cashmore, A. Collins, B. Krarup, S. Krivic, D. Magazzeni, D. Smith, Towards Explainable
Al Planning as a Service, 2019. 2nd ICAPS Workshop on Explainable Planning, XAIP 2019.

[10] S. Anjomshoae, A. Najjar, D. Calvaresi, K. Framling, Explainable Agents and Robots:
Results from a Systematic Literature Review, in: AAMAS, IFAAMAS, 2019, p. 1078-1088.

[11] L. De Moura, N. Bjerner, Z3: An Efficient SMT Solver, in: Proceedings of the 14th ETAPS,
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg, 2008, p. 337-340.

[12] N. Bjerner, A.-D. Phan, L. Fleckenstein, vZ - An Optimizing SMT Solver, in: Proceedings
of the 21st TACAS - Volume 9035, Springer-Verlag, Berlin, Heidelberg, 2015, p. 194-199.

	1 Introduction
	2 Method
	3 Results
	4 Conclusions and future work

