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Abstract

This paper investigates the safety properties of inductive logic
programming (ILP), particularly as compared to deep learn-
ing systems. We consider the following properties: ease of
model specification; robustness to input change; control over
inductive bias; verification of specifications; post-hoc model
editing; and interpretability. We find that ILP could satisfy
many of these properties in its home domains. Lastly, we pro-
pose a hybrid system using ILP as a preprocessor to generate
specifications for other ML systems.

Introduction

Symbolic approaches to Al are sometimes considered safer
than neural approaches (Condry 2016; Anderson et al.
2020). We investigate this by analysing how one symbolic
approach, inductive logic programming (ILP), fares on spe-
cific safety properties.

ILP is a declarative subfield of ML for learning from ex-
amples and encoded “background knowledge” (predicates
and constraints), using logic programs to represent both
these inputs and the output model (Muggleton 1999). (We
use ‘output model’ and ‘ILP hypothesis’ interchangeably.)

We find ILP to have potential to satisfy an array of safety
properties. To arrive at this, we survey existing work in ILP
and deep learning in light of the safety properties defined
in the framework of Ortega and Maini (2018). We also for-
malise robustness to input change and model editing. We
suggest a hybrid system, in which ILP is used as a prepro-
cessing step to generate specifications for other ML systems.

To our knowledge, this is the first analysis of ILP’s safety
potential, and of ILP’s differences from deep learning. Re-
lated work includes Cropper, Dumanci¢, and Muggleton
(2020)’s recent survey of ILP, the interpretability work of
Muggleton et al. (2018b), and Powell and Thévenod-Fosse
(2002)’s study of rule-based safety-critical systems.

Consider a machine learning system ‘safe’ when the sys-
tem’s goals are specified correctly, when it acts robustly ac-
cording to those goals, when we are assured about these two
properties (Ortega and Maini 2018), such that the risk of
harm from deploying the system is greatly reduced. ILP may
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be a natural fit for the assurance side of safety: often, not just
the output model, but also the learning process takes place
at a relatively high level (that is, at the level of symbolic
inference). Similarly, ILP plausibly satisfies multiple impor-
tant specification and robustness properties. We assess ILP
on: Specification properties (ease of model specification and
value loading; ease of adjusting the learned model to satisfy
specifications; and control over inductive bias); Robustness
properties (robustness to input change and to post-training
model edits); Assurance properties (interpretability and ex-
plainability; verification of specifications; and control over
the inductive bias).

Many safety properties await formalisation, preventing
quantitative comparisons. Where a formal metric is lacking,
we qualitatively compare ILP to deep learning (DL).

In the following we refer to ‘ILP’ as if it was mono-
lithic, but ILP systems differ widely in search strategy, ex-
actness, completeness, target logic (e.g. Prolog, Datalog,
ASP), noise-handling, ability to invent predicates, and the
order of the output theory (Boytcheva 2002). This diversity
limits the general statements we can make, but some remain.

Safety properties of ILP
Model Specification

The specification of an ML system serves to define its pur-
pose. When this purpose is successfully implemented in hard
constraints, we may obtain guarantees about the system’s be-
haviour. A defining feature of ILP systems is user-specified
background knowledge. This provides a natural way to im-
pose specifications on ILP systems. An ILP problem specifi-
cation is a set of positive examples, negative examples, and
background knowledge.

Consider two important properties of classical ILP. Given
a background B, an output model M, and positive examples
ET, the model M is

o weakly consistent if: B A M £~ False; and
o strongly consistent if: BA M A ET £ False.

Weak consistency forbids the generation of models that
contradict any clause in B (Muggleton 1999). In general,
ILP algorithms must satisfy weak consistency (Muggleton
1999), though probabilistic systems allow its violation; see
below. Hence, to guarantee that the learned model M sat-
isfies some specification s, all we need to do is encode s in



first-order logic (FOL) and add it to the background B. How-
ever, there are still some specification challenges for ILP.

Not all systems respect strong consistency. Many mod-
ern implementations of ILP are designed to handle noise in
the example set (Srinivasan 2006; Muggleton et al. 2018a).
For specifications encoded in the example set, noise han-
dling means that the system is only nudged in the direction
of the specification. Furthermore, probabilistic ILP systems
can specify the background as probabilistic facts (De Raedt
et al. 2015). This means that even weak consistency can be
violated. As such, these systems may not offer specification
guarantees.

Incompleteness. Even though a model satisfying our spec-
ification exists, an incomplete ILP algorithm might not find
it. Some leading implementations of ILP are incomplete, i.e.
a solution may exist even though the system does not find
one (Cropper and Tourret 2018)

Specifications may be hard to encode as FOL formulae. In
computer vision, a long tradition of manually encoding vi-
sual concepts was rapidly outperformed by learned represen-
tations (Goodfellow, Bengio, and Courville 2016): it proved
possible to learn these improved concepts, but intractable to
hand-code them. Insofar as ILP backgrounds must at present
be manually encoded (as opposed to learned via predicate
invention), we infer that some specifications are not practi-
cally possible to impose on ILP.

Human values are hard to encode as FOL formulae. A
particularly interesting kind of specification are those that
concern norms or values, i.e. specifications that aim to en-
sure that the output respects ethical considerations. There is
precedent for formalizing norms and moral obligations us-
ing logic — deontic logic is an area of philosophical logic
that aims to formalise and deduce moral claims (McNamara
2019). This has been used to partially formalise some ethi-
cal frameworks (Kroy 1976; Peterson 2014). However, en-
coding general normative requirements in formal logic is an
open problem. Further, we do not have a complete articu-
lation of all such requirements in any formalism. It seems
unlikely that in the near future we will obtain a complete
encoding, owing to deep inconsistencies across people and
the contextual nature of value (Yudkowsky 2011). Further-
more, it may be impossible to learn a representation of these
preferences, in the absence of a strong model of human error
(Armstrong and Mindermann 2018).

Model specification in DL. Methods exist for limited
model specification in DL (Platt and Barr 1988), many of
which focus on specific domains (Kashinath, Marcus et al.
2019; Zhang et al. 2020). However, if we interpret a spec-
ification as a hard constraint on outputs, then most current
DL methods do not allow specification. Instead they im-
pose soft constraints, modifying the loss to discourage out-
of-specification behaviour. Imposing hard constraints in DL
amounts to imposing a linear set of constraints on the output
of the model. Soft constraints in the form of subtle alter-
ations to the loss function or learning algorithm are harder
to specify than e.g. a linear set of hard constraints (Pathak,
Kréhenbiihl, and Darrell 2015). Soft constraints are perva-
sive due to the computational expense of hard constraints in
neural networks: since networks can have millions of adap-

tive parameters, it is not practical to use ordinary constrained
optimisation methods to impose them (Mérquez-Neila, Salz-
mann, and Fua 2017).

Robustness to Input Change

Robustness concerns smooth output change: If we change
the input slightly, will the output (of the learning algorithm
or of the learned model) change only slightly? To formalize
this, we define similarity of inputs and output hypotheses.

In DL input datasets, the problem description is usually
very correlated with the semantics of the problem. For ex-
ample, Gaussian noise usually does not affect the seman-
tics of the problem. DL models are often insensitive to small
changes in the description of the input. However, adversar-
ial changes induce large changes in output, despite the input
changes being trivial to the human eye (Szegedy et al. 2014).

For Horn clauses (a typical form in ILP output hypothe-
ses), one distance measure is the ‘rewrite distance’ (the min-
imum number of syntactic edits that transform one clause
into another) (Edelmann and Kuncak 2019). For our pur-
poses, this is inappropriate, since it neglects the semantic
distances we are targeting: a negation of the whole clause
would count as a rewrite distance of 1, despite being maxi-
mally semantically different.

Definition 1 (Similarity of Datasets) Given two datasets
D1, Do, let Hy and Hs be the sets of hypotheses compat-
ible with D1 and Do respectively. Let the weight of a set of
hypotheses H be defined as a weighed sum of the hypothe-
ses in H, where more complex hypotheses are given lower
weight (so that hypothesis h has weight 0.52¢(") where c(h)
is the complexity of h). We then say that D1 and Dy are
similar if Hy N Hy has a large weight.

Definition 2 (Similarity of Hypotheses) We say that two
hypotheses hy and ho are similar if the probability that they
will agree on an instance x sampled from the underlying
data distribution is high.

Definition 3 (Robustness to Input Change) Let £:D —
M be a learning algorithm. We say that L is robust to input
change if it is the case that L(D1) and L(Ds) are similar
whenever Dy and Dy are similar. More specifically, we say
that L has robustness parameters rp, 7 if: for any D1 and
Dy such that they have similarity rp or higher, the similarity
between L(D1) and L(D3) is at least r;.

We note that, for this notion of similarity between
datasets, the distance between two ILP problems may be
very large even if their descriptions are almost the same. For
example, adding a negation somewhere in the description of
D; may completely change its distance to D.

ILP is robust to syntactic input change. ILP is largely in-
variant to how the input problem is represented (in the sense
of symbol renaming or syntactic substitutions, which do not
affect the semantics). Two semantically equivalent problems
have identical sets of compatible output hypotheses.

Examples of trivial syntactic changes to a problem in-
clude: renaming atoms or predicates; substituting a ground
term for a variable; or substituting in a different variable. An



ILP problem statement is parsed as an ordered set of log-
ical sentences, and substitutions within these sentences do
not affect the semantics of the individual examples. Absent
complicating implementation details, they thus do not affect
the semantics of the output. Another syntactic change to a
problem is adding or removing copies of examples; these
changes do not have any effect on what hypothesis is output.

Changing the order of examples could (depending on
the search algorithm) change the chosen output hypothesis.
Even though the set of consistent output hypotheses does not
change when the order of examples changes, the hypothesis
that comes up first in the search may change. For example,
Metagol depends on the order (Cropper and Morel 2020).
This order dependence is a property of some clause-level
search methods (Srinivasan 2006).

Robustness to semantic input change. Naturally, semantic
changes to the problem can completely change the output
hypothesis. For example, negating a single example can pre-
clude finding any appropriate hypothesis.

Suppose D; and D, are two datasets, with corresponding
hypothesis spaces respectively H; and Hs. ILP has a fixed
order (which depends on the inductive biases) of traversing
the total set of potential hypotheses for a solution. Say ILP
outputs hypothesis h; for problem D4 and hypothesis hy for
Ds. Even if H; # Hs, hy and hy may be the same. When
hy # ho, we would like to assess their similarity.

Given an output model. If we change one input example,
then we may be able to check whether this input example
is consistent with the output model. We may not be able to
completely visualise the coverage, but may be able to predict
whether the output model will be different.

Empirically assessing robustness to input change. Poten-
tially, sampling can inform us about the robustness to input
change of ILP and deep learning. An experiment could work
as follows: Generate ILP problems such that we (approxi-
mately) know the distance between the datasets. Then run
ILP on each problem and store their output hypotheses. We
then select a distance measure and assess the distance be-
tween each of the output hypotheses. This allows us to (ap-
proximately) evaluate the robustness to input change of ILP.
A similar sampling process can be used for other learning al-
gorithms to compare the robustness of different algorithms.

Control over Inductive Bias

The inductive bias of a learning algorithm is the set of (of-
ten implicit) assumptions used to generalise a finite input
set to a complete output model (Mitchell 1980; Hiillermeier,
Fober, and Mernberger 2013). If several hypotheses fit the
training data, the inductive bias of the learning algorithm
determines which is selected. Correct behaviour is generally
under-determined by the training data, so selecting a model
with the right behaviour demands inductive bias. It is thus
desirable to adapt the training algorithm through fine con-
trol over the inductive bias.

Informally, a learning algorithm has a low Vap-
nik—Chervonenkis (VC) dimension if it can only express
simple models. If a learning algorithm has a low VC-
dimension then it can be shown that it is likely to generalise

well with small amounts of data, regardless of its induc-
tive bias (Vapnik and Chervonenkis 2015). However, with
a more expressive learning algorithm (such as DL or ILP)
this is insufficient to yield good generalisation, and hence
such learning algorithms need a good inductive bias to work
well. ILP’s strong bias allows it to perform well on small
datasets, even though hypotheses can also be highly expres-
sive (Tausend 1994).
The two main components of inductive bias are

e Limits to the hypothesis space: Restricting the hypothesis
space, i.e. the set of possible output models; and

e Guiding the search: The search order for traversing
through the hypothesis space, as well as heuristics to as-
sess hypotheses.

Inductive bias in DL. The hypothesis space in DL is
largely determined by the network architecture (Szymanski,
McCane, and Albert 2018), which we have control over. For
example, convolutional neural networks hard-code the as-
sumption that output classes are invariant to shift transfor-
mation (Goodfellow, Bengio, and Courville 2016). Train-
time methods like dropout and learning rate decay also reg-
ularise networks and so add inductive bias (Srivastava et al.
2014). In addition, neural networks have a broad bias to-
wards simplicity, although it is unclear how this bias works
(Zhang et al. 2017; Poggio, Liao, and Banburski 2020). The
lack of theoretical understanding of DL’s search bias implies
little explicit control over it.

Inductive bias in ILP. We can restrict the hypothesis space
in many ways. A critical design decision for an ILP system
is which fragment of FOL represents the examples, back-
ground and output model. The classical choice restricts FOL
to definite Horn clauses (Muggleton and de Raedt 1994).

In addition, a strong ILP language bias stems from user-
supplied constraints on the structure or type of the hypoth-
esis, e.g. mode declarations, meta-rules, or program tem-
plates (Payani and Fekri 2019). In some sense these are hy-
perparameters, as found in any ML system. However, these
constraints can be enormously informative, e.g. specifying:
which predicates to use in the head or body of the out-
put model; the quantifier of each argument in the predicate;
which arguments are to be treated as input and output; and
the types of these argument (Evans and Grefenstette 2018).

User-supplied constraints can pertain to (Muggleton and
de Raedt 1994) among other things

e Syntax, e.g. second-order schema or bounded term depth;

e Semantics (on the level of terms), e.g. hard-coding
the types of predicate arguments, or using determinate
clauses; and

e Bounds on the length of the output model.

Two elementary ways to order an ILP search over the set
of possible output models are top-down (‘from general to
specific’) or bottom-up (‘from specific to general’). At each
step of ILP learning, we need a way to score multiple com-
peting hypotheses. This can be done via computing the infor-
mation gain of the change to the hypothesis (Quinlan 1990)
or through probabilistic scoring (Muggleton and de Raedt
1994). A further source of search bias involves specifying
the order in which we prune candidate hypotheses.



Comparing ILP with DL. In Table 1 we compare control
over inductive bias in ILP and DL. We consider the follow-
ing, from Witten et al. (2017): language bias (hypothesis
space restriction), search bias (how the search through the
hypothesis space is ordered), and simplicity bias (how over-
fitting is prevented).

Bias ILP DL

Simplicity | Bound on Not well understood
program length (besides regularisers

Language | User constraints, NN architecture
target logic
Search Search order, Local gradient search

hypothesis scoring

Table 1: Realisations of types of inductive bias

When is control over inductive bias actually hand-coding
solutions? The more inductive biases are customised, the
more the learning method resembles explicit programming
of a solution class. For example, when doing reinforcement
learning it is possible to include information about how the
task should be solved in the reward function. As more infor-
mation is included, designing the reward function resembles
specifying a solution (Sutton and Barto 2018). In ILP, task-
specific language biases are often unavoidable for perfor-
mance reasons, but they risk pruning unexpected solutions,
involve a good deal of expert human labour, and can lead to
brittle systems which may not learn the problem structure so
much as they are passed it to begin with (Payani and Fekri
2019). This problem could be mitigated by progress in au-
tomating inductive bias choice in ILP.

Verification of Specifications

In cases where model specification does not give hard
guarantees about model behaviour, post-hoc verification is
needed. That is, determining, given program ) and specifi-
cation s, whether M’s behaviour satisfies s.

Definition 4 (Specification) Let L: D — M be a learning
algorithm. A specification s is a property such that for all
models M € M, the model satisfies the property or not.

The problem of verifying whether a model satisfies a
specification is NP-hard (Clarke and Emerson 1981), both
for a neural network (Katz et al. 2017) and for logic pro-
grams (Madelaine and Martin 2018).

Verification in ILP. In practice, verifying properties of an
output hypothesis is often easy. Suppose you have a propo-
sitional theory and want to verify whether this satisfies the
specification False. This is equivalent to solving satisfiabil-
ity, and so is at least NP hard. We can verify whether an
ILP model M satisfies an arbitrary Datalog specification s
by running resolution on M U {—s} to see if it derives False.
In fact, this can be done in some cases where s is not in Dat-
alog. For example, this could be done as long as s is in the
Bernays-Schonfinkel fragment, albeit in double-exponential
time (Piskac, de Moura, and Bjgrner 2008). The proof search

e.g. dropout & LR decay)

can be attempted with arbitrary Prolog specifications, but
may not terminate.

Verification in DL. To quote Katz et al. (2017), “Deep neu-
ral networks are large, non-linear, and non-convex, and ver-
ifying even simple properties about them is an NP-complete
problem”. In practice, complete solvers can verify properties
of networks with thousands of nodes, but time out for larger
networks (Wang et al. 2018). Incomplete methods can verify
properties of networks with ~100 000 ReLU nodes (Singh
et al. 2019; Botoeva et al. 2020). Note that the smallest net-
works that achieve decent results on CIFAR10 have ~50k
nodes. Networks can be trained such that they are easier to
verify (Xiao et al. 2019).

Post-hoc Model Editing

Definition 5 (Model Editing) Let £: D — M be a learn-
ing algorithm. Let M € M be a learned model. Let s be a
specification. We apply model editing to M on specification
s, if we find a model M' € M rthat has property s without
re-applying the learning algorithm L.

Let d be a distance metric on M. We say that we success-
fully edit M to fit specification s with respect to distance d
if we find a model M’ € M that has property s and out of
all models with property s has minimal distance from M.

Model Editing in ILP. The symbolic representation could
make ILP models easier to manipulate than DL models. ILP
output models are very interpretable and it is relatively easy
for humans to write logical sentences, which should make it
in some cases possible to apply model editing.

The output model of ILP is a conjunction of logical
clauses. The model can easily be edited, by removing or
adding individual clauses. If we simply add clause s to M,
then we get a new model M’ = M U {s}, which satisfies s
and has minimal distance to M with respect to the ‘rewrite
distance’. When adding clauses, one needs to ensure the new
model is still consistent.

A form of post-hoc model editing has been applied to
large neural networks, though only by automating the edits.
The OpenAl Five agent was trained across several differ-
ent architectures, with an automatic process for discovering
weights to copy (Raiman, Zhang, and Dennison 2019).

Model Editing in DL. After training a large neural net-
work, we (practically speaking) obtain a black-box model.
This black-box is not easy to manipulate, owing to the num-
ber of parameters and the distributed nature of its repre-
sentation. Through active learning or incremental learning
we can update the model - we could add a module that
deals with exceptions, or fine-tune on extra training data for
low-performing subgroups. However, these do not give us
much control over exactly how the black-box changes (Set-
tles 2009).

Because the black-box is difficult to interpret, we do not
fully comprehend what function the network has learned and
so are not able to enhance it. Researchers can override the
output with a different learned module, but there is no low-
level interactive combination of model and human insight.



Transparency

We consider the transparency of learned DL and ILP models,
and the transparency of the learning algorithms.

Transparency of the learned model. In contrast to DL
models, ILP outputs are represented in an explicit high-level
language, making them more transparent. We distinguish be-
tween (Lipton 2018): a globally transparent or ‘simulatable’
model; and a locally transparent or ‘decomposable’ model.

Decomposability. A decomposable model is one in which
each part of the model - each input, parameter, and compu-
tation - admits an intuitive explanation, independent of other
instances of the model part (Lipton 2018). The many param-
eters of a neural network form a distributed representation
of a nonlinear function, and as such it is unhelpful to reason
about individual parameters.

An ILP output model is a conjunction of predicates and
literals. When the background is human-specified, each in-
dividual predicate will admit an intuitive explanation. When
predicates are invented by the ILP system, the results can be
counter-intuitive or long; however, they are still themselves
encoded as decomposable clauses of intuitive features.

Simulatability. A user can simulate a model if they can
take input and work out what the model would output. More
precisely, a model M is simulatable in proportion to the
mean accuracy with which, after brief study of M, a pop-
ulation of users can reproduce the output of M on new data.

A small usability study (n=16) found that access to an
ILP program did allow users to simulate a concept they were
unable to infer themselves (Muggleton et al. 2018b). It also
found, as expected, that increasing the complexity reduced
simulatability.

Explainability of the learned model. Since ILP models are
relatively transparent, explanations are redundant (except in
very large programs). DL explainability is a highly active
field of research (Gilpin et al. 2018) and has produced many
post-hoc tools, making use of: visualization, text explana-
tions, feature relevance, explanations by example, model
simplification and local explanations (Arrieta et al. 2020).

Transparency of the learning algorithm. In DL the learn-
ing algorithm optimises weights in a model that already has
the same architecture as the output model, such that during
training we see many intermediate models. This implies that
many of the transparency properties of DL are relevant for
its accessibility as well. On the other hand, in ILP we have a
distinct training algorithm and output model.

Individual model updates during learning. In DL, back-
propagation attributes changes in the loss to individual
weights. However, backpropagation can lead to local min-
ima, and so sometimes weights are updated in a direction
opposite from the ideal direction. This, along with their (hu-
manly) incomprehensible representation imply that individ-
ual updates are not interpretable.

This contrasts with ILP, where each step of the learning
algorithm occurs on a symbolic level (for instance, general-
ising a candidate hypothesis through dropping one literal). In
principle a human user could step through ILP learning and
understand the concept represented at each step, the com-
plete effect of each change on the model coverage, and the
particular data points that constrain the change (though in

practice learning can involve many thousands of steps, and
so this can take an impractically long time).

Attributing the solution to individual training inputs.
Given an ILP output model and an input example, a human
can usually assess whether they are consistent. So in ILP it
is relatively clear which example or background predicate is
causing the ILP algorithm to output a given model.

In DL however, it would be very difficult to (for instance)
assess whether an image was a member of the training set of
a given model. That is, it is difficult to attribute aspects of
the output model to individual inputs.

Inductive bias towards interpretability. User-supplied
program constraints and bounds on program length mean
that we only generate programs of a certain form, which can
be interpretable by construction. Moreover, control over in-
ductive bias itself can be seen as a form of accessibility.

Discussion

We have argued that ILP has a number of safety properties
that make it attractive compared to DL:

1. ILP is convenient for specification, insofar as it is intuitive
to encode examples and properties of correct behaviour;

2. ILP is robust to most syntactic changes in inputs;

3. The program templates, and bounds on program length
give control over the inductive bias in ILP;

4. We can verify whether an ILP model satisfies an arbitrary
Datalog specification by running resolution;

5. We can edit an ILP model by adding or removing clauses;

6. ILP models are interpretable as they are quite transparent
and are reasonably accessible.

Competitiveness of ILP. It is unlikely that the Al com-
munity will adopt ILP if its performance is not competitive.
Consider chemistry applications (Srinivasan et al. 1997):
ILP continues to be applied (Kaalia et al. 2016), but DL ef-
forts are now more extensive (Cova and Pais 2019). One
benchmark is suggestive: ILP found success in the early
years of the Comparative Assessment of protein Structure
Prediction (Cootes, Muggleton, and Sternberg 2003), but
most submissions now use DL (Senior et al. 2019). These
results may not be indicative of ILP’s current potential as
far less research is being invested in ILP than in DL. As a
suggestive bound on the ratio of investment, compare the
130 researchers (worldwide) listed on the ILP community
hub (Siebers 2019), to the 420 researchers at a single DL
lab, Berkeley AI Research, or to the 13,000 attendees of a
single DL conference, NeurIPS. This relative neglect might
allow for performance gains from research into ILP and hy-
brid ILP-DL systems.

A deeper concern is the limited domains in which ILP of-
fers its benefits. ILP generates logic programs, where DL ap-
proximates continuous functions. We have argued that logic
programs are more human interpretable, especially when the
predicates used in the program represent concepts we know
and use. Our discussion of ILP’s transparency only applies
to domains where the data is already available on a symbolic
level. Moreover, a major theme in recent Al, cognitive sci-
ence, and linguistics is that rule approaches are insufficient



to express or learn most human-level concepts, where con-
tinuous features and similarity to exemplars appear neces-
sary (Rouder and Ratcliff 2006; Spivey 2008; Norvig 2012).

Both of the above suggest a need to unify connection-
ist and symbolic methods. Recent attempts implement re-
lational or logical reasoning on neural networks (Garnelo
and Shanahan 2019; Evans and Grefenstette 2018). How-
ever, from a safety perspective, these unifications lose de-
sirable properties. We hope that future versions not only in-
crease in performance, but also retain their safety potential.

ILP as specification module. The above suggests a fruit-
ful role for ILP: as a specification generator in a mixed Al
system. We may not be able to directly specify safety prop-
erties, but may be able to give positive and negative exam-
ples of safe behaviour. If it is natural to formulate these ex-
amples in natural language or logic, then ILP can generate
hypotheses based on these partial specifications. Since ILP
output models are easy to interpret, we may be able to verify
whether they meet our preferences, and perhaps edit them to
account for noisy or missing features. In certain cases (e.g.
Datalog), it may be possible to formally verify the hypoth-
esis’ correctness. The specification can then be transferred
losslessly to any other learning system that can handle logi-
cal expressions (e.g. graph neural networks).

ILP’s differences with DL suggest solutions to DL’s safety
shortcomings. We are hopeful that hybrid systems can pro-
vide safety guarantees.
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