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Abstract 
Development of trustworthy (e.g., safety and/or security crit-
ical) hardware/software-based systems needs to rely on well-
defined process models. However, engineering  trustworthy 
systems implemented with artificial intelligence (AI) is still 
poorly discussed. This is, to large extend, due to the stand-
point in which AI is a technique applied within software en-
gineering. This work follows a different viewpoint in which 
AI represents a 3rd kind technology (next to software and 
hardware), with close connections to software. Consequently, 
the contribution of this paper is the presentation of a process 
model, tailored to AI engineering. Its objective is to support 
the development of trustworthy systems, for which parts of 
their safety and/or security critical functionality are imple-
mented with AI. As such, it considers methods and metrics at 
different AI development phases that shall be used to achieve 
higher confidence in the satisfaction of trustworthiness prop-
erties of a developed system. 

 Introduction   

A common deficiency of safety standards like ISO 26262 
[ISO 26262:2018], in the automotive domain, is that they do 
not account explicitly for Artificial Intelligence (AI) tech-
nology [Putzer, H.J.]. However, opposed to older rumors – 
safety standards do not prohibit the use of AI, they just do 
not provide any guidelines on how to use this technology. 
Actually, lately, AI has reached high attention among the 
automotive, healthcare, or defense industry. This is due to 
the capabilities of AI during design (shorter time to market; 
implementation of implicit requirements) and during opera-
tion (improved performance). To achieve the vision in 
which AI not only supports, but also provides safety and/or 
security critical functionality, systems must be assured by 
evidence for trustworthy behavior of AI components. 
There is a tendency that AI is regarded as software. It is sug-
gested that the application of existing standards in their cur-
rent form is adequate and that the reuse of already available 
processes, methods and metrics specific to software compo-
nents can be used for AI. 
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This work advocates a different approach, where AI is con-
sidered as a 3rd kind technology (next to software (SW) and 
hardware (HW)), which requires its own process model to 
ensure trustworthiness. This is because AI, in particular Ma-
chine Learning (ML) is a new, data-driven technology, 
which requires a specific engineering process with specific 
tailored methods for assuring trustworthiness. Such a struc-
tured engineering process will be introduced by this paper, 
while also discussing the integration of this process into the 
overall system lifecycle, as presented in the VDE-AR-E 
2842-61 standard [VDE-AR-E 2842-61:2020]. 
This paper is structured as follows. Foundations section pre-
sents the VDE-AR-E 2842-61 standard which states the 
main context for this work. Next section presents a generic 
process model called AI-Blueprint, upon which, process 
models tailored to specific AI techniques (e.g. Deep Neural 
Networks - DNNs, Reinforcement Learning) can be built. 
After that, a specific instance of AI-Blueprint for DNNs is 
provided, with the follow-up section showing its application 
for a development of CNN (Convolutional Neural Net-
work)-based pedestrians’ detection component. Finally, re-
lated work is presented, i.e. process models for the develop-
ment of AI components, especially in the context of the de-
velopment of safety and security critical systems. In the last 
section, we draw some conclusions and discuss future work. 

Foundations 

Fig. 1 presents the reference lifecycle defined in VDE-AR-
E 2842-61 standard. The standard will consist of six parts 
where the three of them are already published. The reference 
lifecycle can be used as a reference for a process model that 
supports the development and assurance of a concrete trust-
worthy system. Trustworthiness is considered as a more ge-
neric concept that combines a user defined and potentially 
project specific set of aspects. These aspects include but are 
not limited to (functional) safety, security, privacy, usabil-
ity, ethical and legal compliance, reliability, availability, 



maintainability, and (intended) functionality.  The reference 
lifecycle defines the logical flow of assurance activities and 
is inspired by the structure of the ISO 26262 safety lifecycle. 
However, it is domain-independent. Detailed description of 
the phases can be found in [Putzer, H.J.]. In this work we 
focus only on the development phase dedicated to the Tech-
nological Element (see Fig. 1). The scope of this phase is to 
provide guidance for the implementation of elements based 
on a single technology (e.g. SW, HW, and especially AI).  
With a suitable process interface, when using the VDE-AR-
E 2842-61 standard, these process models can be borrowed 
from other suitable standards. For example, in automotive, 
SW or HW based components can be developed following 
the V models defined in ISO 26262. However, there is no 
standardized process model that can be used for AI compo-
nents. Consequently, the following two sections present a 
concept of AI-Blueprint, which acts as a template for con-
structing process models for specific AI technologies, such 
as the one presented later, i.e. a process model for DNNs.  

The AI-Blueprint 

The development of AI components does not fit into exist-
ing process models (e.g. like for classical software) due to 
the specific nature of the AI data-driven implementation. 
Even inside the field of AI, different methodologies and so-
lution concepts can have very specific requirements towards 
the underlying process model. This urges for a new ap-
proach in which specific characteristics of certain AI tech-
nology are targeted by specific process model.  
In this paper, we introduce the concept of AI-Blueprint. It is 
a template process that shall be refined for a specific AI 
technique. The AI-Blueprint is characterized by Input and 
Output Interfaces, Structure (development phases) and 
Qualifications (e.g. used for the first time, or proven, i.e. 
used with success in many projects). The execution of an 
instance of the AI-Blueprint provides an AI element charac-
terized by a predefined quality level, including guarantees 
to meet defined trustworthiness requirements. 

The development phase at system level provides as inputs to 
the AI-Blueprint the system and trustworthiness require-
ments, together with the desired Trustworthiness Perfor-
mance Level (TPL). TPL is a risk classification scheme sim-
ilar to the Automotive Safety Integrity Level (ASIL) with 
the exception that it concerns trustworthiness, not only 
safety. It appoints selection of qualitative methods and met-
rics (M&M-s), in a systematic approach, to achieve certain 
TPL level. 
The AI-Blueprint outputs the AI element and the value of 
UCI (Uncertainty-related Confidence Indicator), which are 
provided back to the development at system level. UCI is a 
quantitative indicator that describes the achieved confidence 
in the trustworthiness of AI component, which can be com-
bined (in a statistically principled way) to calculate failure 
rate at the system level [Zhao, X.]. It represents a quantita-
tive guarantee that a component can deliver as part of the 
trustworthiness contract established with the rest of a sys-
tem. Desired value of UCI is defined via assigned TPL. UCI 
conceptually can be compared to the idea of  expressing 
random hardware failures (ISO 26262 part 5).  

AI-Blueprint for DNN 

In this section, we instantiate the concept of AI-Blueprint 
for a certain technology, namely DNN. For each phase in 
the process model, we discuss its objectives to be achieved 
and the methods and metrics (M&M-s) that can be used to 
ensure higher trustworthiness. Significant area of research is 

Fig. 3: Left DNN Blueprint Branch M&M-s for Trustworthi-
ness Assurance 

Fig. 2: AI-blueprint for DNN 

Fig. 1: Reference Lifecycle of VDE-AR-E 2842-61 



devoted to the identification of methods (apart from stand-
ard testing on validation and test set), and metrics that can 
be used to reason about the trustworthiness of DNNs. Their 
usage (or not) is part of the systematic approach to achieve 
certain TPL level. Additionally, a subset of them will con-
tribute to the estimation of UCI. This however requires pro-
vision of a “bridge” between M&M-s and estimates of UCI, 
similarly as it could possibly be done for SW (see [Rushby, 
J ]). Fig. 3 and Fig. 4 present examples of M&M-s grouped 
along the development phases. Still an open problem are the 
requirements imposed on their usage, depending on the as-
signed TPL. For example, ISO 26262 part 6 provides corre-
sponding set of methods to assure confidence in the fulfill-
ment of assurance objectives for a SW component. These 
methods (e.g. usage of strongly typed programming lan-
guages, formal verification, etc.) in the context of a particu-
lar ASIL level (A, B, C or D) are highly recommended, rec-
ommended, or have no recommendation for/against their us-
age. Similar set of rules shall be also worked out for this 
DNN blueprint. This is currently left for a future work. 

Initiation Phase  
During this phase, the team that will develop the DNN com-
ponent is assembled. Then, all requirements allocated to 
DNN are collected and harmonized. These are product re-
lated and trustworthiness requirements specified during the 
system-level development phase. Further, the acceptance 
criteria for DNN are defined. M&M-s that can be used at 
this phase refer to requirements engineering. 

Data Preparation Phase 
The first objective of this phase is to derive data-related re-
quirements from system-level requirements. The second ob-
jective of this phase is to gather proper data (accordingly to 
the requirements) and to group it into training, validation, 
and test sets. Validation set is used during the training, but 
with a purpose to assess the model convergence after each 
epoch. This set can be further used during the design phase 

to verify a design. The set of possible M&M-s that shall in-
crease confidence in trustworthiness of an AI element (i.e. 
DNN) and which regards data preparation has been inten-
sively researched. For instance, data shall account for corner 
cases or adversarial examples. Specific use-cases may be 
obtained through synthetic data generated using for instance 
Generative Adversarial Networks (GANs) [Esteban, C]. 
Further, Variational Autoencoders (VAE) may be applied to 
see whether data falls within the ODD (Operational Design 
Domain) [Vernekar, S.]. M&M-s can also be used to im-
prove the quality of data labeling. For example, labeling in-
accuracies may be circumvented by providing datasets la-
beled by different teams and/or technologies. 

NN Design Phase 
This is a phase that outputs as a main artefact the DNN de-
sign. The main difference between DNN design and DNN 
model is that the later contains also information about 
trained weights. Consequently, the main objectives of this 
phase are the specification of design-related requirements 
and the development of a model that satisfies them. The 
M&M-s at this phase shall contribute to the higher trustwor-
thiness of AI element by making the design robust to failures 
(e.g. usage of redundancy) or noisy data (e.g. uncertainty 
calculation with MC-dropout), contributing to generaliza-
tion property (e.g. design guidelines to select appropriate ac-
tivation function, etc.), and other non-functional properties 
which impact trustworthiness. 

Implementation & Training Phase 
This phase considers as an input the DNN design and the 
training dataset. In order to assure higher confidence in the 
DNN training, the NN developer shall follow good practices 
for coding (e.g. for high-criticality functionality only 
strongly typed languages may have to be permitted). Other 
M&M-s can be used to optimize the training. These include 
but are not limited to: cropping, subsampling, scaling, etc. 
Higher trust can also be achieved by defining and following 
criteria for the training platform (e.g. level of coherence with 
a final execution platform). The output artefact of this phase 
is a DNN model, which is the main input to the verification 
and validation phases. 

Training Verification Phase 
This phase is part of the training procedure with the main 
purpose of controlling and verifying it. Based on the valida-
tion dataset and predefined validation metrics, the evolving 
DNN model is verified after each epoch. A negative out-
come of the verification may require changes in the training 
(e.g. resignation from subsampling), or may require changes 
of hyperparameters, defined during the design phase. 

Fig. 4: Right DNN Blueprint Branch M&M-s for Trustwor-
thiness Assurance 



Design Verification 
This phase aims at the verification of DNN by investigating 
possible problems related to the NN design. The NN devel-
oper shall evaluate the result of the training, using validation 
dataset, and assess possible problems that may have arisen 
due to bad design decisions (e.g., inappropriate activation 
function). The NN developer may request follow-up itera-
tions over the epochs or, if needed, the redesign of NN hy-
perparameters (return to Design Phase). 
 
NN Verification Phase 
The IV&V (Independent Verification and Validation) engi-
neer shall execute a set of tests, in order to judge on the suc-
cess or failure of the NN generalization, brittleness, robust-
ness or efficiency. The judgement should be primarily based 
on the measured accuracy of NN over the test data set and/or 
identified and/or generated adversarial examples and/or cor-
ner cases. Tests may also involve faults injection or endur-
ance tests to measure sustainability of an NN. 

NN Validation, Deployment, and Release 
During this final phase the IV&V engineer shall assess 
whether the AI element complies with all product and trust-
worthiness requirements. The NN shall be then integrated 
with hardware and/or software libraries in order to be de-
ployed in the overall system. The resulting AI element shall 
be validated while running on the target platform. The final 
objective of this phase is to calculate the UCI in order to 
assess compliance of the AI element with an initially as-
signed TPL. If the obtained UCI value does not correspond 
to the TPL level, redesign decisions either at the AI level 
(e.g., design changes, collection of additional data) or at the 
system level (e.g., introduction of a redundant element to 
decrease assigned TPL level) shall be planned and executed. 

Practical Example 

The objective of this section is to showcase the traversal 
over the proposed DNN process model for developing a 
Convolutional Neural Network (CNN) for pedestrian detec-
tion. The overall context for this use-case, i.e., the System 
of Interest (SoI) is a pedestrian collision avoidance system. 
This system entails several components, SW or HW based, 
among which there is the AI component with the main re-
quirement to detect pedestrians (i.e., 2D bounding box de-
tection of pedestrians) based on the analysis of video data 
acquired from a single camera.  

Input from the System-level 
From the system-level requirements, we derive AI func-
tional requirements, such as: AIR01: relevant (defined via 
reachability zone) pedestrians (any person who is afoot or 

who is using a wheelchair or a means of conveyance pro-
pelled by human power other than a bicycle) are properly 
detected and AIR02: ODD is defined through the European 
roads. Further, we also derive trustworthiness AI require-
ments, purposed mainly to counteract identified hazards, 
e.g.: AITR01: the DNN shall output for each detected rele-
vant pedestrian a bounding box with accurately estimated 
size and position accuracy in the velocity dependent detec-
tion zone, in all situations the Ego Vehicle may encounter, 
while being in the ODD; AITR02: pedestrians occluded up 
to 95% shall be properly identified; and AITR03: the DNN 
component shall not output false positives in the detection 
zone more than once in a sequence of 5 video frames. Next 
to these requirements, there is also a value of the TPL, which 
is assigned at the system level. On a scale from A to D (high-
est trustworthiness criticality level), in case there are no re-
dundant components to pedestrians detection component, 
the assigned TPL value is D due to the high criticality of 
functionality that it provides. 

Example of Activities to fulfill Phases Objectives 
This subsection presents examples of activities that can be 
executed over the different phases of the process model for 
CNN in order to meet the objectives of the phases and pro-
vide as a final outcome an AI element together with a trust-
worthiness guarantee expressed by the value of UCI. 
During the Initiation Phase system-level requirements are 
refined. In the example of pedestrian recognition, examples 
of the refined product requirements are: AIR01 → 
AIR01.01: pedestrians of min. width (20 pixels) and min. 
height (20 pixels) shall be classified; AIR02 → AIR02.01: 
ODD shall consider right-lane and left-lane traffic. 
Further, we refine the AI trustworthiness requirements as 
follows: AITR01 → AITR01.01: the value of mean aver-
age precision shall be greater or equal to 97.9%; and 
AITR02 → AITR02.01: the data samples shall include ex-
amples with a sufficient range of levels of occlusion giving 
partial view of pedestrians at crossings. 
Next, to fulfill further objectives of this phase, the team de-
veloping the AI element has to be assembled and, if neces-
sary, the DNN blueprint needs to be adjusted to reflect fur-
ther identified needs expressed by the team. 
The first activity during the Data Preparation Phase is to 
look over the requirements and process those that impact the 
data gathering and labeling activities. For instance, AITR02 
has an implicit impact on the data because, to properly train 
and test the model, data shall contain pedestrians with dif-
ferent levels of occlusion (up to 95%). There could also exist 
data related concerns explicitly expressed, such as AIR03: 
the data samples shall include a sufficient range of examples 
reflecting the effects of identified system failure modes, 
AIR04: the format of each data sample shall be representa-
tive of that which is captured using sensors deployed on the 



ego vehicle or AIR05: the data samples shall include suffi-
cient range of pedestrians within the scope of the ODD. The 
data shall be then gathered, labeled and properly stored, ac-
cording to the identified requirements. 
The Design Phase shall first analyze requirements which 
may have implications on a CNN design. Examples of such 
requirements are: AIR06: the DNN shall be robust against 
all types of foreseeable noise, AIR07: a diagnosis function 
shall exist in order to detect distributional shift in the envi-
ronment (out of ODD detection) or AIR08: plausibility 
checks of detected bounding boxes are necessary (e.g. pe-
destrians usually do not fly). The designer shall then specify 
the CNN in terms of the number of convolutional layers, 
kernel size, number of fully connected layers, neurons in 
each layer, loss function, and other hyperparameters, to pro-
vide a design that will best serve the intended purpose. The 
analyzed requirements shall also steer design activities. For 
instance, AIR06 requests robustness to various types of 
noise which can occur in the input data. The presence of 
noise may also be problematic even during the training as it 
may lead to overfitting. Further, AIR07 may be handled by 
either introducing additional component (in such case the 
solution would affect system level) based on VAE, which 
can identify distributional shift, or the CNN itself may use 
MC-dropout to calculate uncertainties, where high uncer-
tainty may result from out of ODD input. AIR08 may be 
accommodated by design through additional knowledge in-
jected into the CNN (neural symbolic integration) that re-
jects labels that based on human knowledge make no sense. 
The first activity of the Implementation and Training 
Phase is to provide a code for the CNN. The coding activity 
can follow standard SW development practices recom-
mended in ISO 26262 part 6. However, certain differences 
such as tooling, libraries or available programming lan-
guages (Python or preferably C++) create additional chal-
lenges to this activity. Next, the training platform needs to 
be selected with justification and training related parameters 
shall be provided, e.g. batch size = 1024, number of epochs 
= 4, number of iterations = 10, learning rate = 0.001 or decay 
factor = 0.9. Then, according to predefined parameters the 
training shall be assessed during the Training Verification 
Phase. The parameters may be tuned if necessary (e.g. 
model does not converge) or early stopping triggered if the 
model has learned to extract all the meaningful relationships 
from the data before starting to model the noise. 
Having the trained model, verification and validation activ-
ities can be performed. Verification shall primarily investi-
gate key trustworthiness concerns which are specific to 
CNNs. These are robustness, brittleness, efficiency, ODD 
coverage, distributional shift, unknown behavior in rare sit-
uations (corner cases or adversarial examples). Verification 
starts at Design Verification Phase in which performed ac-
tivities shall encounter possible problems regarding men-
tioned properties in relation to the design. For instance, one 

could perform design investigation to analyze neurons acti-
vation. This contributes to the explainability of how pedes-
trians are identified and may allow to prune those neurons, 
which do not play any role in the decision process. Pruning 
may also be used to limit the number of neurons, to possibly 
eliminate problems of overfitting.  M&M-s that shall be ap-
plied can be classified as white-box because they refer to 
internal characteristics of CNNs. Functional Verification 
Phase activities shall also target verification of key trust-
worthiness concerns, however more from the grey/black-
box perspective. Here not only CNN itself is verified, but 
also the data. For example, if the CNN does not detect pe-
destrians on a wheelchair, most likely the CNN was never 
fed with such training examples. Explainability could be 
further enhanced by using attention based methods. For ex-
ample, heat maps (grey-box method) may reveal those fea-
tures from the image which are used to identify pedestrians. 
These may be different body parts, or maybe just vertical 
lines. The result highly depends on the level of features an-
notation performed during the labeling. If it is not detailed 
enough, the NN tester may request extended feature annota-
tion to be performed at the data preparation phase. 
The validation is executed in the last phase, i.e., NN Vali-
dation, Deployment, and Release. Its main activity centers 
at the validation of the requirements provided as an input to 
the initiation phase, and their refined versions elaborated at 
that phase. For instance, to validate AIR01.01 one has to 
identify input images within the test set on which there are 
pedestrians with height and width close to 20 pixels and see 
whether these are properly detected. In case they are not, ei-
ther requirements shall be changed or the training data shall 
be checked to identify whether enough samples was there to 
train the model for this requirement.  

Output provided to the System-level 
The artefact output by the DNN process model is a trained 
and verified CNN model for pedestrians’ detection. Next to 
it, the UCI value is computed, which accounts for M&M-s 
being used throughout the blueprint and their efficiency in 
minimizing risks of possible hazards which may occur. 

Related Work 

The fact that there is a need for a dedicated process model 
for the development of AI components within safety and/or 
security critical systems has been underlined more than 20 
years ago by Rodvold, who proposed a formal development 
methodology and a validation technique for AI trustworthi-
ness assurance [Rodvold, D.M]. While the phases in the pro-
cess model proposed by Rodvold resemble the phases of our 
proposed AI-Blueprint, Rodvold does not discuss the met-



rics and corresponding methods that can be used for the im-
plementation and the verification of the considered trust-
worthiness requirements. 
Microsoft presents a nine-stage ML workflow for the devel-
opment of AI-based applications [Amershi, S]. The work-
flow is claimed to be used by multiple teams inside Mi-
crosoft, for diverse applications, and to have been integrated 
into overall, preexisting agile software engineering pro-
cesses. Amershi et. al. categorize the workflow stages as 
data-oriented (e.g., collection, cleaning, and labeling) and 
model-oriented (e.g., model requirements, feature engineer-
ing, training, evaluation, deployment, and monitoring). 
While these stages are similar to the ones in our proposed 
AI-Blueprint, the Microsoft workflow does not consider ac-
tivities specific for trustworthiness assurance, as their work-
flow is only intended to be used for the implementation of 
non-critical functionality. 
Ashmore et. al. present a process model for ML components 
in critical systems, consisting of four phases: Data Manage-
ment, Model Learning, Model Verification and Model De-
ployment [Ashmore, R]. For each phase in the model, they 
define the assurance-related desiderata (i.e., objectives) and 
they discuss how state-of-the-art methods may contribute to 
the achievement of those desiderata. The work presented in 
this paper is complementary to the work of Ashmore et. al.. 
First, AI-Blueprint for DNN elaborates more on the valida-
tion and verification of AI components, having separate 
phases for design verification, verification of functional re-
quirements and validation of the AI component w.r.t. trust-
worthiness requirements. Second, instead of proposing a 
general AI process model, we advocate the need for both a 
higher-level template for process models guiding the devel-
opment of AI components (i.e., AI-Blueprint), and more 
concrete process models for particular AI technologies (e.g., 
AI-Blueprint for DNNs). Third, we discuss the process mod-
els in the context of the overall system lifecycle. 
Toreini et. al. examine the qualities technologies should 
have to support trust in AI-based systems, but from the per-
spective of social sciences [Toreini, E]. They present an in-
teresting, but abstract machine learning pipeline, whose 
phases could be aligned to those in the AI-Blueprint for 
DNNs. Nevertheless, they do not offer detailed description 
of each of the phases, neither they deliberate on specific 
M&M-s and how they shall be used to increase the confi-
dence in trustworthy solution. 

Conclusions and Future Work 

This paper presented the concept of AI-Blueprint and an ex-
ample of how to use this blueprint for tailoring a process 
model for a certain AI technology (i.e., DNNs), with the 
scope of supporting trustworthiness assurance. We also dis-
cussed how the proposed AI-Blueprint fits in an overall 

framework for the development of trustworthy autono-
mous/cognitive systems, regulated in the upcoming VDE-
AR-E 2842-61 standard. This work however is still in its 
early phases. As a future work, recommendations for spe-
cific metrics and methods, advertised along the DNN blue-
print, should be established, based on the TPL levels as-
signed to AI element. Also, current research status regarding 
feasibility or performance of these methods should be inves-
tigated, to eliminate those which cannot be used while de-
veloping industry size DNNs. Next, further research on how 
to calculate the value for the newly introduced UCI concept 
is necessary. Finally, having the concept of AI-Blueprint, 
new blueprints, such as for reinforcement learning, neural 
symbolic integration could be derived. 
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