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Abstract

Safe Reinforcement Learning (Safe RL) aims to produce con-
strained policies with constraints typically motivated by is-
sues of physical safety. This paper considers the issues that
arise from regulatory constraints or issues of legal safety.
Without guarantees of safety, autonomous systems or agents
(A-bots) trained through RL are expensive or dangerous to
train and deploy. Many potential applications for RL involve
acting in regulated environments and here existing research is
thin. Regulations impose behavioural restrictions which can
be more complex than those engendered by considerations of
physical safety. They are often inter-temporal, require plan-
ning on behalf of the learner and involve concepts of causal-
ity and intent. By examining the typical types of laws present
in a regulated arena, this paper identifies design features that
the RL learning process should possess in order to ensure that
it is able to generate legally safe or compliant policies.

Introduction
In this position paper I will consider the problem of learning
a solution to a sequential decision making problem in an en-
vironment governed by some laws via Reinforcement learn-
ing (RL). I will assume that the learned policy should not
break these laws because doing so would impose sanctions
by the environment’s regulator or law enforcer. By present-
ing a taxonomy of laws which exist in real life, whose fea-
tures are relevant to RL, I am able to make some inferences
about the general design of a RL process that can produce
legal policies.

RL can produce novel policies to solve sequential deci-
sion problems. Its potential has been demonstrated in the
super-human mastery of Go (Silver et al. 2017) and ad-
vanced performance in more complicated games like Star-
craft (Vinyals et al. 2019) but adoption in real life settings
has been retarded by safety (including legal) considerations.
This is noticeable in Financial trading applications which
already use algorithms extensively but have been slow (pub-
licly at least) to adopt RL.

RL requires an environment which allows ample explo-
ration and feedback. In game applications such as Go and
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computer games the training environment is the same as the
deployment environment and training is costless (excepting
the ecological impact of the vast computational power that is
often used). Potential real world applications of RL are of-
ten more complex, almost certainly regulated, and the cost
of mistakes made in training or deployment could be catas-
trophic. In such applications where safety, cost or legality
are issue, one approach is to conduct learning in a simulator
of the environment where the cost of bad policies is negligi-
ble. The use of any simulator raises the risk of misspecifica-
tion and poor generalisation on deployment. An alternative
to using a simulator is placing the RL agent very carefully
in the target environment with a human overseer ready to
take over in tricky spots. This approach has limitations ac-
cording to the complexity of the task (Saunders et al. 2018).
It might not be feasible to use this approach in applications
like trading because the speed of decision making is beyond
the ability of a human overseer to monitor.

Whether learning takes place in a simulator or carefully
in the target arena, the ability to generate legal policies with
high probability is highly desirable if the policy is to be
deployed in a regulated setting. Laws can present different
challenges to other types of constraint. A legally transgres-
sive policy might not be obvious in the way a physically
transgressive one might be. The nature of laws will dictate
the methods of RL used to generate optimal, legal policies.

Background
Markov Decision Processes (MDPs) are a common frame-
work underpinning RL. In this formulation time is discre-
tised and labelled t = 1, 2, 3, . . . . A MDP is described by a
tuple (S,S0,A, T , R, γ) where:

1. S is the set of states in the environment.

2. s0 is a distribution over the initial states of the environ-
ment p(s) for s ∈ S.

3. A is the set of all actions available.

4. T (s, a, s′) = P(s′|s, a) is the transition probability distri-
bution; the probability of transitioning to state s′ when in
state s ∈ S and choosing action a ∈ A.

5. R : S × A → R is the reward function, the feedback
mechanism through which learning is possible.



6. γ ∈ (0, 1] the discount factor to differentiate the value
of rewards now vs those received in the future. In finite
horizon cases γ = 1 and can be ignored.
The learner then has the objective of funding a policy

function from the set of all policy functions Π : S → A
which solves the maximisation of the expected discounted
sum of rewards:

π∗ = arg max
π∈Π

E
[∑
t=0

γtR(st, at)|π
]

The policy function is often a probability distribution over
actions π(a|s) = P(a|s) ∀a ∈ A, s ∈ S

The Markovian property of this process comes from the
transition function. It is satisfied if the probability of tran-
sition to a new state is determined only by the current state
and chosen action.

An extension of the MDP is the Partially Observable MDP
(POMDP). This covers the very probable contingency where
the full state of the world is not visible to the decision maker.
It is described by the tuple (S,S0,A, T , R, γ,Ω, O). The
two additions to the tuple are as follows:

7. Ω is the set of all observations that the learner can receive.
For convenience we assume that it includes the reward rt
received in any time period.

8. O = P(ω|s′, a) is the probability distribution of receiving
observation ω ∈ Ω after transition to state s′ and action a
was chosen.
The domain of the policy function then becomes the his-

tory of all observations and actions which we write π(a|ht)
where ht is short hand for (o1, a1, o2, a2, . . . at−1, ot). Con-
sequently the complexity of solving a POMDP is much
higher than that of a MDP (Abel, MacGlashan, and Littman
2016). Our interest in introducing POMDPs is not so much
the partial observability of this problem but more the en-
larged domain of the policy function which they necessitate.
This paper will show that law abiding policies are likely to
be dependent on the history of observations regardless of
whether there is partial observability or not.

Structural Causal Models
This paper will show that the legality of behaviour can de-
pend on establishing the causal effects of an action. The def-
inition of causality is a complicated topic and there is a dis-
tinction between predictive causality which refers to predict-
ing the effect of actions and actual causality which refers
to evidential analysis after actions have been taken. Struc-
tural Causal Models (SCMS) (Pearl 2000) can be used in
both senses. SCMs are a special case of Bayesian Causal
Networks where directed arcs between nodes express direct
causality as well as usual independence statements. Pearl
introduces the concept and effect of the atomical interven-
tion which corresponds to setting a variable to a value in the
model; this has strong connections to taking actions in RL.
Actual causality is a harder undertaking since it necessarily
involves counterfactual reasoning and has to deal with is-
sues like preemption and overdetermination. Halpern Pearl
Causality (Halpern 2016) is a general purpose definition of
actual causality. Alternative, more simple definitions are dis-
cussed in (Liepiņa, Sartor, and Wyner 2020).

Intent in RL
RL has been used infer the intent of others (Qi and Zhu
2018), and even in IRL to define a reward function that cor-
responds to the intentions of an expert demonstrator (Mac-
Glashan and Littman 2015). However it has not ever defined
what intent means for the learner. Ashton (2020b) presents
a definition of direct intent in terms of causality and de-
sire of realised states. An agent directly intends a state s by
committing an action a if a foreseeably causes s and the
agent aims or desires state s. In the context of RL, where
an agent has a value function over every possible state, in-
ferences can be made about what a learner desires. Within
criminal law, different levels of intent are required for dif-
ferent crimes (Loveless 2013). Direct intent is the strictest,
being required for murder but lower levels such as oblique
intent, recklessness and negligence also exist. Whilst these
lower levels of intent do not necessarily have any require-
ments about desire, their definitions often include subjective
and objective tests of foreseeability vis-a-vis the prohibited
outcomes of actions. Subjective tests raise interesting ques-
tions in model-free modes of RL since the learner does not
explicitly expect any outcome to their action. Objective tests
require an external judgement about the probability of an
outcome given an action. If a consequence of an action was
foreseeable then the offender can be thought of intending the
outcome. Lagioia and Sartor (2020) discuss this method of
intent inference and consider it sufficient albeit principally
in the context of Belief Desire Intent (BDI) agents (Cohen
and Levesque 1990). An intriguing corollary of the use of
objective tests, is that the predictive model that the RL agent
uses or learns should be accurate. This bypasses the danger
of the learner developing a ’delusion box’ type model (Ring
and Orseau 2011) to justify otherwise illegal policies.

A non-exhaustive taxonomy of laws
In this section I present a number of law-types which are
likely to exist in a regulated environment. I differentiate be-
tween states and actions. Actions are assumed to be orig-
inated by the learner only and their commission is volun-
tary. States refer to some measurable property of the envi-
ronment, stable for the duration of the time period. Actions
cause a measurable change in the environment but I assume
that their duration is instantaneous so there is no state that
records an action in progress.

Simple State restriction laws
This the simplest type of law and the one which Safe RL
research has concentrated on as many physical safety con-
straints are of this type. Examples might include ’drive be-
low 30 miles per hour in urban environments’ or ’do not fly
a drone in the vicinity of the airport’. For a state restriction
to be a law, its realisation should avoidable by the learner
through its actions. This is the case for the speed restriction
example. Even though I have described these laws as simple,
they might be context dependent. Roads with a solid central
line generally do not allow overtaking, but the presence of a
stationery vehicle blocking progress might allow it, provid-
ing it is safe to do so.



Caused state restriction laws
Some states exist which could be both caused through the
learner’s actions and through an external mechanism. This
marks the first departure from conventional safe-RL research
because the safety constraints traditionally considered do
not differentiate between those states caused by the learner
and those that are not. It does not matter whether the drone
caused itself to fly over the volcano or whether it was blown
by the wind, the state of being located over the volcano is
the one to be avoided. For legal restrictions, certain states
might only be restricted if they were caused by the learner1.
A concrete example of such a causal dependent state restric-
tion can be found within financial markets where the UK’s
financial regulator prohibits trading algorithms from creat-
ing or contributing to disorderly market conditions. Such
conditions could arise independently of the behaviour of
the learner, if the learner has no mechanism of determining
whether this the case, learning efficiency will be compro-
mised. For caused state restriction laws to be broken two
conditions should be satisfied. Firstly a restricted state ŝ
should occur and secondly that the actions of the learner
foreseeably caused the state to occur.

Action sequence laws
Laws exist in a variety of settings which are restrictions on
conduct with no necessary requirement for a lasting change
in the state of the world. Examples in the UK include the
offence of Careless Driving and more seriously Dangerous
driving. There is no causation requirement since I assume
that the A-bot has the freedom to choose its own actions at
any time2 Action sequence laws could be transformed into
a simple state restriction law by adding a state variable that
indicates whether a restricted action sequence has occurred.
Such an approach might not be efficient if a large number of
conduct laws exist in the environment as it would cause the
dimension of the state space to grow.

Mixed State Action sequence laws
Laws exist which combine a sequence of actions that cause
restricted state(s). Continuing the driving examples from the
previous section, in the UK there exist statutory offences of
causing death by careless or reckless driving. These laws
constitute a restriction on how certain states are arrived at.

Inchoate offences: Laws restricting behaviour that
may induce future restricted states
Inchoate offences are restrictions on action sequences and
states which may lead to restricted states which are not nec-
essarily realised. Examples in the UK include attempt crimes
such as attempted murder or possession of drugs with intent

1Death is not generally prohibited, but causing it generally is!
2Situations where there is no action which won’t break a law are

analogous to the concept of deadlock in model checking (Baier and
Katoen 2008). Laws can still be broken when the perpetrator had
no choice but to break the law but the defence of necessity might
then be valid as mitigation

to supply. In the USA conspiracy and solicitation (the re-
quest, encouragement or payment for someone else to com-
mit a felony) are major classes of inchoate offence.

Laws requiring intent
Common law as practised in UK, USA, India and Canada
amongst others requires that the accused had mens rea (the
mental element of intent to commit a crime) for certain crim-
inal offences to have been committed by them. Different lev-
els of intent exist, ranging from direct intent where the ac-
cused deliberately caused and wanted to cause a prohibited
outcome in the extreme to oblique intent where prohibited
outcomes were caused as a side-effect of their behaviour, to
recklessness and negligence where the prohibited outcomes
were foreseeable outcomes of their behaviour to various de-
grees. Certain offences will specify what level of mens-rea
is required so murder requires direct or oblique intent.

Aside from the crimes of specific intent, certain laws exist
which require establishing for what purpose the accused did
something. This is called basis intent by Bathaee (2011). US
Examples cited include market anti-spoofing laws, a practice
which is defined as the placement of orders with the intent to
cancel them. Another related and topical example is termed
Gatekeeping Intent by Bathaee. Laws or systems which are
discriminatory in effect are only unlawful if discriminatory
intent behind them is established.

Implications of the taxonomy
There exist a number of challenges to developing an RL
method which produces legal policies under a rich set of
laws. I classify them into three areas:

1. Encoding The environment’s laws need to be described
in such a way as to be machine interpretable.

2. Determination A mechanism needs to exist which can
determine the legality of any behaviour either in advance
or in retrospect.

3. Constrained policy learning There should exist a
method to constrain the policy of the A-bot to be law abid-
ing when it is acting or learning.

Generally these problems should be solved in the order
displayed. The determination of legality requires an encod-
ing of law to reference (planned) behaviour against and con-
strained policy learning relies on knowing what policies are
acceptable and what are not. By looking at the taxonomy of
laws, some inferences can be made about all three elements
of this process. I will run through each of the three tasks and
make comments on how laws affect them. In practice the
three tasks might be heavily intertwined.

Encoding
Safe RL research is only beginning to pay attention to how
laws should be described. This is because the types of re-
strictions considered have largely been of the simple state
type which can be encoded using simple algebraic expres-
sions. This approach becomes untenable when considering
more complicated laws like the ones identified in the previ-
ous example. Furthermore the quantity of applicable rules in



regulated environments is larger than most rulesets hitherto
considered in research. I identify four desirable features of
an encoding which should be used to convey laws.

1. Temporal A number of laws restrict sequences of states
or actions. Moreover there is no requirement that these
sequences are contiguous. An encoding needs to be rich
enough to express multiple states and actions with tempo-
ral relations like always, until, next etc.

2. Probabilistic As in the case of Inchoate offences, some
laws refer to future states not realised. Since the space of
all possible future events is a large one, law reasonably
concerns itself with restricting foreseeable consequences
of behaviours. An encoding of laws should be rich enough
to express this.

3. Causal As we saw in the previous section, laws will of-
ten prohibit the causation of a state, not the state itself per
se. Our death is not usually prohibited, but causing it nor-
mally is. Causation when considered in prospect will also
normally require some sort of probabilistic reasoning.

4. Intent Certain laws require establishing levels of intent
on the part of the transgressor. Different levels of intent
exist and are applicable to different offences.

In Table 1 I summarise what level of encoding expres-
siveness is required for each of the law types described in
the previous section. Nearly all of the laws require a tem-
poral expressiveness. Temporal Logic systems allows us to
express when conditions should be true. A wide variety ex-
ist such as Linear Temporal Logic (LTL) (Pnueli 1977),
Computation Tree Logic (CTL) (Clarke and Emerson 1981)
which considers multiple future paths and Probabilistic CTL
(PCTL) (Hansson and Jonsson 1994) which as the name sug-
gests accounts for probabilistic transitions. Kleinberg and
Mishra (2009) extends this to provide a language capable
of expressing causal relationships. To our knowledge there
is no similar extension to express intention and this is an im-
mediate project. Alves, Dennis, and Fisher (2020) succeed
in encoding the road junction rules for an autonomous vehi-
cle using a variant of LTL.

The analysis is not exhaustive. For example in any given
regulated environment there are likely to be a large number
of rules that the learner should obey simultaneously. This is
likely to mean deadlock situations arise where not breaking
one law may result in the breaking of another. A meta order-
ing of laws may be required to deal with this situation.

Law Type Encoding Expressiveness
Temporal Probabilistic Causal Intent

State Restriction
Caused State Restriction Maybe Maybe Yes
Action Sequence Yes
Action state sequence Yes Maybe Maybe
Inchoate Yes Yes Yes Maybe
Intent Yes Yes Yes Yes

Table 1: The complexity of the encoding language required
is dependent on the law type

Determination
Given that we have a codified set of rules, we require a de-
vice to determine when a sequence of behaviour has or is
contravening a law. I assume that the states referred to in
the encoding are either the same as those perceived by the
learner or there is an available mapping function between
the learning and encoding statespaces. This is of course not a
given since the learner may be perceiving continuous states
and the encoding is likely to refer to high level states. In
the case of simple state restrictions this is not a difficult task
but it becomes increasingly complex with richer laws. I have
separated the requirements into four main features.

1. Domain Consider an arbiter function Γ which determines
legality to the binary set - denoting legal or illegal. The
domain of this function is dependent on the type of law it
is considering. Laws which reference more than one state
or action for example require a domain which includes the
history of states and actions ht = (s1, a1, s2, a2, . . . st).
Laws which reference future paths will also require the
policy function of the learner π(·). Laws which require in-
tent may also require information about the reward func-
tion of the learner or its estimation of state values.

2. Future Projection A model of the environment is re-
quired for almost all laws. In the case where strong safety
is required in training, the legality of any action needs to
be assessed before choosing it and this means assessing
the likely state transitions which occur as a result. Projec-
tion is also a requirement in causal reasoning.

3. Causal Reasoning As certain laws are defined by causa-
tion, a method is required to determine whether restricted
states have or are likely to be caused by the learner’s ac-
tion. This requires a causal model of the environment.

4. Intentional Reasoning In environments where laws are
defined by intent, a learner must be aware of what they
are intending to do (ie their likely policy trajectory) by
choosing a particular action at any moment in time.

In Table 2 I show the necessary features of a legality deter-
mination process according to the law type present. Reason-
ing about intent requires an algorithmic definition of intent.
This is an open area of research since the concept of intent
has been deliberately left as a primitive by legal practition-
ers. Care must be taken to ensure that the definition of intent
used in safe RL corresponds to what a court would find suf-
ficient.

Law Type Future
trajectory
prediction

Arbiter function domain Reasoning

State path Action path Policy Causal Intent
State Maybe
Caused State Yes Yes Yes
Action Seq Yes
Action State
sequence

Maybe Yes Yes Maybe

Inchoate Yes Yes Probably
Intent Yes Yes Yes Yes

Table 2: Taxonomy implications for the determination pro-
cess



Learning Process
The taxonomy of laws informs us how those laws should be
described and the process which determines the legality of
behaviour. Finally, it can also inform us about the proper-
ties of RL methods which will generate legally constrained
policies.

1. Memory Reinforcement Learning approaches typically
use a MDP formulation to model their task. Whilst a
record of the current state might still be valid for the tran-
sition model, most of the law types that I have identified
rely to some extent on sequences of states and actions.
Thus the device which chooses actions at any state (most
likely the policy function) must include histories in its do-
main. Otherwise the standard MDP learner would not be
able to understand whether its current action is legal or
not. Including the history of actions and states is some-
thing that POMDPs do in order to make inference on the
hidden states of this model.

2. Model for planning Determining the legality of any ac-
tion requires a predicting the likelihood for future states.
How far prediction is expected to go into the future de-
pends on the laws present - avoiding inchoate offences
presumably requires greater foresight. Much of RL is
’model free’ and successfully so, but they seem unavoid-
able here. Established methods like Dyna-Q simultane-
ously learn to act and create a world model (Sutton 1990)

3. Causal model Determining whether a law has been bro-
ken or not will often require some test of causality ex post
(Turner 2019). The task of the learner is to make sure that
they do not cause a restricted state to occur ex-ante, and
if it does occur that they are not subsequently adjudged
to have been a legal cause of it. The presence of causal
restrictions necessitates a causal model of the world to be
formed for predictions. Bayesian Causal Models or equiv-
alently Structural Causal Models (SCMs) (Pearl 2000)
can be used to predict causal effects and used to deter-
mine causality ex-post. They readily accept techniques
like counterfactual analysis which allows off-policy data
treatment (Bareinboim and Pearl 2016) which is impor-
tant for off-policy RL methods. There also exist defini-
tions of causality based on SCMs such as Actual Causality
of (Halpern 2016) which are capable of dealing with the
trickier causal problems of overdetermination, preemp-
tion and omission. See Bareinboim (2020) for an intro-
duction to causal RL.

Related work
The task of learning a legally constrained policy through
RL has seldom been mentioned in isolation but instead cited
as a possible use case in more general Safe RL work. Sur-
prisingly the learning of ethical policies has loomed larger
in published research. For a RL approach see Abel, Mac-
Glashan, and Littman (2016) or Winfield et al. (2019) for
a more general discussion on ethically constraining au-
tonomous systems. Ethical constraint is a harder task since
there is no agreed source of ethical constraints to apply to
the learner. In contrast to those of ethics, Hildebrandt (2019)

points out that questions of legality always have closure. It’s
important to observe that there is no single source of the law,
the determination of legality will likely rely on referencing
multiple sources (Boella et al. 2014).

Garcı́a and Fernández (2015) provide a general survey of
Safe RL, dividing approaches into those that modify the re-
ward structure and those that modify the exploration pro-
cess. Constrained Markov Decision Processes (CMDPS) do
the former, by adding a finite set of auxiliary cost functions
Ci : S × A → R to the vanilla MDP. Policies should then
achieve a discounted total cost in expectation less than some
scalar di (whilst maximising the normal reward function).
This is largely the approach of Constrained Policy Optimi-
sation presented by Achiam et al. (2017). A drawback with
such an approach is that bad states can be reached in explo-
ration making learning outside a simulator potentially ex-
pensive. Constraints introduced as cost functions also need
to be differentiable and Markovian if certain gradient meth-
ods are to be used. Neither of these restrictions apply to
the Constrained Cross-Entropy method of Wen and Topcu
(2018), though perhaps at the cost of data parsimony.

Safe RL methods which constrain exploration include ap-
proaches where a policy is learnt from observing a safe
policy in a process known as Inverse RL or Apprentice-
ship RL (Abbeel and Ng 2004). Recent examples include
Noothigattu et al. (2018) who train a learner to play Pac-
Man following the rule ’don’t eat the ghosts’ through ex-
pert demonstration and a bandit policy which alternates be-
tween observed ’safe’ behaviour and optimal self taught be-
haviour. Abel, MacGlashan, and Littman (2016) present a
method where the ethical-preferences of an expert are de-
rived through observation and then used to develop policies
accordingly. IRL approaches such as these obviate the re-
quirement for an explicit representation of rules. This could
be seen as a good feature in constrained tasks such as the
learning of ethical behaviour or customs where there is no
written source of what the constraints should be. This is not
the case in regulated settings. Moreover IRL is an ill-posed
problem - many reward-functions exist to explain any ob-
served behaviour. To make the problem tractable, simplify-
ing assumptions must be made about its form. The resulting
reward function might not be rich enough to encode the pref-
erence required not to break all laws. In particular, Arnold,
Kasenberg, and Scheutz (2017) note that IRL does not infer
intertemporal rules.

A developing area of Safe RL are those methods which
combine formal methods based on symbolic logic into the
learning machinery of RL. Many of these techniques orig-
inate from the research area of formal verification methods
and model checking (Baier and Katoen 2008). These are the
techniques developed to error check software systems and
provide stronger guarantees for correctness. As discussed,
temporal logic allows a richer expressiveness of laws. Dif-
ferent temporal logic systems have been applied to the learn-
ing of policies in MDPs where transitions are known or
not. Linear Temporal Logic (LTL) is used in Hasanbeig and
Kroening (2020), Fu and Topcu (2015) and Wen, Ehlers,
and Topcu (2015) and Differential Dynamic logic is used
in Fulton and Platzer (2018). Probabilistic computation tree



logic (PCTL) is used in Mason et al. (2017).
Alshiekh et al. (2018), and Jansen et al. (2018) use a struc-

ture called a shield to create safe policies through RL. This
is a system which sits between the learner and the agent and
either filters the choice of available actions for the learner
in learning time, or replaces unwise actions in deployment.
Ashton (2020a) calls the design a legal oracle and explores
its necessary features in a legal setting. A Shield has a model
of the environment, knows the required constraints which
are described in temporal logic, and is able to use a formal
program verification methods to check the legality of any
action at any moment in time. An attractive feature of this
method is that the method of constraint is separate and some-
what agnostic to the method of learning. Jansen et al. (2020)
identify three challenges to this approach: Model checking is
computationally expensive, safety in a probabilistic environ-
ment is not binary so threshholds need to be considered and
finally shielding may obstruct efficient exploration thereby
generating sub-optimal policies.

Seldonian Reinforcement learning (Thomas et al. 2019) is
a recent technique that aims to produce RL algorithms that
only output safe policies with a certain (high) probability. It
differs from other methods discussed in this paper in that the
technique searches for learning algorithms not policies. The
RL example presented in the paper has restrictions of lim-
ited complexity so we will have to wait for more published
research to assess this method properly.

Conclusion
The paper is motivated by an aim to design Safe RL pro-
cesses which are capable of producing policies constrained
under a general rule set. By creating a brief taxonomy of
laws in the language of states and actions specifically for
the application I have been able to draw some conclusions
about the requirements of legally-safe RL. Laws are com-
monly defined in inter-temporal ways over actions and state.
This means that a learning process must include a memory
of past states and actions. Thus the domain of a legal pol-
icy function will include history just as it does in RL un-
der a POMDP. Causality and Intent can be key concepts
in determining whether and which laws have been broken.
Whilst RL is beginning to tackle causality, it has not done in
the context of constrained learning. Intent is barely defined
quantitatively but it will have to be if generally legal RL sys-
tems are to be produced. Causality, Intent and the existence
of inchoate offences mean that a legally-safe RL algorithm
will require prediction about likely future trajectories. This
will require some type of environment model to be learned
or supplied to the learner and planning take place.

This work could be viewed as an application of legal re-
quirements engineering. Care should be taken since it orig-
inates singularly from a computer scientist and not a legal
practitioner (Boella et al. 2014). Yet it is a starting point
which can at least begin to inform engineers.
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