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Abstract

Self-modification of agents embedded in complex environ-
ments is hard to avoid, whether it happens via direct means
(e.g. own code modification) or indirectly (e.g. influencing
the operator, exploiting bugs or the environment). It has been
argued that intelligent agents have an incentive to avoid mod-
ifying their utility function so that their future instances work
towards the same goals.
Everitt et al. (2016) formally show that providing an option
to self-modify is harmless for perfectly rational agents. We
show that this result is no longer true for agents with bounded
rationality. In such agents, self-modification may cause ex-
ponential deterioration in performance and gradual misalign-
ment of a previously aligned agent. We investigate how the
size of this effect depends on the type and magnitude of im-
perfections in the agent’s rationality (1-4 below). We also dis-
cuss model assumptions and the wider problem and framing
space.
We examine four ways in which an agent can be bounded-
rational: it either (1) doesn’t always choose the optimal ac-
tion, (2) is not perfectly aligned with human values, (3) has
an inaccurate model of the environment, or (4) uses the wrong
temporal discounting factor. We show that while in the cases
(2)-(4) the misalignment caused by the agent’s imperfection
does not increase over time, with (1) the misalignment may
grow exponentially.

1 Introduction
We face the prospect of creating superhuman (or otherwise
very powerful) AI systems in the future where those sys-
tems hold significant power in the real world (Bostrom 2014;
Russell 2019). Building up theoretical foundations for the
study and design of such systems gives us a better chance to
align them with our long-term interests. In this line of work,
we study agent-like systems, i.e. systems optimizing their
actions to maximize a certain utility function – the frame-
work behind the current state-of-the-art reinforcement learn-
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ing systems and one of the major proposed models for future
AI systems1.

If strong AI systems with the ability to act in the real
world are ever deployed2, it is very likely that they will have
some means of deliberately manipulating their own imple-
mentation, either directly or indirectly (e.g. via manipulat-
ing the human controller, influencing the development of a
future AI, exploiting their own bugs or physical limitations
of the hardware, etc). While the extent of those means is un-
known, even weak indirect means could be extensively ex-
ploited with sufficient knowledge, compute, modelling ca-
pabilities and time.

Omohundro (2008) argues that every intelligent system
has a fundamental drive for goal preservation, because when
the future instance of the same agent strives towards the
same goal, it is more likely that the goal will be achieved.
Therefore, Ohomundro argues, a rational agent should never
modify into an agent optimizing different goals.

Everitt et al. (2016) examine this question formally and
arrive at the same conclusion: that the agent preserves its
goals in time (as long as the agent’s planning algorithm an-
ticipates the consequences of self-modifications and uses the
current utility function to evaluate different futures).3 How-
ever, Everitt’s analysis assumes that the agent is a perfect
utility maximizer (i.e. it always takes the action with the
greatest expected utility), and has perfect knowledge of the
environment. These assumptions are probably unattainable
in any complex environment.

To address this, we present a theoretical analysis of a self-
modifying agent with imperfect optimization ability and in-
complete knowledge. We model the agent in the standard

1Other major models include e.g. comprehensive systems of
services (Drexler 2019) and ”Oracle AI” or ”Tool AI” (Arm-
strong, Sandberg, and Bostrom 2012). However, there are con-
cerns and ongoing research into the emergence of agency in these
systems (Omohundro 2008; Miller, Yampolskiy, and Häggström
2020).

2Proposals to prevent this include e.g. boxing (Bostrom 2014)
but as e.g. Yampolskiy (2012) argues, this may be difficult or im-
practical.

3Everitt et al. (2016)’s results hold independent of the length of
the time horizon or temporal discounting (by simple utility scal-
ing).



cybernetic model where the agent can be bounded-rational
in two different ways. Either the agent makes suboptimal
decisions (is a bounded-optimization agent) or has inaccu-
rate knowledge. We conclude that imperfect optimization
can lead to exponential deterioration of alignment through
self-modification, as opposed to bounded knowledge, which
does not result in future misalignment. An informal sum-
mary of the results is presented below.

Finally, we explicitly list and discuss the underlying as-
sumptions that motivate the theoretical problem and anal-
ysis. In addition to clearly specifying the scope of conclu-
sions, the explicit problem assumptions can be used as a
rough axis to map the space of viable research questions in
the area; see Sections 2 and 6.

1.1 Summary of our results
The result of Everitt et al. (2016) could be loosely inter-
preted to imply that agents with close to perfect rationality
would either prefer not to self-modify, or would self-modify
and only lose a negligible target value.

We show that when we relax the assumption of perfect ra-
tionality, their result no longer applies. The bounded-rational
agent may prefer to self-modify given the option and in do-
ing so, become less aligned and lose a significant part of the
attainable value according to its original goals.

We use the difference between the attainable and attained
expected future value at an (arbitrarily chosen) future time
point as a proxy for the degree of the agent’s misalignment
at that time. Specifically, for a future time t, we consider
the value attainable from time t (after the agent already ran
and self-modified for t time units), and we estimate the loss
of value f t relative to the non-modified agent in the same
environment state. Note that f t is not pre-discounted by the
previous t steps. See Section 3 for formal definitions and
Section 2 for motivation and discussion.

We consider four types of deviation from perfect rational-
ity, see Section 4 for formal definitions.

• ε-optimizers make suboptimal decisions.

• ε-misaligned agents have inaccurate knowledge of the hu-
man utility function.

• ε-ignorant agents have inaccurate knowledge of the envi-
ronment.

• ε-impatient agents have inaccurate knowledge of the cor-
rect temporal discount function.

Note that for the sake of simplicity, we use a very simple
model of bounded rationality where the errors are simply
bounded by the error parameters ε•; this has to be taken into
account when interpreting the results. However, we suspect
that the asymptotic dependence of value loss on the size of
errors and time would be similar for a range of natural, real-
istic models of bounded rationality.

Informal result statements

Self-modifying ε-optimizers may deteriorate in future align-
ment and performance exponentially over time, losing ex-
ponential amount of utility compared to ε-optimizers that do

not self-modify. We show upper and tight lower bounds (by
a constant) on the worst-case value loss in Theorem 7. As
we decrease γ (increase discounting), the rate at which the
agent’s performance deteriorates increases and the possibil-
ity of self-modification becomes a more serious problem.

Our analysis of bounded-optimization agents is a general-
ization of Theorem 16 from Everitt et al. (2016) in the sense
that their result can be easily recovered by a basic measure-
theoretic argument.

Self-modifying εu-misaligned, ερ-ignorant, or εγ-impatient
perfect optimizers can only lose the same value as non-self-
modifying agents with the same irrationality bounds. This
also holds for any combination of the three types of bounded
knowledge. We give tight upper and lower bounds (up to a
constant factor) for the worst-case performance. See Sec-
tion 5.2 for details.

This implies that unlike bounded-optimization agents, the
performance of perfect-optimization bounded-knowledge
agents does not deteriorate in time. This is because bounded-
knowledge agents continue to take optimal actions with re-
spect to their almost correct knowledge and do not self-
modify in a way that would worsen their performance in
their view. Therefore, the possibility of self-modification
seems less dangerous in the case of bounded-knowledge
agents than in the case of bounded-optimization agents.

A self-modifying agent with any combination of the four ir-
rationality types may lose value exponential in the time step
t when the agent optimization error parameter εo > 0. We
again give tight (up to a constant factor) lower bounds on the
worst-case performance of such agents. See Section 5.3 for
details.

Our results do not imply that every such agent will ac-
tually perform this poorly but the prospect of exponential
deterioration is worrying in the long-term, even if it happens
at a much slower speed than suggested by our results. We fo-
cus on worst-case analysis because it tells us whether we can
have formal guarantees of the agent’s behaviour – a highly
desirable property for powerful real-world autonomous sys-
tems, including a prospective AGI (artificial general intelli-
gence) or otherwise strong AIs.

Overview of formal results. Here we summarize how much
value the different types of bounded-rational agents may
lose via misalignment. Note that the maximal attainable dis-
counted value is at most 1

1−γ and the losses should be con-
sidered relative to that, or to the maximum attainable value
in concrete scenarios. Otherwise, the values for different
value of γ are incomparable. In all cases, the worst-case
lower and upper bounds are tight up to a constant.

ε-optimizer agents – bounded optimization, after t steps of
possible self-modification (Theorem 7)

f topt(ε, γ) = min(
ε

γt−1
,

1

1− γ
)

ε-misaligned agents – inaccurate utility (Theorem 9)

futil(ε, γ) =
2ε

1− γ



ε-ignorant agents – inaccurate belief (Theorem 11)

fbel(ε, γ) =
2

1− γ
− 2

1− γ(1− ε)

ε-impatient agents – inaccurate discounting (Theorem 13)
Here γ∗ is the correct discount factor and γ is the agent’s
incorrect discount factor.

fdisc(γ, γ
∗) ≈ 2γ∗

1
lg γ − 1

1− γ∗

2 Assumptions and rationale
Both the statement of the problem and its relevance to AI
alignment rest on a set of assumptions listed below. While
this list is non-exhaustive, we try to cover the main implicit
and explicit choices in our framing, and the space of alter-
natives. This is largely in hope of eventually finding a better,
more robust theoretical framework for solving agent self-
modification within the context of AI alignment, but even
further negative results in the space would inform our intu-
itions on what aspects of self-modification make the prob-
lem harder.

We propose consideration of various assumptions as a
framework for thinking about prospective realistic agent
models that admit formal guarantees. We invite further re-
search and generalizations in this area, one high-level goal
being to map a part of the space of agent models and as-
sumptions that do or do not permit guarantees, eventually
finding agent models that do come with meaningful guaran-
tees. Further negative results would inform our intuitions on
what aspects of the problems make it harder.

(i) Bounded rationality model. In the models of ε-bounded-
rational agents defined in Section 4.1, ε is generally an
upper bound on the size of the optimization or knowledge
error. One interpretation of our results is that value drift
can happen even if the error is bounded at every step. One
could argue that a more realistic scenario would assume
some distribution of the size of the errors, assuming larger
errors less likely or less frequent; see discussion below
and in Section 6.

(ii) Unlimited self-modification ability. We assume the agent
is able to perform any self-modification at any time. This
models the worst-case scenario when compared to a lim-
ited but still perfectly controlled self-modification. How-
ever, embedded (non-dualistic) agents in complex envi-
ronments may chieve almost-unlimited self-modification
from a limited ability, e.g. over a longer time span; see
e.g. (Demski and Garrabrant 2019). We model the agent’s
self-modifications as orthogonal to actions in the environ-
ment.

(iii) Modification-independence. We assume that the agent’s
utility function does not explicitly reward or punish self-
modifications. We also assume that self-modifications do
not have any direct effect on the environment. This is cap-
tured by Definition 2.

(iv) No corrigibility mechanisms. We do not consider systems
that would allow human operators to correct the system’s

goals, knowledge or behaviour. The problem of robust
strong AI corrigibility is far from solved today and this
paper can be read as a further argument for substantially
more research in this direction.

(v) Worst-case analysis and bound tightness. We focus on
worst-case performance guarantees in abstracted models
rather than e.g. full distributional analysis, and we show
that our worst-case bounds are attainable (up to constant
factors) under certain agent behaviour. Note this approach
may turn out as too pessimistic or even impossible in
some settings (e.g. quantum physics).

(vi) Bounded value attainable per time unit. We assume the
agent obtains instantaneous utility between 0 and 1 at
each time step. This is not an arbitrary choice: A constant
bound on instantaneous value can be normalized to this
interval. Instantaneous values bounded by a function of
time U(t) < µt can be pre-discounted when γµ < 1, and
generally lead to infinite future values otherwise, which
we disallow here to avoid foundational problems.

(vii) Temporal value discounting. We assume the agent em-
ploys some form of temporal value discounting. This
could be motivated by technical or algorithmic limita-
tions, increasing uncertainty about the future, or to avoid
issues with incomparable infinite values of considered
futures (see Bostrom (2011) for a discussion of infinite
ethics). Discounting, however, contrasts with the long-
termist view; see the discussion below.

(viii) Exponential discounting. Our model assumes the agent
discounts future utility exponentially, a standard assump-
tion in artificial intelligence and the only time-invariant
discounting schema (Strotz 1955) leading to consistent
preferences over time.

(ix) Unbounded temporal horizons. Our analysis focuses on
the long-term behaviour of the agent, in particular stabil-
ity and performance from the perspective of future stake-
holders (sharing the original utility function). Note that
our results also to some extent apply to finite-horizon but
long-running systems.
Temporal discounting contrasts with the long-termist
view: Why not model non-discounted future utility di-
rectly? Noting the motivations we mention in (vii), we
agree that models of future value aggregation other than
discounting would be generally better suited for long-term
objectives. However, this seems to be a difficult task, as
such models are neither well developed nor currently used
in open-ended AI algorithms (with the obvious exception
of a finite time horizon, which we propose to explore in
Section 6).
We therefore propose a direct interpretation of our results:
Assuming we implement agents that are ε-optimizers with
discounting, they may become exponentially less aligned
over time. This is not the case with perfect optimizers with
imperfect knowledge and discounting.

(x) Dualistic setting. We assume a dualistic agent and allow
self-modification through special actions. This allows us
to formally model one aspect of embedded agency – at



least until there are sufficient theoretical foundations of
embedded agency.
Note that in the embedded (non-dualistic) agent setting, it
is not formally clear – or possibly even definable – what
constitutes a self-modification, since there is no clear con-
ceptual boundary between the agent and the environment,
as discussed by Demski and Garrabrant (2019).

Assumption categories and the problem space. Each as-
sumption identifies a subspace of research questions we
would obtain by varying the relevant choices. These sub-
spaces vary from very technical (e.g. concrete rationality
model) to foundational (e.g. finite values and dualistic agent
models). Along this axis, the assumptions and choices point
to different kinds of prospective problems; we briefly de-
scribe three such categories and their prospects. See Sec-
tion 6 for concrete proposals of future work.

Technical choices: A concrete model of bounded rational-
ity, unlimited self-modification model, and modification-
independence. These are likely important for short and
medium time-frames, where even eventually-diverging guar-
antees are useful.

We believe that many models within some realistic and
sufficiently strong model classes would lead to qualitatively
equivalent results in long time horizons; e.g. the agent diver-
gence would be asymptotically exponential without external
corrigibility, embedded agents in sufficiently complex en-
vironments would be able to self-modify arbitrarily over a
long time (see discussion above) etc. However, these intu-
itions call for further verification.

Problem components: No corrigibility mechanisms, un-
bounded time horizon, time-invariant temporal discounting,
focus on the worst-case guarantees. For those, there are in-
teresting alternatives that may yield more optimistic results.
In particular, it would be valuable to explore formal models
of corrigibility, perform a full probabilistic analysis of agent
development, and develop long-term non-discounted finite-
time settings.

Foundational assumptions: Dualistic agent model and fi-
nite value of the future. Those are a standard in the area,
but alternative settings may open up important and fruitful
model classes and technical choices that capture currently
pre-paradigmatic aspects (e.g. theory of embedded agency
and non-dualistic agents).

3 Preliminaries
In this section, we explain our model of a self-modifying
agent, which is borrowed from Everitt et al. (2016). We will
extend this model to include bounded rationality in Sec-
tion 4.

We use a modified version of the standard cybernetic
model. In this model, an agent interacts with the environ-
ment in discrete time steps. At each time step t, the agent
performs an action at from a finite set A and the environ-
ment responds with a perception et from a finite set E . An
action-perception pair æt is an action concatenated with

a perception. A history is a sequence of action-perception
pairs æ1æ2...æt. We will often abbreviate such sequences to
æ<t = æ1...æt−1 or æn:m = æn...æm. A complete history
æ1:∞ is a history containing information about all the time
steps.

An agent can be described by its policy π. The policy4

π : (A× E)∗ → A is used to determine the agent’s next
action from the history at time t. We consider (bounded-
rational) utility maximizers, where the policy is (partially)
determined by the instantaneous utility function u, belief
ρ and discount factor γ. We sometimes use the notation
κ = (u, ρ, γ), where κ is called the agent’s knowledge. The
utility function ũ : (A× E)∞ → R describes how much the
agent prefers the complete history æ1:∞ compared to other
complete histories. We will assume that the total utility is a
discounted sum of instantaneous utilities given by the instan-
taneous utility function u : (A× E)∗ → [0, 1]. Formally,
ũ(æ1:∞) =

∑∞
t=1 γ

t−1u(æ≤t). The discount factor γ de-
scribes how much the agent prefers immediate reward com-
pared to the same reward at a later time. Smaller γ means
heavier discounting of the future and stronger preference for
immediate reward. Note that the maximum achievable utility
is 1

1−γ , which happens when u(æt) = 1 at each step. Also
note that instantaneous utility depends not only on the latest
perception but can also depend on all previous perceptions
and actions.

In addition to all this, an agent has a belief ρ : (A× E)∗×
A → ∆Ē where ∆Ē is the set of full-support probabil-
ity distributions over E . This is a function which maps any
history ending with an action onto a probability distribu-
tion over the next perceptions. Intuitively speaking, the be-
lief describes what the agent expects to see after it per-
forms an action given a certain history. A belief together
with a policy induce a measure on the set (A× E)∗ using
P (et | æ<tat) = ρ(et | æ<tat) and P (at | æ<t) = 1
if π(æ<t) = at and 0 otherwise. Intuitively speaking, this
probability measure captures probabilities assigned by the
agent to possible futures.

Following the reinforcement learning literature, we define
the value function V : (A× E)∗ → R as the expected future
discounted utility:

V π(æ<t) = E[

∞∑
t′=t

γt
′−tu(æ<t′) ]

The expectation value on the right is calculated with respect
to belief ρ and assuming the agent will follow the policy π.
Intuitively, the value function describes how promising the
future seems. When the value V π(æ<t) of a history is high,
it means we can expect an agent with policy π to collect a
lot of utility in the future starting from this history. Note that
when calculating V-values, instantaneous utilities are mul-
tiplied by γt

′−t rather than γt
′
. This means that V-values

can remain high throughout the whole history and are not
affected by discounting. We define the Q-value of an action
as the expected future discounted utility after taking that ac-

4For a set S, S∗ denotes the set of finite sequences of elements
from S



tion:
Qπ(æ<tat) = E[u(æ1:t) + V π(æ1:t)]

where the expectation is over the next perception drawn
from the belief (note that belief is a probability distribution)

The Q-value measures how good an action is given that
the agent will later follow policy π. A policy π∗ is an optimal
policy when V π

∗
(æ<t) = supπ V

π(æ<t) for all histories
æ<t (such a policy always exists, as shown in (Lattimore
and Hutter 2014)).

3.1 Self-modification model
In this section, we extend the formalism above to include the
possibility of self-modification. Since we are interested in
the worst-case scenario, we assume the agent has unlimited
self-modification ability. Worst-case results derived for such
an agent will also hold for agents with limited ability to self-
modify.

Definition 1. A policy self-modification model is defined as
a quadruple (Ă, E ,P, ι) where Ă is the set of world actions,
E is the set of perceptions, P is a non-empty set of names
and ι is a map from P to the set of all policies Π.

At every time step, the agent chooses an action at =

(ăt, pt+1) from the set A = (Ă × P). The first part ăt de-
scribes what the agent “actually does in the world” while the
second part chooses the policy πt+1 = ι(pt+1) for the next
time step. We will also use the notation at = (ăt, πt+1),
keeping in mind that only policies with names may be cho-
sen. This new policy is used in the next step to pick the ac-
tion at+1 = πt+1(æ1:t). Note that only policies with names
can be chosen and that P = Π is not a possibility because it
entails a contradiction: |Π| = |(Ă × E × Π)||(Ă×E×Π)∗| >
2|Π| > |Π|. A history can now be written as:

æ1:t = a1e1a2e2...atet = ă1π2e1ă2π3e2...ătπt+1et

The subscripts for policies are one time step ahead because
the policy chosen at time t is used to pick an action at time
t+ 1. The subscript denotes at which time step the policy is
used. Policy πt is used to choose the action at = (ăt, πt+1).
No policy modification happens when at = (ăt, πt).

In the previous section, we used these rules to calculate
the probability of any finite history: P (et | æ<tat) = ρ(et |
æ<tat) and P (at | æ<t) = 1 if π(æ<t) = at and 0 oth-
erwise. However, the second rule doesn’t take into consid-
eration that the agent’s policy is changing. Therefore, to ac-
count for self modification, we need to modify the second
rule into “P (at | æ<t) = 1 if πt(æ<t) = at and zero other-
wise”. To evaluate the V and Q-functions for self-modifying
agents, we need to use probabilities of complete histories
calculated in this way.

Definition 2. Let æ̆1:t denote the history æ1:t with infor-
mation about self-modification removed so that æ̆1:t =
ă1e1ă2e2...ătet. A function f : (A× E)∗ → (anything)

is modification-independent if æ̆1:t = æ̆
′

1:t implies that
f(æ1:t) = f(æ

′

1:t).

Modification-independence assumption: In the rest of
the paper, we will assume that the agent’s belief and util-
ity function as well as the correct belief are modification-
independent.

4 Definitions of bounded-rational agents
We now extend the model from Everitt et al. (2016) by defin-
ing two types of bounded-rational agents which we will be
using throughout the paper: bounded-optimization agents
(described in Section 4.1) and bounded-knowledge agents
(described in Section 5.3). Bounded-knowledge agents can
be subdivided further into misaligned, ignorant and impa-
tient agents.

4.1 Bounded-optimization agents
We introduce the notion of ε-optimizers. Intuitively speak-
ing, the expected future discounted utility gained by an ε-
optimizer is no more than ε lower than the optimal one in
any situation they could get into (that is, for any history).

Definition 3. We say that agent A is an ε-optimizer for his-
tory æ<t if it holds that

Q(æ<tπ(æ<t)) ≥ sup
π′
Q(æ<tπ′(æ<t))− ε

When the utility function, belief and discount factor is ob-
vious from the context (or unimportant), we also speak of
policy being ε-optimizing (with respect to the utility func-
tion and belief), meaning that the corresponding agent is an
ε-optimizer.

4.2 Bounded-knowledge agents
We consider agents with inaccurate knowledge of the correct
utility function (Definition 4), inaccurate knowledge of the
world (Definitions 5 and 6), and inaccurate knowledge of
the correct discount factor (how much future reward is worth
compared to reward in the present).

Misaligned agents We define ε-misaligned agents as
agents whose utility function u has absolute error ε with re-
spect to the correct utility function u∗.

Definition 4. We say that the instantaneous utility function
u has absolute error ε with respect to the correct utility func-
tion u∗ if

sup
t∈N,æ<t

|u(æ<t)− u∗(æ<t)| = ε

Ignorant agents We define ε-ignorant agents as agents
whose belief ρ has error (absolute or relative depending on
the context) ε with respect to the correct belief ρ∗.

For belief, we define both relative and absolute error. This
is in contrast with utility, for which this does not make sense
in our setting. This is because when one speaks of relative
utility, one usually compares it to some default action of “do-
ing nothing” which we do not have.



Bounded-knowledge agentsBounded-optimization agents

(make suboptimal decisions)

Bounded-rational agents

Misaligned agents
(inaccurate utility function)

Ignorant agents
(inaccurate belief)

Impatient agents
(inaccurate discount rate)

Definition 5. We say that a belief ρ has absolute error ε with
respect to the correct belief ρ∗ if for any t ∈ N, history æ<t
and action a,

‖ρ(æ<ta)− ρ∗(æ<ta)‖TV ≤ ε (?)
where ‖ • ‖TV is the total variational distance.

Recall that (on discrete measure spaces where all subsets
are measurable) for two distributions (formally two proba-
bility measures) µ, ν on E , the total variational distance is
defined as

‖µ− ν‖TV = sup
E⊆E
|µ(E)− ν(E)|

Definition 6. We say a belief ρ has relative error ε with re-
spect to the correct belief ρ∗ if for any t ∈ N, any history
æ<t, action a, and percept e,

1

1 + ε
≤ ρ(e|æ<ta)

ρ∗(e|æ<ta)
≤ 1 + ε

Impatient agents We define impatient agents as agents
whose discount factor γ is smaller than the correct discount
factor γ∗. This means they have a stronger preference for
immediate reward compared to the same reward in the fu-
ture.

5 Exposition of the results
We now formally describe our results, including statements
of the theorems. Proofs and description of the techniques
used to prove these results are included in the full version of
this paper.

5.1 Performance of ε-optimizers can deteriorate
In their paper, Everitt et al. (2016) show that, for
modification-independent belief and utility function, if we
start with a perfect expected utility maximizer and at any
time replace the current policy by the initial policy, the ex-
pected discounted utility stays the same. Therefore, later
policies cannot be worse than the initial policy and no dete-
rioration happens. We show that in the case of ε-optimizers,
such a replacement can never decrease the expected dis-
counted utility by more than ε (Inequality (2)) but can in-
crease it more, meaning that agent’s behaviour can deterio-
rate with time (Inequality (1)). Specifically, it can deterio-
rate at an exponential rate, until its actions become arbitrar-
ily bad – that is, until the expected future utility lost is the
maximum achievable utility (which is 1

1−γ ).

Theorem 7. Let ρ and u be modification-independent. Con-
sider a self-modifying agent which is an ε-optimizer for the
empty history. Then, for every t ≥ 1,

Eæ<t [Q (æ<tπt (æ<t))] ≥Eæ<t [Q (æ<tπ1 (æ<t))]

−min(
ε

γt−1
,

1

1− γ
) (1)

where the expectation is with respect to æ<t such that the
perceptions are distributed according to the belief and the
actions are given by ai = πi (æ<i).

Moreover, for all histories æ<t given by ai = πi (æ<i)
for which the agent is an ε-optimizer it holds that

Q (æ<tπ1 (æ<t)) + ε ≥ Q (æ<tπt (æ<t)) (2)

Equality in Inequality (1) can be achieved up to a factor of
at most γ.

The expectation in inequality (1) is necessary as can be
demonstrated by the following example. Consider an envi-
ronment in which the first perception is α with probability
ε(1− γ) and β otherwise. Regardless of the first perception,
the utility in the future is always 1 if the action following
this perception is a and 0 if b. An ε-optimizing agent which
performs action a may choose to self-modify to an agent
which performs action a after perception α and b after per-
ception β, thus losing γ

1−γ utility in the case of perception
β, regardless of how small ε is.
Setting ε = 0 allows us to easily recover Theorem 16 from
(Everitt et al. 2016), showing that self-modifications do not
impact expected discounted utility gained by perfectly ratio-
nal agents. This proof is also considerably simpler than the
one in the original paper.

If we only care about future discounted utility, this de-
terioration in performance doesn’t need to concern us be-
cause it only happens at future times when utility is heavily
discounted. From the definition of an ε-optimizer, the max-
imum utility lost is indeed only ε. On the other hand, if we
care about long-term performance of the agent and have only
introduced the discount factor for instrumental reasons (as
would likely be the case), the possibility of self-modification
becomes a serious problem. The discount factor might be in-
troduced because optimizing the long-term future might be
computationally intractable.



5.2 Bounded-knowledge agents are ε-optimizers
In this section, we discuss perfect utility maximizers with
bounded knowledge and show performance guarantees for
such agents. In Section 5.3, we combine these results, show
how to relax the assumption of perfect optimization and,
most importantly, show how the performance of a bounded-
rational agent differs between the cases with and without
self-modification.

In Lemma 8, we show that if the agent’s estimate of the
expected discounted utility is at most ε away from the true
value, the agent will be a 2ε-optimizer. In sections 5.2 to 5.2,
we show bounds on how inaccurate the agent’s estimate of
expected discounted utility can be, thus proving bounds on
optimization. In Section 5.2, we proceed differently: we for-
mulate the worst case as a solution of an optimization prob-
lem which we then solve analytically.

Lemma 8. Let A be a (possibly self-modifying) perfect ex-
pected utility maximizer with knowledge κ = (u, ρ, γ). Let
κ∗ = (u∗, ρ∗, γ∗) be the correct knowledge. Assume that

|V πκ (æ<t)− V πκ∗(æ<t)| ≤ ε

for all policies π and histories æ<t. Then, A is a 2ε-optimizer
with respect to κ∗.

ε-misaligned agents are ε′-optimizers We now consider
agents with an inaccurate utility function and derive bounds
on ε′ such that the misaligned agent is an ε′-optimizer.

Theorem 9. Let A be a perfect utility maximizer with util-
ity function u and error ε with respect to the correct utility
function u∗. Then it is a 2ε

1−γ -optimizer with respect to u∗.
Moreover, this bound is tight.

In the random-error case when for any æ<t, we ran-
domly choose u(æ<t) from the set {max(0, u∗(æ<t) −
ε),min(1, u∗(æ<t)+ε)}, we give a simple lower bound that
is only a factor 4 away from the upper bound. Consider an
environment with only one perception 1 and actions {0, 1}
and u∗(1|æ<t0) = 1− 2ε and u∗(1|æ<t1) = 1. With prob-
ability 1/4, it holds that u(1|æ<t1) = u(1|æ<t0), in which
case the agent may take the suboptimal action 0, thus losing
2ε in instantaneous utility. At every step, it therefore loses
ε/2 instantaneous expected utility. In total, it then loses in
expectation ε

2(1−γ) . We have thus proved the following:

Theorem 10. Let A be a perfect utility maximizer whose
utility function u is such that for any et,æ<tat, the value
u(et|æ<tat) is chosen independently and uniformly from the
set {max(0, u∗(et|æ<tat)− ε),min(1, u∗(et|æ<tat) + ε)}.
Then, the amount of utility lost is in expectation

ε

2(1− γ)

ε-ignorant agents are ε′-optimizers In this section, we
discuss agents with inaccurate belief. Theorem 11 gives
bounds on the utility lost as a result of the agent having an
inaccurate belief. We give an upper bound in terms of the
(weaker) absolute error and lower bounds in terms of both
absolute and relative error, showing that the upper bound is
tight up to factors of 2 and 4 for absolute and relative error.

Theorem 11. Let A be a perfect expected utility maximizer
whose belief ρ has absolute error ε with respect to the cor-
rect belief ρ∗. Then it is a ( 2

1−γ −
2

1−γ(1−ε) )-optimizer with
respect to ρ∗ and this bound is tight up to a factor of 2.
Moreover, if ε is the relative error, this bound is tight up to a
factor of 4.

So far, we have considered the worst-case scenario. In
the next theorem, we show that in the case of both absolute
and relative error, the upper bound is tight up to a constant
factor even in the case when the error at each timestep is
randomly chosen from the set {−ε, ε} (that is, ρ(et|æ<tat)
is chosen uniformly from the set {max(0, ρ∗(et|æ<tat) −
ε),min(1, ρ∗(et|æ<tat) + ε)} in the case of absolute error
and {ρ

∗(et|æ<tat)
1+ε ,min(1, (1 + ε)ρ∗(et|æ<tat))} in the case

of relative error), independently of other timesteps.
Theorem 12. Let A be a perfect expected utility max-
imizer whose belief ρ is such that for any et,æ<tat,
the value ρ(et|æ<tat) is independently for any argument
chosen uniformly from the set {max(0, ρ∗(et|æ<tat) −
ε),min(1, ρ∗(et|æ<tat) + ε)} in the case of absolute error
and {ρ

∗(et|æ<tat)
1+ε ,min(1, (1 + ε)ρ∗(et|æ<tat))} in the case

of relative error.
Then, in expectation, the amount of expected discounted

utility lost is respectively
1

1− γ
− 1

1− γ(1− ε/8)

1

1− γ
− 1

1− γ(1− ε/16)

and this is equal to the upper bound for non-random error
up to a factor of 16 and 32, respectively.

Impatient agents are ε-optimizers In this section, we dis-
cuss the case when an agent has an incorrect discount factor
and give a bound on the performance of this agent with re-
spect to the correct discount factor. We only consider the
case when the agent discounts faster than the correct dis-
count rate – we deem this to be the interesting case as, gen-
erally speaking, while optimizing in the long-term might be
desirable, it is difficult to achieve, so the agent is likely to
optimize in shorter term than desired. Bounds for the other
case can be derived by the same method. To simplify the
bounds, we define k = d− 1

lg γ e.
Theorem 13. Let πγ and πγ∗ be perfect expected utility
maximizers with respect to discount factors γ and γ∗ respec-
tively for some γ ≤ γ∗, either with or without the ability to
self-modify. Let u,ρ be their utility function and belief. Then

|V πγ∗ (æ<t)− V πγ (æ<t)| ≤
γ∗k + γ∗k−1 − 1

1− γ∗

− γ∗k−1 γ
k + γk−1 − 1

γk−1(1− γ)

For γ → 1, it holds that d− 1
lg γ e ∼ −

1
lg γ . This enables us to

simplify the previous result to get a good approximation for
when γ is close to 1:

γ∗k + γ∗k−1 − 1

1− γ∗
− γ∗k−1 γ

k + γk−1 − 1

γk−1(1− γ)
≈ 2γ∗

1
lg γ − 1

1− γ∗



5.3 Combining the results
In this section we combine the results from sections 5.1
and 5.2 and present a bound on the utility lost by an agent
which is misaligned, ignorant, impatient and has bounded
optimization, all at the same time. It is an interesting feature
of this bound that the worst-case performance guarantee can
in some cases be improved by adjusting its discount rate.

Recall that the functions f• in the following theorem have
been defined in Section 1.1.

Theorem 14. LetA be an εo-optimizer for the empty history
with either (1) the ability to self-modify and modification-
independent utility function and belief, or (2) without the
ability to self-modify and with a possibly modification-
dependent utility function and belief. Let γ be the agent’s
discount rate, εu the error in its utility function wrt. the cor-
rect utility function u∗ and ερ its absolute error in belief with
respect to the correct belief ρ∗. Then at timestep t:

(1) If we let ε′ be the smallest possible number such that A
at time t is an ε′-optimizer, then Eæ<t [ε

′] ≤ fopt(εo, γ) +
futil(εu, γ) + fbel(ερ, γ) + fdisc(γ, γ

∗) where the expecta-
tion is over histories where perceptions are distributed ac-
cording to ρ∗ and actions are given by the agent’s policy.
Moreover, if εo = 0, then ε′ ≤ fopt(εo, γ) + futil(εu, γ) +
fbel(ερ, γ) + fdisc(γ, γ

∗) almost certainly.
(2) A will be an ε′-optimizer, with respect to the correct dis-

count rate γ∗, where ε′ ≤ εo + futil(εu, γ) + fbel(ερ, γ) +
fdisc(γ, γ

∗)

Moreover, when γ ≥ 1/2, there exists an agent which
achieves equality up to a factor of at most 8 and up to a
factor of 16 if ερ is the relative error.

6 Future work
We propose several directions for future research. In general,
it would be interesting to explore the central problem of self-
modification safety under different agent and environment
models and with different assumptions.
Bounded rationality models. We analyzed a model of
bounded-rationality with a strict upper bound on the size of
errors (of several kinds). While this shows that even agents
guaranteed to have small errors may self-modify in detri-
mental ways, the analysis would be significantly different
for fully stochastic bounded rationality models (e.g. negligi-
ble expected errors with non-negligible variance). One such
model of interest is Information-Theoretic Bounded Ratio-
nality of Ortega et al. (2015).
Awareness of own bounded-rationality. Whatever under-
lying decision procedure the agent uses somehow implic-
itly takes its ε-optimality into account – in particular since
the assumed ε-optimality depends on the behavior of future
agent versions. In our formulation, we do not assume the
agent to have explicit knowledge of its bounded rationality
model and ε, which would at least intuitively seem useful to
know.

Note, however, that in our framing such explicit knowl-
edge would not be necessarily useful, as any deliberation
about it is subject to the same error within ε-optimality.

Therefore it may be interesting to explore bounded ratio-
nality models where the information about own bounded
rationality could be explicitly reasoned about (with more
precision than e.g. modelling the trajectory of the full en-
vironment). Would the agent then be more reluctant to self-
modify?
Time horizons and discounting. Avoiding temporal dis-
counting would likely yield results with stronger impli-
cations (Section 2). We propose analysing the finite-time
undiscounted case, as well as exploring other means of fu-
ture value aggregation (finite or infinite, as explored by
Bostrom (2011)).
Model of self-modification. As noted above, embedded
agents with a strong influence on the environment may
self-modify by exploiting the environment. However, the
extent of this self-modification, and the strength and sta-
bility of mechanisms against self-modification (e.g. via
modification-dependent utility function) require further re-
search.
Probabilistic analysis. Build stochastic models of agent
rationality and self-modification, and perform full proba-
bilistic analysis. This may e.g. inform us about required
safety margins. In particular, approaches based on statisti-
cal physics and information theory seems to be promising
here and have already proven fruitful in analyzing existing
optimization problems and algorithms.
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