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Abstract

We describe a complete method that learns a neural network
which is guaranteed to over-estimate a reference function on
a given domain. The neural network can then be used as a
surrogate for the reference function.

The method involves two steps. In the first step, we construct
an adaptive set of Majoring Points. In the second step, we
optimize a well-chosen neural network to over-estimate the
Majoring Points.

In order to extend the guarantee on the Majoring Points to the
whole domain, we necessarily have to make an assumption
on the reference function. In this study, we assume that the
reference function is monotonic.

We provide experiments on synthetic and real problems. The
experiments show that the density of the Majoring Points con-
centrate where the reference function varies. The learned
over-estimations are both guaranteed to overestimate the ref-
erence function and are proven empirically to provide good
approximations of it.

Experiments on real data show that the method makes it pos-
sible to use the surrogate function in embedded systems for
which an underestimation is critical; when computing the ref-
erence function requires too many resources.

1 Introduction

Overestimation guarantee

In this paper, we consider a real value finite function f de-
fined on a compact domain D and describe a method that
finds optimal weights w* and bias b* such that the neural
network f+ p« both provides a good approximation of f:

fw*,b* ~ f7
and is guaranteed to overestimate f over D:
Jwe b+ (x) > f(2) forall z € D. (1)
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Inspired by critical systems applications, we require (1) to
be guaranteed by a formal theorem. We call fu« p,+ the sur-
rogate and call f the model.

In the typical application we have in mind, f is the re-
sult of a deterministic but complex phenomenon. It is dif-
ficult to compute and its evaluation requires intensive com-
putations or extensive memory consumption. We consider
two settings. In the first setting, we can evaluate f(x) for
any z € D. In the second setting, we only know a data set
(Qﬁi, f(l‘i))izlun of sizen € N.

The constructed surrogate fy -+ n+ permits to rapidly eval-
uate an approximation of f at any point of D. Of course,
we want the surrogate fy« p+ to approximate f well; but
most importantly we want fy« b+ to overestimate f. In the
typical scenario we have in mind, f models the consump-
tion of some resource for a critical action. Underestimating
the model may cause a (potentially deadly) hazard that will
not be acceptable for certification authorities especially in
aeronautics (EASA or FAA). The applications include for
instance: - the estimation of the braking distance of an au-
tonomous vehicle; - the number of kilometers that can be
traveled; - the maximum load a structure can carry, - the net-
work traveling time etc Guaranteed overestimation can also
be used to guarantee the fairness of a score, when underesti-
mation on a sub-population leads to an unfair surrogate func-
tion. Providing such fairness or performance guarantee can
be seen as a niche activity, but it alleviates the limitation that
restrains the massive industrialization of neural networks in
critical applications where passengers lives are at stake.

Finally, the adaptation of the method to construct an
under-estimation of f is straightforward and, for ease of pre-
sentation, not exposed in the paper. Of course, the combina-
tion of both an over-estimation and an under-estimation per-
mits, for any x, the construction of an interval in which f(x)
is guaranteed to be.

Related works

The most standard type of guarantees in machine learning
aim at upper-bounding the risk by upper-bounding the gen-
eralization error (see (Anthony and Bartlett 1999) for an
overview). We would like to highlight that the risk measures
an average cost that does not exclude failures. Moreover, at



the writing of this paper, the bounds on the generalization er-
ror are very pessimistic when compared to the performance
observed in practice (Harvey, Liaw, and Mehrabian 2017;
Bartlett et al. 2019) and the recent overview (Jakubovitz,
Giryes, and Rodrigues 2019). In particular, neural network
are commonly learned with much less examples than re-
quired by the theory.

Other works provide guarantees on the neural network
performance (Mirman, Gehr, and Vechev 2018; Boopathy
et al. 2019; Katz et al. 2017) that can be used to exclude
failures (in our setting, the under-estimation of f). The phi-
losophy of these works is to analyze the output of the learn-
ing phase in order to provide guarantees of robustness. An-
other line of research, is to impose constraints or optimize
robustness criteria during the learning phase (Fischer et al.
2019; Raghunathan, Steinhardt, and Liang 2018). This does
not permit to guarantee an over-estimation property.

Finally, another direction makes probabilistic assump-
tions and provides confidence scores (Gal and Ghahramani
2016; Pearce et al. 2018; Tagasovska and Lopez-Paz 2019;
Keren, Cummins, and Schuller 2018). The confidence score
does not necessarily provide a formal guarantee.

Compared to these approaches, the guarantee on the sur-
rogate fy- p+ is due to the attention given to the construction
of the learning problem and the hypotheses on the function
f. To the best of our knowledge, and not considering trivial
overestimation with poor performances, we are not aware of
any other construction of a surrogate fw~ p~ that is guaran-
teed to overestimate the model f.

Hypotheses and restrictions

In order to extend the overestimation property to the whole
domain we can obviously not consider any arbitrary func-
tion f. In this paper, we restrict our analysis to real-valued
and finite non-decreasing functions. The extension to vec-
tor valued function is straightforward. The extension to
non-increasing functions is straightforward too. We delib-
erately use these restrictive hypotheses to simplify the pre-
sentation. Furthermore, many extensions of the principles of
the method described in the paper to other classes of non-
monotone functions are possible.

Formally, for a compact domain D C R?, a function qg:
D — R is non-decreasing if and only if

g(z) < g(z')
where the partial order on R is defined for any z =
(Ik)kzl_d and ' = (I;C)kzlwd S Rd by

forallz < 2’

r < 2’ if and only if ), < ), forall k = 1..d.

Other authors have already studied the approximation of
non-decreasing functions with neural networks (Lang 2005;
Daniels and Velikova 2010; Sill 1998). In our context, the
monotonic hypothesis is motivated by the fact that mono-
tone function are ubiquitous in industrial applications and in
physics. Moreover, for a given application, where a function
f RY — R needs to be approximated. It is sometimes
possible to extract features with a function g : RY — R?
such that the function f : R — R, satisfying f' = f o g,
is monotone.

Another restriction is that the method cannot be applied
when the dimension d is large and f varies in all directions.
In fact, one contribution of the paper is to design algorithms
to alleviate this problem and apply the method for larger d,
but d must anyway remain moderate for most function f.

These hypotheses permit to have global guarantee that
hold on the whole domain D while weaker hypotheses on
f only lead to local guarantees, holding in the close vicinity
of the learning examples.

Organization of the paper

In the next section, we define Majoring Points and describe a
grid based and an adaptive algorithm to construct them. The
algorithms are adapted when the function f can be evaluated
at any new input as well as when we only know a dataset
(2, f(x;))i=1..n- In Section 3, we describe a strategy to
construct monotonic, over-estimating neural networks. Fi-
nally, in Section 4, we provide experiments showing that the
Majoring Points are located in the regions where f varies
strongly or is discontinuous. We also illustrate on synthetic
examples that the method can accurately approximate f,
while being guaranteed to overestimate it. An example on
real data illustrates that the use of over-estimating neural net-
works permits to reduce the memory required to compute an
over-estimation and thus permits to embed it, in a real world
application.

2 Majoring Points

Introduction
Definition 1. Majoring Points

Let (a;,b;)i=1..m € (]Rd X ]R)m. Let D C R? be compact
and let f : R — R be finite and non-decreasing. We say
that (a;, b;)i=1..m are Majoring Points for f if and only if
for any non-decreasing g : R* — R :

Ifg(a;) > b;,Vi=1..m, then g(z)> f(x),Vx € D.

When f is upper-bounded on D, the existence of such ma-
joring points is established by considering: m = 1,
e aq suchthata; < z forall x € D,
e by = sup,ep f(2).
However, for most function f, any non-decreasing g such
that g(a;) > by is a poor approximation of f. The goal,
when constructing Majoring Points of f is to have b; ~
f(a;), while b; > f(a;), for all ¢ = 1..m. The number of

points m should remain sufficiently small to make the opti-
mization of the neural network manageable.

Constructing Majoring Points using a cover
For any y and v/ € RY, with y < 3/, we define the hyper-
rectangle between y and y’ by
Ryy ={r €RYy <z <y}
Using hyper-rectangles, we define the considered covers.

Definition 2. Cover
Let (y;)i=1..m and (y.)i=1..m in R be such that y! > y;,
forall i = 1..m. We say that (y,y,)i=1..m covers D if and
only if
D C U;’;{Ry“yg. )



For any cover C = (y;, y})i=1..m» we define the function

fe(x) min  f(y}) Jforallz € D.  (3)

RE wER%y;
Notice that, since C is a cover, {ilz € R, ,/} # 0 and

fe(x) is well-defined. We can establish that the function f¢
overestimates f over D:

For all x € D, fe(x) > f(x). 4

Indeed, for any x € D, there exists ¢ such that z € R,, .

and fc(x) = f(y;). Therefore, since f is non-decreasing
and z < y!, we have

f@) < fyi) = fe(2).
Proposition 1. A cover defines Majoring Points
Let D C R? be compact. Let C = (yi,y.)i=1..m be
a cover of D and let f : R? — R be finite and

non-decreasing. The family (y;, f(y}))i=1..m are Majoring
Points for f.

Proof. We consider a non-decreasing function g such that,

forall i = 1..m, a(yi) > f(yl). 5)
We need to prove that,
forallz € D, g(x) > f(x).

To do so, we consider x € D and ¢ such that x € Ryy:
Using respectively that g is non-decreasing, (5), the defini-
tion of f¢ (3) and (4), we obtain the following sequence of
inequalities:

9(x) > g(yi) > f(yi) > fe(x) > f(x). (6)
O

The function fe can be computed rapidly using a look-
up table but requires storing (y;, f(y}))i=1..m- This can be
prohibitive in some applications.

To deal with this scenario, we describe in Section 3 a
method to construct a neural network such that fy« b+ is
non-decreasing and satisfies fw« p+(y;) > f(y;), for all
i = 1..m. According to the proposition, such a network pro-
vides a guaranteed over-estimation of f, whose computation
is rapid. The resources required to store w* and b are in-
dependent of m. We show in the experiments that it can be
several orders of magnitude smaller. This makes it possible
to embed the overestimating neural network when embed-
ding the Majoring Points is not be possible. This advantage
comes at the price of loss of accuracy as fw - b+ (z) > fe(z)
(fw+ b+ () has the role of g in (6)).

Majoring Points construction algorithm

Introduction In this section, we describe algorithmic
strategies to adapt Majoring Points to the function f.
Throughout the section, we assume that we know y,,;, and
Ymaz € R< such that

D C Rym,inaym,am' (7)

The goal is to build a cover such that f¢ is close to f and
m is not too large. Ideally, the cover can be expressed as the

solution of an optimization taking into account these two
properties. However, the optimization would be intractable
and we only describe an heuristic algorithm that construct a
cover.

We construct Majoring Points according to two scenarios:

* We can generate f(z) for all z € R? We call the Ma-
joring Points generated according to this setting Function
Adapted Majoring Points.

* We have a dataset (x;, f(x;))i=1..n. It is not possible to
have access to more training points. We call the Majoring
Points generated according to this setting Data Adapted
Majoring Points. In order to define them, we consider the

function f : R — R defined, forall z € R
by

Ymin Ymazx

f(x): min f(z;). (8)

X >T

Since f is non-decreasing, we have

forallz € R

fx) > f(x)

At the core of the constructions described below is the con-
struction of a cover C = (¥4, Y} )i=1..m-

Ymin,Ymax *

Grid Based Majoring Points We consider an accuracy
parameter € > 0 and a norm ||.|| on R%. We define
O — (Hymam - ymzn” W )
€
A simple way to define Majoring Points is to generate

a cover made of equally spaced points between y,,;, and
Ymaa- Setting

r= Ymax — Ymin c Rd
nmax
and for all ig,--- ,ig—1 € {1,...,N — 1}, we set i =

-1
o ik N* and

Yi = Ymin + (G071, - -, 9d—17d)
Yi=yi+r

Notice that, the parameter r defining the grid satisfies
|I]l < e. Given the cover, the Function Adapted Majoring
Points (a;, b;);—o..na_1 are defined, fori = 0..nd, —1, by

ai = Yi
{ bi = f(y;) ®
We can also construct a Grid Based Majoring Points when
the function f cannot be evaluated but a dataset
(4, f(i))iz1..n is available by replacing in the above defi-
nition f by f, see (8).

The Grid Based Majoring Points are mostly given for ped-
agogical reasons. The number of values f(z) that need to be
evaluated and the number of Majoring Points defining the
objective of the optimization of the neural network are both
equal tond . = O(e~%). It scales poorly with d and this re-
strains the application of the Grid Based Majoring Points to
small d, whatever the function f.

When f does not vary much in some areas, the Majoring
Points in this area are useless. This is what motivates the
adaptive algorithms developed in the next sections.



Adaptive Majoring Points Bellow, we describe a Di-
chotomy Algorithm that permits to generate an adaptive
cover with regard to the variations of the function f (or f).
It begins with a cover made of the single hyper-rectangle
Reymin.umas- Then it decomposes every hyper-rectangle of
the current cover that have not reached the desired accuracy.
The decomposition is repeated until all the hyper-rectangle
of the current cover have the desired accuracy (see Algo-
rithm 1).
Initially, we have D C Ry, ;. ymas-

rectangle R, ,/, denoting r = Y5, the decomposition re-
places Ry, by its sub-parts as defined by

For any hyper-

{Ry+(317‘1 ----- Sara),y+(s1+1)rl ...,(sd+1)rd)|
(s1,..-,84) € {0,1}*}.  (10)

(Hence the term ‘dichotomy algorithm’. ) The union of the
sub-parts equal the initial hyper-rectangle. Therefore, the
cover remains a cover after the decomposition. The final C
is a cover of D.

We consider a norm ||.|| on R¢ and real parameters ¢ >
0,ef > 0 and n, € N. We stop decomposing an hyper-
rectangle if a notion of accuracy is satisfied. The notion of
accuracy depends on whether we can compute f or not.

* When we can evaluate f(z): The accuracy of R, ./ is de-
fined by the test

fW)—=fly)<er or |y —yll<e (D)

* When we only know a dataset (x;, f(x;))i=1..n: The ac-
curacy of R, is defined by the test

{ fy)—fly)<er or |y —yl|<e (12)

or {ilzi € Ry} <np
where |.| is the cardinal of the set.
We stop decomposing if a given accuracy is reached :

« when f(y') — f(y) < efor f(y') — f(y) < ey: This
happens where the function f varies only slightly.

* when ||y’ — y||: This happens where the function f varies
strongly.

* when [{ilz; € Ry, }| < np: This happens when the
number of samples in R, ,+ does not permit to improve

the approximation of f by f in its sub-parts.

The cover is constructed according to Algorithm 1. This

algorithm is guaranteed to stop after at most n/ =

max

[log,y (M)] iteration of the ‘while loop’. In the

worst case, every hyper-rectangle of the current cover is de-
composed into 2¢ hyper-rectangles. Therefore, the worst-
case complexity of the algorithm creates

2dn;mm _ O(E_d)

hyper-rectangles. The worst-case complexity bound is sim-
ilar to the complexity of the Grid Based Majoring Points.
However, depending on f, the number of hyper-rectangles
generated by the algorithm can be much smaller than this
worst-case complexity bound. The smoother the function f,
the less hyper-rectangles are generated.

Algorithm 1 Adaptive cover construction

Require: ¢ : Distance below which we stop decomposing

Require: ¢ : Target upper bound for the error in f

Require: n, : number of examples in a decomposable
hyper-rectangle

Require: Inputs needed to compute f (resp. f)

Require: ¥,,in, Ymao : Points satisfying (7)

C{Rypin ymas )
t+ 0

while ¢t #~ 1 do
t+ 1
C' 0
for R, , € Cdo
if R, satisfies (11) (resp. (12)) then
C'+—CU{Ry,}
else
t<+ 0
for all sub-parts R of R, (see (10)) do
C'+ CU{R}
end for
end if
end for
C«+
end while
return C

3 Overestimating neural networks
Monotonic Neural Networks

In this section, we remind known result on the approxi-
mation of non-decreasing functions with neural networks
having non-negative weights and non-decreasing activa-
tion functions (Lang 2005; Daniels and Velikova 2010; Sill
1998).

Proposition 2. Sufficient condition to get a non-
decreasing network
For any neural network such that:

* its activation functions are non-decreasing
* its weights W are non-negative

the function fw v defined by the neural network is non-
decreasing.

The conditions are sufficient but not necessary. We can
think of simple non-decreasing neural network with both
positive and negative weights. However, as stated in the next
theorem, neural networks with non-negative weights are uni-
versal approximators of non-decreasing functions.

Theorem 1. Universality of neural networks with non-
negative weights (Daniels and Velikova 2010)

Let D C R? be compact. For any continuous non-
decreasing function g : D — R . For any n > 0, there
exist a feed-forward neural network with d hidden layers,
a non-decreasing activation function, non-negative weights
w* and bias b* such that

l9(z) = fw (@) <7 ,forallx € D,
where fyu+ b+ is the function defined by the neural network.



Notice that, in (Daniels and Velikova 2010), the neural
network constructed in the proof of Theorem 1 involves a
Heaviside activation function. The choice of the activation
function is important. For instance, with a convex activation
function (like ReLU), the function defined by the neural net-
work with non-negative weights is convex (Amos, Xu, and
Kolter 2017) and may approximate arbitrary poorly a well-
chosen non-decreasing non-convex function.

Theorem 1 guarantees that a well-chosen and optimized
neural network with non-negative weights can approximate
with any required accuracy the smallest non-decreasing ma-
jorant' of fe, as defined in (3).

Learning the neural network

We consider a feed-forward neural network of depth h. The
hidden layers are of width . The weights are denoted by w
and we will restrict the search to non-negative weights: w >
0. The bias is denoted by b. We consider, for a parameter
6 > 0, the activation function

t
o(t) = tanh(g) forallt € R.

We consider an asymmetric loss function in order to pe-
nalize more underestimation than overestimation

_[att-p)? ift>p
L.t .a=p(t) _{ a lt—BP  ift<p

where the parameters (a™,a~,3) € R3 are non-negative
and p € N. Notice that asymmetric loss functions have al-
ready been used to penalize either under-estimation or over-
estimation (Yao and Tong 1996) (Julian, Kochenderfer, and
Owen 2019).

Given Majoring Points (a;, b;);=1..m, we define, for all w
and b

m
E(w,b) = Z lﬁ’,aJr,a,p(fW,b(ai) — bi).

i=1

The parameters of the network optimize
argming gy, E(w,b). (13)

The function E' is smooth but non-convex. In order to solve
(13), we apply a projected stochastic gradient algorithm
(Bianchi and Jakubowicz 2012). The projection on the con-
straint w > 0 is obtained by canceling its negative entries.
As often with neural network, we cannot guarantee that the
algorithm converges to a global minimizer.

Guaranteeing fy« p+(a;) > b;
The parameter 5 > 0 is an offset parameter. Increasing 3
leads to poorer approximations. We show in the following
proposition that 3 can be arbitrarily small, if the other pa-
rameters are properly chosen.
Proposition 3. Guaranteed overestimation of the sam-
ples

Let B > 0, a= > 0, p > 0. If the neural network is
sufficiently large and if 0 is sufficiently small, then

fwp=(a;) >b; foralli =1..m, (14)

for any w* and b* solving (13).

'Notice fc is not necessarily non-decreasing.

Proof. Since o~ P > 0, there exists 77 > 0 such that
mmax(a” 1, atn?) < a” BP.

Given Theorem 1, when the network is sufficiently large and
0 is sufficiently small there exist a bias b’ and non-negative
weights w’ such that for all : = 1..m:

[ fwr b (ai) = (bi + B)| < .

Therefore,
E(w*,b*) < E(wW,b)
< Y max(a P, atn?)
=1
< a P (15)

If by contradiction we assume that there exists ¢y such that
fwor b (@) < by
then we must have
E(wW",b") > 15 o+ a0 p(fw= b (ai,) — biy) > a” BP.
This contradicts (15) and we conclude that (14) holds. [

The proposition guarantees that for a large network, with
0 small, we are sure to overestimate the target. Because
Theorem 1 does not provide a configuration (depth, width,
activation function) that permits to approximate any func-
tion with an accuracy 7, it is not possible to provide such a
configuration for the parameters in Proposition 3. However,
given a configuration and given weights w* and bias b* re-
turned by an algorithm, it is possible to test if (14) holds. If
is does not hold, it is always possible to increase the width,
depth, etc and redo the optimization. Theorem 1 and Propo-
sition 3, combined with properties of the landscape of large
networks such as (Nguyen and Hein 2017), guarantee that
such a strategy stops after a finite number of optimization
procedure.

4 Experiments

In this section, we compare the results of several learning
strategies on two synthetic experiments with d = 1 and 2
and on a real dataset from avionic industry. The synthetic
experiments permit to illustrate the method; the latter real
dataset show that the method permits to construct a surrogate
of a critical function that can be embedded while the true
critical function cannot.

The python codes that have been used to generate the ex-
periments, as well as additional experiments, are provided
with the submission and will be made available on an open
source deposit.

Methods to be compared

The architecture of the network is the same for all experi-
ments and contains 4 fully connected layers with 64 neurons
in each layer. The memory requirement to store the network
is 64 x d+4 x 642 +5%64 = 64d+ 16705 floating numbers.
The size of the input layer is d. The size of the output layer
is 1. We compare:



* The j-baseline: For a parameter § > 0, it is a simple
neural network, with an ¢2 loss. It is trained:

— on the points (a;, f(a;)+9)i=1..m, When f can be com-
puted;

- on the modified dataset (z;, f(x;) + 0);=1..n, when f
cannot be computed.

The §-baseline is in general not guaranteed to provide an
overestimation. The 0-baseline is expected to provide a
better approximation of the true function f than the other
methods but it fails to always overestimating it.

If § is such that f(a;) + § > b;, for all i = 1..m, the
d-baseline is guaranteed to provide an overestimation.

* The Overestimating Neural Network (ONN): Is a neu-

ral network whose parameters solve (13) for the param-
eters 3, ™, a and p coarsely tuned for each experiment,
and depending on the context, the Grid Based Majoring
Points (ONN with GMP), the Function Adapted Major-
ing Points (ONN with FMP), the Grid Based Majoring
Points (ONN with DMP).
We always take § = 1. The size of the network and
the values of s 3,a™,a and p always permit to have
fw=p=(a;) > b;, for all ¢ = 1..m. Therefore, as demon-
strated in the previous sections, fw- p+ is guaranteed to
overestimate f.

Evaluation metrics

We are defining in this section the metrics that are used
to compare the methods. Some metrics use a test dataset
(5, f(x]))i=1..n-

For the 1D synthetic example, we take n’ = 100000 and
for the industrial example, we take n’ = 75000. In both
cases the x} are iid according to the uniform distribution
in D. We consider the Majoring Approximation Error
(MAE) defined by

1 m
MAFE = m Z(bz — fla:));
i=1
the Root Mean Square Error (RMSE) defined by

LS e () — F)? |

n <
=1

the Overestimation proportion (OP) defined by

100
n/

il fove o () = ()}

and remind if the method guarantees f+« p« Overesti-
mates f Formal Guarantee (FG).

For the experiments on the 1D synthetic example the
methods are also evaluated using visual inspection.

1D synthetic experiment

The 1D synthetic experiment aims at overestimating the
function f; defined over [—10, 10] by

- I
. f
@ Grid Majoring Points

fw” b
0.2-baseline

4.5 40 -5 -0 25 -20

Figure 1: 1D synthetic experiment with Grid Based Major-
ing Points

4 e f
fw b
20 . 0.2-baseline
@ Grid Majoring Points

Figure 2: Discontinuity of 1D synthetic experiment with
Grid Based Majoring Points

3z + 3sin(r) — 4 ifz € [-10;—1)
—sign(z).z® +sin(z) ifz € [-1;1]
x + cos(x) + 10 ifz € (1;10]

fi(z) =
(16)

The function f1, fe, fw+ b+ for Grid Based Majoring
Points and the 0.2-baseline are displayed on Figure 1, on
the interval [—4.5, —2]. The function f; f, the Grid Based
Majoring Points and fy« p- for Grid Based Majoring
Points and the 0.2-baseline are displayed on Figure 2, on the
interval [0.8,1.2]. The function f;, the Data Adapted Ma-
joring Points, the sample (z;, f1(2;))i=1..n and fy~ p= for
Data Adapted Majoring Points are displayed on Figure 3,
on the interval [—5.5, 0].

We clearly see that the adaptive Majoring Points aggre-
gate in dyadic manner in the vicinity of the discontinuities.
We also see on Figure 2 how Majoring Points permit to an-
ticipate the discontinuity and construct an overestimation.
The density of Majoring Points depends on the slope of f;.
This permits to reduce the approximation error. Also, fy+ b
passes in the vicinity of the Majoring Points and provides a
good approximation that overestimates f.

The MAE, RMSE, OP and FG are provided in Table 1 for
the 0-baseline, the 0.5-baseline, fc and the ONN for three
types of Majoring Points. We see that the RMSE worsen as
we impose guarantees and approach the realistic scenario
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Figure 3: 1D synthetic experiment with Data Adapted Ma-
joring Points

[ [ n [MAE[RMSE | OP [ FG |

0-baseline 200 N/A -.04 51.9% | NO
0.5-baseline 200 0.5 0.59 99.5% | NO
fe 200 | N/A 0.10 100 % | YES

ONN with GMP || 200 | 0.24 0.23 100% | YES
ONN with FMP || 200 | 0.23 0.55 100% | YES
ONN with DMP || 500 | 0.82 0.60 100% | YES

Table 1: Metrics - 1D synthetic experiment

where the surrogate is easy to compute and does not require
too much memory consumption.

2D synthetic experiment

The same phenomenon described on 1D synthetic exper-
iment occur in dimension 2. We only illustrate here the
difference between the Grid Based Majoring Points, Func-
tion Adapted Majoring Points and Data Adapted Majoring
Points for the function

V(z,y) € [0;15)*  g(a,y) = f (\/ﬂf2 +y% - 10)
where f; is the function defined in (16).

We display, on Figure 5, the Function Adapted Majoring
Points returned by the Dichotomy Algorithm. The density
of points is correlated with the amplitude of the gradient of
the function. Algorithm 1 permit to diminish the number of
Majoring Points. For instance, for the 2D synthetic example
for ¢ = 0.1, the Grid Based Majoring Points counts 22500
points. The Function Adapted Majoring Points counts 14898
points, for ¢ = 0.5, and 3315, for € = 2. The Data Adapted
Majoring Points counts 8734 points, for ¢ = 0.5, and 1864,
fore = 2.

On Figure 4, we represent the dataset and the cover ob-
tained using Algorithm 1 for the synthetic 2D example. The
inputs a; of the corresponding Majoring Points are displayed
on Figure 5.

Industrial application

The method developed in this paper provides formal guar-
antees of overestimation that are safety guarantee directly
applicable in critical embedded systems.

-.: - —}-H:H-_-I 1

(a) Complete domain (b) Zoom on the discontinuity

Figure 4: Data Majoring Points grid

(a) Complete domain (b) Zoom on the discontinuity

Figure 5: Function Adapted Majoring Points on synthetic
2D f.

The construction of surrogate functions is an important
subject in industry (Lathuiliere et al. 2019; Biannic et al.
2016; Jian et al. 2017; Sudakov et al. 2019). In this work,
we are considering an industrial and heavy simulation code
that has six inputs d = 6 and one output and that represents
a complex physic phenomenon of an aircraft. The output is
an non-decreasing function. During the flight, given flight
conditions x the output f(x) is compared to a threshold and
the result of the test launch an action. When we replace f by
the overestimating surrogate fw~« b+, the airplane launches
the action less often. However, the airplane only launches
the action when the action is guaranteed to be safe.

The industrial dataset contains n = 150000 examples on
a static grid and another set of 150000 sampled according
to the uniform distribution on the whole domain. For each
inputs, the reference computation code is used to generate
the associated true output.

We compare 0-baseline,300-baseline with the ONN
learned on Grid Based Majoring Points and Data Adapted
Majoring Points methods. All the methods are learned on the

[ Method J| n [ nma; | RMSE | MAE [ OP | FG |
O-baseline 150k [ 150k [ 33 [ NA [ 651% [ NO
300-baseline 150k | 150k | 3026 | 3000 | 100% | NO
ONNwith GMP || 150k | 150k | 3093 | 2627 | 100% | YES
ONNwith DMP || 150k0 | 110k | 4457 | N/A | NA | YES

Table 2: Results on the industrial dataset



static grid except OON with Data Adapted Majoring Points.
The table 2 presents the metrics for the different methods.
The results are acceptable for the application and memory
requirement to store and embed the neural network is 17088
floating numbers. It is one order of magnitude smaller than
the size of the dataset.

5 Conclusion - Future Work

We presented a method that enables to formally guarantee
that a prediction of a monotonic neural network will always
be in an area that preserves the safety of a system. This is
achieved by the construction of the network, the utilization
of majoring points and the learning phase, which allows us
to free ourselves from a massive testing phase that is long
and costly while providing fewer guarantees.

Our work have limitations on functions that can be a
safely approximate, but this is a first step toward a safe use
of neural networks in critical applications. Nevertheless, this
can already be used in simple safety critical systems that
verify our hypotheses. Future works will look on possibil-
ity to leverage the utilization of the monotonic hypothesis.
Another direction of improvement is to build smarter algo-
rithms that require less majoring points thanks to a better
adaptation to the structure of the function. In particular, this
should permit to apply the method to functions whose is in-
put space is of larger dimension, when they have the proper
structure.
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