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Abstract

The black-box behavior of Convolutional Neural Networks is
one of the biggest obstacles to the development of a standard-
ized validation process. Methods for analyzing and validat-
ing neural networks currently rely on approaches and met-
rics provided by the scientific community without consid-
ering functional safety requirements. However, automotive
norms, such as 1SO26262 and ISO/PAS21448, do require a
comprehensive knowledge of the system and of the working
environment in which the network will be deployed. In order
to gain such a knowledge and mitigate the natural uncertainty
of probabilistic models, we focused on investigating the in-
fluence of filter weights on the classification confidence in
Single Point Of Failure fashion. We laid the theoretical foun-
dation of a method called the Neurons’ Criticality Analysis.
This method, as described in this article, helps evaluate the
criticality of the tested network and choose related plausibil-
ity mechanism.

1 Introduction and motivation

The need to understand and rely on the inference processes
of Convolution Neural Networks (CNNs) grows in impor-
tance since probabilistic models are being integrated in au-
tonomous vehicles (Tesla 2019),(Mobileye 2020), where the
SW development follows functional safety standards and on
which lives may depend.

The transparency, evaluation criteria and types of explana-
tions of the achieved results face low interpretability (Belle
and Papantonis 2020) due to the increasing complexity of
the models used.

Furthermore, as recently shown by various adversary at-
tack examples (Liu et al. 2016),(Brown et al. 2017),(Eykholt
et al. 2018), even a small perturbation in the input im-
age can cause a major change to the algorithm’s decision.
In addition, the current leading norms (ISO26262:2018,
ISO/PAS21448:2019) do not define validation process nor
metrics related to the probabilistic model (BMW 2019). Fi-
nally, to our knowledge. there isn’t any method similar to
the Software Criticality Analysis (SWCA) or MC/DC mod-
ule test in the CNN field (Salay and Czarnecki 2018) which
can analyze potential Single Point Of Failure (SPOF). All of

Copyright © 2021, for this paper by its authors. Use permitted un-

der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

this motivated us to define a methodology and understand-
able metrics according to which State-Of-The-Art (SOTA)
CNNss can be analyzed and the achieved results validated.

In this work we introduced a new metric called criticality,
which can be either assigned to neurons (in CNN’s terminol-
ogy, those are referred to as filters” weight”) or to layers.
We verified the importance and plausibility of the proposed
criticality as a possible safety metric by conducting two ex-
periments. We designed and implemented a method called
Neurons’ Criticality Analysis (NCA) and tested it on four
image classification models.

The results of our experiment are extensively discussed
at the end of this work, where we also summarized the pros
and cons of the presented metric and methodology and high-
lighted the use-cases we intend to investigate in the future.

2 Previous work

As mentioned in (Belle and Papantonis 2020), data-driven
techniques struggle to be robust against domain shift, data
corruption and input space perturbation. The robustness can
be influenced by three aspects: architecture, training dataset
and optimization algorithm. It is not among the goals of this
paper to give a comprehensive overview of all three top-
ics, but to highlight the most influential milestones which
inspired our experiment.

2.1 Classification via CNN

As a first step, we looked at the straightforward VGG16 ar-
chitecture (Simonyan and Zisserman 2014), where Batch-
Norm layer, 3 x 3 CONV with stride and padding equal to
I and 2 x 2 MAX POOL with stride 2 are several times
repeated. As a second step, we reviewed the ResNet (He
et al. 2016a) architecture, which differentiates from the pre-
vious models mainly by having residual blocks (He et al.
2015) and using 1x1 convolutional operation. We tested
ResNet50V2 (He et al. 2016b), which is the successor of the
original ResNet with enhanced residual connections for a
smoother information propagation. The aim of residual con-
nections is to create additional information flow and to learn
additive residual function. As explained in (Lin, Chen, and
Yan 2014) and further investigated in (Szegedy et al. 2014),
the concept known as "Network In Network” (NIN) allows
reducing the filter’s dimensionality and increasing the mod-
els’ non-linearity. With the combination of computationally



more expensive 3 X 3 and 5 X 5 convolution and parallel
branches the extraction of features from different scales can
be achieved simultaneously. This kind of blocks are often
called “’projection layer” (Li et al. 2018).

Since building a model in ResNet fashion comes at com-
putational cost, a family of mobileNets emerged. The stan-
dard convolution operation which was used up to this point
was, in case of MobileNet vl (Howard et al. 2017), replaced
by depthwise separable convolution. It was shown that stan-
dard convolution can be split into depthwise and pointwise
convolutions, which decreases the number of operations by
a square of the spatial dimension of the used filter kernel.
Further improvements were carried out by Sandle et al. in
MobileNet v2 (Sandler et al. 2018), where residual con-
nections between the cells and the expand/projection layers
were added.

A research done by Google discovered a new method of
scaling the CNN. The goal of this optimization search was
to find scaling coefficients (network width, depth and resolu-
tion) with respect to the accuracy and amount of operations.
EfficientNet (Tan and Le 2019) was designed to demonstrate
the effectiveness of this scaling method and achieved SOTA
accuracy on the ImageNet dataset in 2019.

The need to understand how the decision process is made
lead us to several papers (Simonyan, Vedaldi, and Zisserman
2013),(Zeiler and Fergus 2014),(Bach et al. 2015),(Shriku-
mar, Greenside, and Kundaje 2017),(Sundararajan, Taly, and
Yan 2017), where different visualization methods are de-
scribed. A comprehensive overview of the methods and their
goals can be found in (Rafegas et al. 2019), where Rafegas
et al. also presented a novel method of quantifying the neu-
rons’ selectivity to color and class.

2.2 Safety related issues

The aleatoric and epistemic uncertainty (Kendall and Gal
2017) of probabilistic models are currently under in-depth
study. The source of the aleatoric uncertainty is brought by
the randomness contained within the training-set, whereas
the epistemic uncertainty is caused by the lack of the
model’s knowledge. Bayesian machine learning (Neal 2012)
approach allows propagating the intermediate covariances
to the final layer and quantifying the hypothesis uncer-
tainty (Graves 2011), (Shridhar, Laumann, and Liwicki
2019). Such an approach requires time-consuming training,
and, for the moment, models do not achieve the expected ac-
curacy. An additional one-shot approach uses Monte Carlo
dropout during inference in order to sample a subset of net-
works, build statistics and calculate the thereof resulting un-
certainty (Gal and Ghahramani 2016). This improves the de-
mands on the inference time to reasonable limits and can
therefore be applicable in automotive.

Many papers additionally address the problem of data-
driven ML algorithms and how to incorporate safety
mechanism in order to monitor the prediction uncer-
tainty (Cheng 2020), (Lakshminarayanan, Pritzel, and Blun-
dell 2017), (DeVries and Taylor 2018). Several uncer-
tainty estimation methods were lately evaluated by Henne
et al. (Henne et al. 2020) with respect to functional safety.

Our approach is driven by ISO/PAS21448 SO-
TIF (ISO2019 2019), 1SO2626 (ISO 2011) norms, which
lack validation-unambiguity, and by the conclusion that
only 40% of the current automotive verification/validation
methods can be transferred to ML application (Salay and
Czarnecki 2018). We mostly considered the SOTIF norm,
which is an extension of the well-known ISO2626 norm
and provides a guidance (recommended activities) on
applicable design, verification and validation measures in
order for the product to be norm-compliant. The goal of the
recommended activities is to maximize the area of known
safe scenarios and minimize the unknown or unsafe areas
by applying technical measures.

2.3 Adversary attacks

The original idea of adversary attack is to introduce a small
perturbation to an input image so that the original class
doesn’t have the highest confidence and the adversary noise
stays unrecognized to the human perception system.

One of the first attacks used the Fast Sign Gradient De-
scent (FSGD) method (Goodfellow, Shlens, and Szegedy
2015), which calculates the gradient of a model’s loss func-
tion with respect to the input image and ground-truth label
and either adds or subtracts a small portion of it, depend-
ing whether the gradient was positive or negative. Addi-
tional papers proposed a general and large perturbation at-
tack algorithm of physical objects considering spatial con-
straints and physical limits on imperceptibility, (Brown et al.
2017), (Eykholt et al. 2018). Ian Goodfellow summarized
additional weaknesses of the classification task in (Goodfel-
low 2018).

The defense mechanism started to be deeply investigated
in the work of Lie et al. (Liu et al. 2016), which shows a
comprehensive experiment of different ResNets Architec-
tures trying to resist non-target adversarial images and states
that ResNet-152 has a 0% resistivity. The explanation to that
phenomenon is still in the open research area (Brown et al.
2017), but one of the latest works (Song et al. 2018) shows
promising results and mentions defending methods, showing
that the robustness against different attacks can improve.

3 Analysis methodology

In this section we defined the metric and methodology re-
lated to manipulating and analyzing the CNN’s decision pro-
cess. We took the inspiration for the Neurons’ Criticality
Analysis (NCA) method from the Software Criticality Anal-
ysis (SWCA). The SWCA is a method which divides mod-
ules of any action chain between critical (the SPOF of which
could have fatal consequences) and non-critical. In case of
an automotive SW component, the SWCA is carried out by
analyzing the signal flow from the actuator to the sensor,
while heuristically justifying the signal’s non-criticality. In
order to investigate if the decision of any CNN can be signif-
icantly influenced by the SPOF of the filter connections, the
idea of an approach similar to SWCA was explored. From
now on we will refer to filter connection as a neuron, since
the principle can be generally applied to FC, CONV and
Depth-wise CONV layer,



3.1 Criticality metric

Firstly, we denote the analyzed convolutional neural net-
work as N, which consists of a set of layers L and con-
tains weights W and biases b. Secondly, we introduce the
criticality metric according to Equation 1 and the evaluation
algorithm 1 which calculates the criticality for a given input
image z;, belonging to class ¢, drawn from a test set X

Ui — Ymi, if fm(zi) : (gz - 'gmz) >T
. if fm(xz> : gmi < gmj and gmj < 0.5

fcr = 1=Gm;’ . ~ ~ ~
2, if fro(23) * Ymi < Gy and §rj > 0.5
0, otherwise,

ey
where f, returns a criticality with domain [0, 2] for a given
CNN which is masked, f,,(z;) C N. The masking of a
CNN is carried out by setting neurons’ weights to zero. In
case of convolution, all the values of a filter are set to zero.
A different kind of error modeling would lead to extensive
permutation and was therefore not further investigated.

The term g,,; denotes the masked network’s prediction
confidence of ground-truth class i, whereas the predicted
confidence value §,,; belongs to another class j. In the first
case of f.., the difference between the non-masked pre-
dicted confidence ¢; and the masked one ¢,,,; is taken as met-
ric, by considering the parametrizable “criticality” 7 with
domain [0, 1].

In the second case of f,, the network missed the ground-
truth class and predicted a different one. Since this mis-
classification can have severe consequences, we define the
criticality measure as the proportion of 1 and difference be-
tween maximum likelihood and predicted confidence §,,;.
The denominator will always result in a number greater than
1, consequently ensuring the distinguishability of neurons
which have class-changing ability. Experiments in the early
phase showed that criticality can reach multi-digit number
and therefore we decided in the third case of f.,. to clip its
maximum to 2, so that the results remain tractable. For all
other cases we set the criticality to 0. This covers the cases
where the network predicted the right class with negligible
deterioration of the confidence (< 7).

It can occur that by masking a neuron the decision likeli-
hood of the correct class will increase, which will result in
a negative criticality. In this case, we refer to this neuron as
anti-critical to the related class ¢ and calculate its criticality
according to Equation 2. However, it should be noted that
the anti-criticality will be computed only in case 7 = 0 and
it doesn’t exclude the criticality of the neuron for a different
class j.

fanti,cr = g’t - ymzvlf fm(xz) : (gz - gmz) <0 (2

3.2 Analysis algorithm

We define the task of NCA as the analysis of the neurons’
contribution to the classification hypothesis which can be
seen as equivalent to the Single Point Of Failure analysis.
If all neurons are active, the resulting hypothesis is strong
hstr, Whereas in case a certain amount of neurons have been

excluded from the decision, the hypothesis is considered
weakened heqk- The neuron’s criticality observation of the
weakened hypothesis has to be done for every image and
class within a test set. The algorithm is described in Algo-
rithm 1.

Algorithm 1: NCA algorithm

Input: Criticality threshold 7

Output: Neural criticality statistics for &)

Data: Let X be a testing set, ¢ a tested class, IV the
analyzed CNN, k the number of filters in a
layer L and f,, is the criticality function

for image x; € X do

9; = calculate_conf (N, x;)

cls; = predict(N, ;)

for every L in N do

for every k in layer L do
mask_neuron(k)
Umi = calculate_con f(N, x;)
clsmi = predict(N, z;)
criticality = fer(Giy Gmi, clSi, clSmi)

4 Experiments

The motivation behind testing different network architec-
tures was to see the influence of models’ chronologi-
cal improvements on the decision stability, such as resid-
ual connections, depthwise convolution and scaling. We
therefore evaluated VGG16, Resnet50V2, MobileNetV2
and EfficientNetBO, all pre-trained Keras models on Ima-
geNet (Deng et al. 2009). We chose two classes, “street sign”
and “mountain bike”, in order to evaluate the criticality. For
each class, 150 samples were taken. All samples had ground-
truth confidence higher than 0.8 so that we ensured that ker-
nels’ responses would be highly excitated. Adversary sam-
ples were generated by non-target FSGD method until either
achieving a confidence greater than 0.5 or ending after 20 it-
erations. For all tests we set the criticality threshold 7 to 0.0,
which allows, as described in Section 3.1, the algorithm to
measure and visualize the criticality of all neurons and dis-
tinguish between critical and anti-critical ones. In practice,
the threshold should be justifiable via hazard and risk assess-
ment and will be presumably higher than 0.0.

4.1 Neural criticality

As a first step, we gathered statistics of every neuron as de-
scribed in Algorithm 1 with 7 = 0.0. As a second step,
we normalized the list of hypotheses over the number of
layers’ neurons and highlighted in red the layers for which
masking at least one neuron caused a drop of confidence by
0.5 and more or lead to misclassification of the predicted
class. It is noticeable that in Figures 3 and 4, especially the
first projection layers have very high criticality. This con-
firms the sparsity theory of projection layers (Szegedy et al.
2014, 2016), which states that projection layers are helpful



in terms of higher space feature extraction, whereas our ex-

periment shows that they cause an increase of criticality.
VGGI16 (Figure 1) and ResNet50v2 (Figure 2) have on

the other hand an average criticality spread over all layers.
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Figure 1: Results of NCA on VGG16 showed that straight
architecture, without any projection and residual layers, has
the lowest criticality.
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Figure 2: The neural criticality of ResNet50v2 peaked in the
early projection layers, but remained overall very small.

Figure 3: Test on MobileNetv2 architecture showed a higher
instability caused by projection layers. The criticality of sev-
eral neurons exceeds 1.0, which means that masking just one
neuron can cause misclassification.

The experiments’ results shown in this work are only re-
lated to the “mountain bike” class. The results for the fairly
simple “traffic sign” class backed up the intuition about
simple features being predominantly filtered in early lay-
ers, since their criticality raised significantly. We advise the
reader to visit our GitHub, where additional figures and
stored statistics for both classes can be found.

of normalized cri
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Figure 4: This figure shows that EfficientNetBO contains
many neurons which criticality is exceeds 1.0. Because the
EfficientNetBO0 architecture contains, in its early stage, many
projection layers with only few neurons, we removed the
overlapping x-axis labels.

4.2 Network stability

To further evaluate the beneficial effects of neural critical-
ity, we conducted a stability experiment with n most critical
neurons (derived from NCA results) on original and adver-
sary datasets. We gradually masked the n most critical neu-
rons and calculated the mean and standard deviation of the
model’s accuracy on the aforementioned test set. The intu-
ition behind this test was that the mean accuracy increases
with respect to the criticality of lower neurons, and hence
proves our analysis’ reliability. In our text we refer to this
approach as Network Stability Analysis.

As can be seen in Figure 5, gradually masking the 20 most
critical neurons has a major influence on the accuracy only
in case of MobileNetv2 and EfficientNetBO. VGG16 and
ResNet50V2, on the other hand, show a high accuracy sta-
bility. Figure 6 shows the raising tendency of MobileNets’
accuracy with respect to lower neurons criticality, reaching
a mean accuracy of 0.8 approximately at the 50th most crit-
ical neuron.

Results of the accuracy on adversary dataset didn’t con-
firm the hypothesis that critical neurons are the only neurons
allowing malicious adversary attacks. As can be seen in Fig-
ure 9, masking the critical neuron generally doesn’t improve
the accuracy. On the other hand, several neurons lifted the
ground-truth class accuracy. The awareness of such neurons
could lead to on-the-fly diagnoses, where masking a com-
bination of specific neurons (e.g. only for ' frame, which
would be excluded from the classification or detection task)
would uncover irregularities in inference process, e.g. adver-
sary attack. It has to be mentioned that only critical neurons
from projection layers (MobileNetV2 and EfficientNetBO)
have such an ability, but they have to be chosen with respect
to the mean and standard deviation of the calculated accu-
racy. Other models sensitivity to adversary noise are plotted
in Figure 8.

5 Conclusion

At the beginning of this work in Chapter 2 we pointed out
the current functional safety issues and open research area
related to convolutional neural networks. In Section 1 we
described our motivation related to autonomous driving and
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Figure 6: Accuracy stability on normal dataset (for class "mountain bike”), showing a gradual increase of accuracy with respect

to decreasing neurons’ criticality in case of MobileNetv2 model.
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Figure 7: Compared to MobileNetv2 or EfficientNetBO, the ResNet50V2 architecture has a higher accuracy stability, which
was explained by missing projection layers in Chapter 4.1. Deeper investigation showed that for the “moutain bike” class, all
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Figure 8: Results of accuracy stability related to the 20 most critical neurons for all models, evaluated on adversary dataset. It
is obvious that different results of generating adversary attacks was achieved since initial models accuracy differs. The VGG16
model shows minimal accuracy fluctuation, whereas more modern models contains neurons with higher sensitivity to adversary

noise.
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Figure 9: MobileNetV2’s accuracy stability of the 100 most critical neurons, taken from the analysis of a normal dataset and
evaluated on an adversary dataset. Neurons with increased accuracy could be further used for diagnosis purposes, but have to be
chosen with respect to both mean and standard deviation of the resulting accuracy. In such a diagnostic case, masking multiple
neurons could be desirable and would lead to higher diagnoses accuracy.

missing validation process. Further, as outlined in Section 3,
we introduced a new metric and auxiliary analysis method
which we implemented and verified on four classification
CNNs in Chapter 4.

We dedicated a great part of our work to introducing and
testing an innovative method, the Neurons’ Criticality Anal-
ysis. The outcome of this analysis was a comprehensive
report diagram depicting the criticality of each layer and
each neuron of evaluated model. The domain of criticality
is [—1, 2]. We discussed that masking neurons with negative
criticality can also have a positive influence on the model’s
decision confidence. We called this behavior “anti-critical”.
The inter-class anti-critical neurons could hypothetically be
removed from the decision process. This idea led us to the
conclusion that the correlation between the neurons removed
during the pruning process and the anti-critical neurons dis-
covered via NCA should be further investigated.

We claimed that using spatial aggregation via projection
layers may on the one hand improve the high dimensional
feature representation(Szegedy et al. 2016), but on the other
hand creates very critical dense connections, especially in
the shallow layers, as we pointed out in Section 4.1. From
functional safety point of view this isn’t necessarily nega-
tive, since the plausibility function could be applied to only a
concentrated area of neurons. In addition, some critical neu-
rons showed the ability to increase mean accuracy on adver-
sary dataset, which could be used in order to discover adver-
sary attacks and irregularities during inference. We hypoth-
esize that an equilibrium between the position of the first
projection layer, number of critical neurons and models’ ac-
curacy should be further investigated.

As aforementioned, the purpose of NCA is to identify all

critical neurons. With further measures, the mean and stan-
dard deviation of the criticality should be decreased and the
flawless calculation of the neuron should be ensured. Con-
cretely this can be achieved by several approaches, such as:

* fine-tuning of the model with deterministic dropout and
loss which will incorporate the layers criticality

* plausibility check of the critical neurons or layers or re-
dundant computational branch results

* storage of the neurons’ weights and biases in two places
in RAM and comparing them

* introduction of deconvolutional layers in order to compute
and evaluate the original inputs over critical connections

Our method can also be used for Out-of-Distribution de-
tection, where instead of randomly sampling sub-networks
predictions, as it is done by MC dropout, deterministic
dropout would be based on several highly critical neurons
for every class. Such an approach would decrease the com-
putational demand and arguably increase the reliability and
transparency of such a network. In order to encourage ad-
ditional experiments and deeper explorations, we published
our code and supplement results on GitLab '
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