
An Assurance Case Approach for Software Code
Security

Ryota Miyabayashi
Nagoya University

 Nagoya, Japan
miyabayashi.ryouta@g.mbox.nagoya-

u.ac.jp

Shuichiro Yamamoto
Nagoya University

Nagoya, Japan
yamamotosui@icts.nagoya-u.ac.jp

Noritoshi Atsumi
Kyoto University

Kyoto, Japan
atsumi.noritoshi.5u@kyoto-u.ac.jp

Shuji Morisaki
Nagoya University

Nagoya, Japan
morisaki@is.nagoya-u.ac.jp

Abstract— The vulnerability of the security of the software
codes has often caused by invalid input. Therefore, software
security greatly depends on the safety of module inputs. In
this paper, we propose a method to ensure the code security by
building Assurance cases based on the relationship between
input specifications and code portions of each module. In
addition, a case study is accomplished to apply the proposed
method for the published vulnerability of an OSS. The result
shows that the method can detect the vulnerability of the OSS
by the absence of necessary evidence in the developed
assurance case based on the input specifications and portions
of the OSS code.

Keywords—Assurance case, code review, input vulnerability,
security

I. INTRODUCTION

Reusing software code has the opportunity to develop
software effectively and improve the quality of software
developed. The reusing code shall be ensured to satisfy
security and safety conditions, otherwise reusing code will
cause threats for the target software. In case of existing codes,
it is necessary to develop assurance cases for ensuring code
security of the target code of reuse. If there were models for
the target code of reuse, assurance cases could be developed
based on models corresponding to the code by using model
based assurance case development methods. If there was no
models for the target code of reuse, it is necessary to develop
assurance case directly in the code. Unfortunately, the
assurance case development method based on code has not
been established so far. In this paper, an approach to develop
assurance case for existing code is proposed. Then an
experiment is executed to develop the assurance case for the
Open SSL code based on the corresponding specification.
The result shows the effectiveness of the proposed method.
The rest of the paper is as follows. Section II describes the
background of assurance case development to ensure
security of codes. Section III proposes an approach to
develop assurance cases for code security. An experimental
evaluation of the approach is described in section IV. Section
V discusses the effectiveness of the approach. Section VI
shows related work. Section VII concludes this paper.

II. BACKGROUND

The objective of the approach is to clarify the method to
develop assurance cases for codes that have no related model.
There was a problem that the corresponding models often
had been disappeared from the case of existing codes.
Therefore, the assurance case development method based on

models are not be able to apply for the existing codes. For
example, open source software (OSS) specifications and
codes have been published, but
it is unusual for OSS models exist. We assume that there is a
specification for the code as the target of assurance. In case
of developing assurance case, we focus on the input and
output of the specification. For example, SSL/TLS Protocol
V 1.0 is the specification for the OpenSSL 1.0 code.
Unfortunately, the OpenSSL 1.0 code had the vulnerability
on the FREAK attack. FREAK attack stands for "Factoring
RSA Export Keys (FREAK)." FREAK is the attack to
exploit the weak RSA encryption key used in the 1990s. The
cause of this vulnerability came from the omission of code
portions for inputs of functions to manipulate the RSA
encryption key.

The code shall have portions for the input and output
specified in the specification. Otherwise, the code has the
possibility of omissions from the point of input and output.
This notion can be called as Defect Detection by Evidence
(DDBE). The evidence is the appropriate code portions
related to the specific part of the specification.

Assurance case is widely used to ensure that system has
the expected property, such as safety, security and
dependability. Assurance case is defined by using claim,
strategy, context, and evidence. The Claim is decomposed by
strategy into sub claims. Context explains assumptions of
claims and reasons of the claim decomposition. Evidence is
used to show why claims hold. GSN, Goal Structuring
Notation, is a method to describe assurance cases [3, 4].
Assurance case development methods based on models have
been proposed [5, 6, 13, 14, 15]. Assurance case for security
also have been proposed [7, 8]. However, these assurance
development methods assumed models to exist. Code based
assurance case development approach has not been proposed
so far. This paper proposes an approach to develop assurance
cases without assuring models to exist for the code.

III. APPRACH TO DEVELOP ASSURANCE CASE FOR CODE

The evidence based assurance case development
approach is described below.

[Input] specification and code

[Output] assurance case with evidence

[Method] Develop assurance case with evidence based on
specification and code by the following steps.

(STEP1) Define target claims on input and output
parameters by the specification. Create a top goal as the

5Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

claim, “the code is valid for the specification.” And create
the context node which name is “code and specification.”
Then create the connection from the top claim to the context
node.

(STEP2) Develop assurance case by structuring sub
claims based on the top claim as follows.

(STEP2-1) Decompose the top claim into two sub claims
by using strategy node which has the name “Explain by
parameters.” The names of sub claims are “Parameters are
valid” and “parameter relationships are valid.” And create
the context node which has the name “Parameters and their
relationships.” Then create the connection from the strategy
to the context node. The context node shows the reason of
the decomposition.

(STEP2-2) Decompose the node “Parameters are valid”
into two sub claims by using the strategy node “Explain by
parameter types.” The names of the sub claims are “Input
parameters are valid,” and “Output parameters are valid.”
Two context nodes “Input Parameter constraint” and “Output
Parameter constraint” are created and connected to the
claims above, respectively.

(STEP2-3) Decompose the node “Parameter relationships
are valid” into three sub claims by using the strategy node
“Explain by parameter relationship types.” The names of the

sub claims are “Input parameter relationships are valid,”
“Input output parameter relationships are valid,” and “Output
parameter relationships are valid.” Two context nodes “Input
Parameter relationship constraint,” “Input output Parameter
relationship constraint,” and “Output Parameter relationship
constraint” are created and connected to the claims above,
respectively.

(STEP3) The bottom level claims developed in STEP 2-2
and 2-3 are called TBE (To Be Explained) claims. Explore
code portions related to TBE claims.

(STEP4) Create evidence nodes related to the detected
code potions. Then create decompositions from the TBE
claims to the evidence nodes, respectively.

(STEP5) If code portions as evidence are not discovered
in the target code, the corresponding target TBE claims have
no evidence. In this case, these TBE claims show the defect
of the code. This means the code is invalid for the
specification according to TBE claims that have no evidence.

(End of method)

The method described above shows an approach to find
defects of the code according to the specification. Fig. 1
shows the created assurance case template based on the
method.

Code
portions for
each output
parameter

relationship
check

The Code is valid for
the specification

Explain by parameter
relationship types

Input
parameter

relationships
handling are

valid

Output
parameter

relationships
handling are

valid

Code portions
for each input

parameter
relationship

check

Explain by
parameter types

Input
parameters
handling
are valid

Code
portions for
each input
parameter

check

Parameters are valid
Parameter relationships

are valid

Explain by parameters

Output
Parameter
relationship
constraint

Code, Specification

Output
parameters
handling
are valid

Code
portions for
each output
parameter

check

Code portions
for each input

output
parameter

relationship
check

Input output
parameter

relationships
handling are

valid

Parameters and
their relationships

Input
Parameter
constraint

Output
Parameter
constraint

Input
Parameter
relationship
constraint

Input output
Parameter
relationship
handling
constraint

Legend

Claim

Strategy

Context

Evidence

Fig. 1. Assurance case template created by the method

IV. EXPERIMENT

An experiment was planned to evaluate the effectiveness
of the approach to develop assurance cases based on codes
proposed above. The overview of the experiment target code

6Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

and specification are as follows. The specification is the
SSL/TLS Protocol V 1.0 written in 3584 lines in English.
The code is OpenSSL 1.0.1j s3_clnt.c [1] written in 3469
lines in C language. The subject of the experiment is one
undergraduate student of Nagoya University. The subject
first extracted 5 input parameters shown in Table.1. The time
to analyze input parameters from the specification was 12
hours.

TABLE I. INPUT PARAMETERS

Input parameters Constraints

Session Id is equivalent to the Id from client

Compression Id is a compression Id sent from client

Encryption suit is an encryption Id sent from client

Certificate
information

has no error

Key is appropriate to the encryption suit

Then the subject described the assurance case without
evidence based on the SSL/TLS Protocol V 1.0. There were
11 TBE claims. The time to develop the assurance case was
5 hours.

After the extraction of TBE claims, the subject then tried
to discover code portions from OpenSSL 1.0.1j s3_clnt.c as
evidence for 11 TBE. There were portions of code for 10
TBE claims. There was no portion of code for one TBE
claim.

The portion of the assurance case for the unexplained
TBE is shown in Fig.2.

Fig. 2. Portion of assurance case for the missin TBE

The portion tried to explain the claim “Encryption suite
code is valid for the encryption key parameter.” The claim is
decomposed to the sub claim “inappropriate Key input
parameter handling is valid” by the strategy “Explain by Key
input parameter.” The strategy clarifies the input parameter
constraint as shown in the context connected to the strategy.
The input parameter constraint are as follows.

Inappropriate key input is inhibited, where key input is
inappropriate if the following conditions hold.

Session Id is empty.

Session Id is different from client sent value

In this case, the expected code portion is to check the
Key input parameter conditions as described in the input

parameter constraint and handle the exception if the Key
input parameter fails to satisfy the condition. Therefore, the
evidence for the TBE is the code portion corresponds to
inhibit inappropriate Key input parameter. However, the
code portion for the TBE was not able to discover in the
OpenSSL code. Moreover, the missing TBE was
corresponded to the vulnerability of OpenSSL known as
FREAK (Factoring RSA Export Keys) [2]. The time to find
code portions for 11 TBE was 10 hours.

A. Overview of FREAK

The overview of FREAK is as follows [2].

(1) The client side sends the encryption list to the server
side. The encryption list does not include the export
grade RSA encryption.

(2) The attacker falsifies the encryption list that includes
the export grade RSA encryption only.

(3) The server side selects an encryption method from the
sent encryption list. The selected encryption is export
grade encryption, because the falsification of the
encryption list by the attacker.

(4) In case that the export grade encryption is selected, the
server sends a 512 bit RSA key as a temporal key to the
client. As the key is often reused, an attacker is able to
know the key beforehand. Moreover, the secret key is
also able to get easily, because the key size is 512 bits.

(5) The attacker rewrites the encryption suit to the
encryption in the original encryption list. The server
sends the rewritten encryption suit to the client. If the
encryption suit was not rewritten, the error is detected
by the check of encryption suit.

(6) As the client receives the key, the client encrypts the
premaster secret by using the key and sends it to the
server. The premaster secret is the basic data of
common key for the subsequent secure communication.
The premaster secret information should not be known
to another one.

(7) The attacker decrypts the premaster secret by using a
secret key that corresponds to known RSA temporal
key. The attacker can know the common key to encrypt
the subsequent secure communication.

(8) The attacker falsifies and reads the contents of the
secure communication by using the common key.

The cause of FREAK is as follows.

Although the client does not request the export grade
RSA encryption, the client uses the received key for
encryption. In case of general request for encryption, the
export grade RSA encryption is not included in the
encryption list. Therefore, the server side does not send a
key to the client, but sends a certification to the client.

The defect found by the proposed approach is the non-
existence of the key check code portion. The revision of the
defect countermeasures the vulnerability of FREAK. In fact,
the remedy of the OpenSSL is the addition of check code if
the encryption suit corresponds to the export grade in case of

Encryption suite code is valid for
the encryption key parameter.

Explain by Key input
parameter

Input parameter constraint:
Inappropriate key input is inhibited, where
key input is inappropriate if the following
conditions hold.
Session Id is empty.
Session Id is different from the value of
clientinappropriate Key input parameter

handling is valid

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

7

the key is 512 bits RSA encryption. This showed the
proposed approach can detect defects correspond to security
vulnerability of codes.

V. DISUCUSSION

A. Effectiveness

As described in section IV, the proposed method has
been applied to the client key exchange code. The TBE
shows that key check is necessary. However, there was no
code portion for the TBE. Therefore, we can conclude that
there was an omission of key check in the target code. This
shows that the proposed method is effective to discover
defects of the code by using specifications.

B. Work effort

The working hour for the experiment was 27 hours in
total as shown in Table1. The ratios of three kinds of works
are 44.4%, 18.5%, and 37.1%, respectively.

TABLE II. HOURS OF TASKS

Task Constraints Hours

1 Input analysis from specification 12

2
Assurance case development and TBE
claims identification

5

3 Discovery of code portions for TBE claims 10

The most time consuming work is the input analysis on
the specification. The complexity of specification
description style causes the problem. If the specification
described in a concise fashion to understand input
parameters easily, the work hours on input analysis will be
reduced.

The work hours of the code portion discovery took
37.1% of the total effort. The difficulty of reading code by
human subject causes the problem. If the code is clearly
structured for understanding TBE claims, the work hours
on the discovery will also be reduced.

The work hours to develop the assurance case and TBE
claims was only 18.5% of the total effort. This shows that
the proposed approach provides a common generic template
for describing assurance case for ensuring security. The
proposed approach provides a straightforward way to
describe assurance cases for explaining TBE claims based
on input parameters.

C. Efficiency

There are three activities for the proposed method.

A1) develop input parameters based on the specification

A2) develop assurance case based on input parameters
and extract TBE claims

A3) discover code portions as evidence for each TBE
claim

The work amount of A2 is not large, because assurance
case can easily be developed by input parameters. The work

amount of A1 was heavy for the case of OpenSSL
specification, because the input information was embedded
in the specification sentences and the explanations were very
complex. If the specification structure was plain to extract
input information, the work lord of A1 would extensively be
improved. The work amount of A3 depends on the effort to
understand the code. Code understanding is always a tough
activity. In other words, if the code has a clear traceability
relationship with TBE claims, the discovery of code portions
of TBE claims will become an easy task by using the
traceability relationship. This consideration implies an idea
to develop codes based on TBE claims of assurance cases
related to specifications. This idea will also make coding
effort efficient.

D. Applicability

The assumption of the proposed method is that program
code has inputs and the input controls the behavior of the
code. However, practical programs have inputs. The method
can be applied to security vulnerability analysis at the level
of code. Omissions and errors on input cause many security
problems. This shows the applicability of the proposed
method. Moreover, the proposed method is not specific to
security but is also able to apply to assure code
implementations based on inputs and outputs.

E. Sufficiency of the template

If there is a code omission for manipulating parameters,
the corresponding evidence of the template shall not been
developed. This lack of the evidence for filling the template
shows that the security claim for the code is not be supported
for the code.

Suppose that the assurance case template developed from
the code is complete with no lack of evidence. As there is no
omission of code portions for checking input and output
parameters, the code has no vulnerability caused by the lack
of checking parameters.

F. Limitation

As the number of experiments was only one case, more
experiments are necessary to show the effectiveness of the
proposed method. The extraction of TBE claims from
specifications depends on analysts. Therefore, reviews of
extracted TBE claims are necessary to validate. Moreover, if
the specification is incorrect, the extracted TBE claims are
also incorrect. The review of the specification is also
necessary before application of the proposed method. Finally,
the discovery of code portions for TBE claims also depends
on analysts. Analysts may fail to find the correct portions of
code for TBE claims. Therefore, review of the matching
between TBE claims and code portions is also necessary.

VI. RELATED WORK

There were researches to detect software vulnerability.
Svace [9] is a tool to analyze codes statically based on
dataflow. A case study [10] showed that approximately 20 %
effort was able to reduce by static analysis tools. Although
static analysis tools are effective, the false positive ratio of
the static analysis tools is very high [11]. The more the static
analysis tool detects vulnerability portions, the more work
effort is necessary to ensure the correct portions related to
the vulnerability. This shows the incompleteness and the
inefficiency of the static analysis tools.

8Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

Chucky [12] is a method to help the analyst analyze
codes statically by hands. The strong point of Chucky is the
ability to decide defects by human static analysis. While
their method is able to expose missing security checks
effectively, it cannot assure that these missing checks lead to
vulnerabilities.

The proposed method uses both specifications and codes
to guide vulnerability analysis. The proposed code analysis
uses input information and TBE claims of assurance case.
The limited number of TBE claims makes the human
analysis of codes efficient. Moreover, it greatly improves the
false positive ratio, because TBE claims are correctly able to
show the necessary code portions to prevent security
vulnerability.

VII. CONCLUSION

In this paper, a defect detection method on codes by
using assurance case was proposed. The method extracts
TBE claims based on the specification for the code. Code
portions are then discovered as evidence of the TBE claims.
An experiment to evaluate the effectiveness of the approach
has been described by applying the proposed approach for
the Open SSL code. 11 TBE claims were extracted in the
experiment. Although 10 TBE claims had been related to
code portions, there was no code portion for one TBE claim
that are corresponding to the code defect of security
vulnerability known as FREAK. The result shows the
proposed approach can discover code defects on security
threats.

Future work includes more case studies for clarifying the
effectiveness of the approach. Moreover, tool support is
necessary to find code portions for TBE claims by analyzing
data flow on parameters.

ACKNOWLEDGMENT

This work has been conducted as a part of "Research
Initiative on Advanced Software Engineering in 2015"
supported by Software Reliability Enhancement Center
(SEC), Information Technology Promotion Agency Japan
(IPA).

REFERENCES

[1] Openssl, https://www.openssl.org/, 2015.

[2] Freak: Factoring rsa export keys, https://www.smacktls.com/#, 2015.

[3] T. Kelly, “Arguing Safety, a Systematic Approach to Managing
Safety Cases,” PhD Thesis, Department of Computer Science,
University of York, 1998.

[4] T. Kelly, and R. Weaver, “The Goal Structuring Notation – A Safety
Argument Notation,” Proceedings of the Dependable Systems and
Networks 2004 Workshop on Assurance Cases, 2004.

[5] S. Yamamoto, and Y. Matsuno, “An evaluation of argument patterns
to reduce pitfalls of applying Assurance Case,” Assure2013.

[6] S. Yamamoto, “An approach to assure Dependability through
ArchiMate,” SAFECOMP 2015 Workshops, LNCS 9338, PP.50-61,
Assure 2015, DOI: 10.1007/978-3-319-24249-1_5

[7] Shuichiro Yamamoto and Nobuhide Kobayashi, Mobile Security
Assurance through ArchiMate, Vol. 4, No. 3 of IT Convergence
Practice, pp.1-8, (INPRA), 2017,
http://inpra.yolasite.com/vol4no3.php

[8] Yamamoto, S., Kaneko, T., and Tanaka, H., A Proposal on Security
Case Based on Common Criteria, ICT-EurAsia 2013, pp.331-336

[9] V.P. Ivannikov, A.A. Belevantsev, A.E. Borodin, V.N. Ignatiev, D.M.
Zhurikhin, and A.I. Avetisyan, Static analyzer svace for finding
defects in a source program code, Programming and Computing
Software., vol.40, no.5, pp.265–275, Sept. 2014.

[10] M. Nadeem, B.J. Williams, and E.B. Allen, High false positive
detection of security vulnerabilities: A case study, Proceedings of the
50th Annual Southeast Regional Conference, pp.359–360

[11] D. Baca, B. Carlsson, and L. Lundberg, 2008. Evaluating the cost
reduction of static code analysis for software security, Proceedings of
the Third ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, pp.79–88

[12] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, Chucky:
Exposing missing checks in source code for vulnerability
discovery,” Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, pp.499–510, CCS ’13,
2013

[13] G. Despotou, T. Kelly, Design and Development of Dependability
Case Architecture during System Development, proceedings of the
25th International System Safety Conference (ISSC), System Safety
Society, 2007

[14] R. Bloomfield and P. Bishop, Safety and assurance cases: Past,
present and possible future – an Adelard perspective, procedings of
the 18th Safety-Critical Systems Symposium, pp. 51-67, 2010.

[15] E. Denney and G. Pai, I. Habli, Perspectives on Software Safety Case
Development for Unmanned Aircraft, proc. 42nd Annual IEEE/IFIP
Intl. Conf. Dependable Systems and Networks(DSN2012), pp.1-8,
2012.

9Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

