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Abstract. The paper describes an experiment of answer set planning in biochem-
ical pathway planning. The focus is on large planning problem instances. It is
shown that well-known planning techniques, such as planning graph analysis,
landmarks recognition, and planning using landmarks are useful in answer set
planning and can be easily incorporated in an answer set planning system.

1 Introduction

Over the past decade, answer set planning [6, 17, 26] has become a viable planning
approach. It has been successfully applied in conformant planning [7, 25], conditional
planning with sensing actions and incomplete information [28], planning with domain-
specific knowledge [22], or dealing with user’s preferences[23]. It has also been ap-
plied successfully in several real-world problems [1, 2]. Answer set planning builds on
the idea of using answer set programming [20, 19] to support the process of reason-
ing about actions. The success of answer set planning rests on two factors. The first
one is the availability of efficient answer set solvers, suchassmodels [21], dlv [8],
cmodels [16], andASSAT [18]. The second factor is the combination of the simplic-
ity and expressiveness of logic programming, which allows asimple representation and
reasoning about action and change.

Despite its success and its elegance, and despite the development of excellent in-
ference engines for answer set programming, answer set planning is not capable of
handling large problem instances. In our experiments, answer set planners perform well
in problem instances that admit short solutions, while it encounters difficulties in in-
stances with long solutions—e.g., typically, when the length of the minimal solution is
more than 20, the computation time grows beyond acceptable levels. One of the main
reasons behind this problem is that answer set planning researchers did not concen-
trate on the development of special purpose planners. Rather, the focus has been on
the development of methodologies for using answer set programming in planning. It
is expected that large problem instances will be solvable bymore efficient answer set
solvers. While this is certainly true, it raises the question of whether the currently avail-
able technologies have more to offer.

Another reason leading to the fact that answer set planning cannot cope with large
planning instances lies in the way solutions are computed inanswer set programming.
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Most inference engines rely on a two-phase computation. During the first phase, the
program is grounded, and possibly simplified. Thelparse is a typical program used
for this phase. The actual solution (expressed by a collection of answer sets) will be
computed by one of the answer set solvers in the second phase.This computing style
does not allow for a direct application of well-known planning techniques to answer set
planning (e.g., the use of the planning graph to simplify thedomain, the use of heuristic
in deciding which actions should be chosen, etc.) as many of these techniques require
the ability to affect the way the computation search develops—inference engines for
answer set programming typically do not expose the search process to the programmer.
Furthermore, answer set planning puts a huge burden on the grounder,lparse, as
the size of the grounded program for large problem instancesis often too large to be
produced or too large to be acquired by the answer set solver.

The limitation of the grounder has an important consequenceon the representation
of planning domains and instances, which sometimes requires a careful analysis of the
domain and instances. For instance, if we wish to define an action p(X,Y ) whereX
andY are variables with domainDx andDy respectively, a typical representation would
lead to a clause of the form

action(p(X,Y )) :− dx(X), dy(Y ).

Depending on the instance (Dx andDy), lparse will simplify this clause and gener-
ate the correct set of actions—described by ground facts of the formaction(p(x, y)).
From the knowledge representation perspective, this is certainly a good practice, since
it allows a simple specification of the problem instances (only facts need to be speci-
fied). This representation can, however, quickly increase the number of rules that the
grounder has to deal with, as

(a) the number of parameters increases; and/or
(b) the size of the domain of the parameters increases.

As we will see later, this representation does increase the size of the grounding programs
significantly.

In this work, we investigate the use of well-known planning techniques in the con-
text of answer set planning. The planning techniques discussed in this paper involve a
simplification of a planning problem based onreachability analysis[13] andlandmark
recognition, and the use of landmarks in planning [14].

We choose theBiochemical Pathwaydomain, one of the planning domains used in
the recent International Planning Competition [12] as an example for our case study.
The main reason behind this selection is the conceptual simplicity of the domain, and
the need to deal with large instances. The following is an excerpt from the domain
description available at [12]:

This domain is inspired by the field of molecular biology, andspecifically bio-
chemical pathways. “A pathway is a sequence of chemical reactions in a bi-
ological organism. Such pathways specify mechanisms that explain how cells
carry out their major functions by means of molecules and reactions that pro-
duce regular changes. Many diseases can be explained by defects in pathways,
and new treatments often involve finding drugs that correct those defects” [27].
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We can model parts of the functioning of a pathway as a planning problem by
simply representing chemical reactions as actions. The biochemical pathway
domain of the competition is based on the pathway of the Mammalian Cell
Cycle Control as it described in [15] and modeled in [3].

There are different kinds of basic actions corresponding tothe different kinds of reac-
tions that appear in the pathway. For example, one of the actions, calledassociate, is
encoded in PDDL as follows1.

(:action associate
:parameters (?x1 ?x2 - molecule ?x3 - complex)
:precondition (and (association-reaction ?x1 ?x2 ?x3)

(available ?x1) (available ?x2))
:effect (and (not (available ?x1))

(not (available ?x2)) (available ?x3)))

Fig. 1.Action associate

In the above specification,?x1, ?x2, and?x3 denote variables; the condition
(available ?x) states that?x is available;(association-reaction ?x1
?x2 ?x3) says that there is an association reaction between?x1 and?x2 to create
?x3. This action creates the complex molecule?x3, by associating the two molecules
?x1 and?x2. This action is executable only if the two molecules?x1 and?x2 are
available and it is known that the two molecules?x1 and?x2 can combine in a reaction
to produce?x3.

A planning instance, in this domain, is given by a set of available molecules and the
information encoding the knowledge about the possibility of creating new molecules by
association, syntheses, and other types of interactions.

This paper discusses different ways to introduce current planning techniques, taken
from advanced planning systems, in answer ser planning. Thepaper also presents some
preliminary experimental results; these provide encouraging indication that answer set
planning can be used to tackle large planning instances. We start the presentation with
the basics of answer set planning, and a brief description ofthe ASP− PROLOG

system. We then discuss the problems faced by answer set planners in the biochemical
pathway domains, discuss a preliminary implementation of the planning graph analysis
and landmark recognition techniques, and their use in answer set planning.

2 Preliminaries

2.1 Answer Set Planning

We will use a variation of the high-level action descriptionlanguageA of [11] to repre-
sent action theories. We assume the presence of two finite, disjoint sets of names called
actionsandfluents. A fluent literal is either a fluentf or its negation¬f . We will also
say thatf and¬f are complement of each other. For a fluent literall, ¬l denotes its

1 A complete description of the domain is included in [24].
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complement. A fluent formula is a propositional formula constructed from fluent liter-
als. For a set of fluent literalsγ, ¬γ = {¬l | l ∈ γ}. For a set of fluent literalγ, l holds
in γ if l ∈ γ. In such a language, an action domainD is a set of propositions of the
following form:

a causesf if ψ (1)

a executableψ (2)

wheref andψ’s are fluent literal and fluent formula, respectively, anda is an action. The
axiom (1) represents aconditional effectof a, while axiom (2) states an executability
condition ofa.

A set of fluent literals is consistent if it does not contain two complementary fluent
literals. A state (ofD) is a maximal and consistent set of fluent literals. An actiona is
executable in a states if there exists an executability condition (2) such thatψ ⊆ s. The
effects of an actiona in a states is denoted bye(a, s) and is given by

e(a, s) = {f | a causesf if ψ ∈ D,ψ ⊆ s}.

Given a states and an actiona executable ins, the state resulting from the execution of
a in s, denoted byRes(a, s), is defined by

Res(a, s) = s ∪ e(a, s) \ ¬e(a, s).

Let α = [a1; . . . ; an] be a sequence of actions; we will denote withα[i] the sequence
of actionsα[i] = [a1; . . . ; ai], where, by convention,α[0] denotes the empty sequence.
TheRes function can be easily extended to describe the effects of a sequence of actions.
Given a domain descriptionD, a states and a sequenceα = [a1; . . . ; an] of actions,
the final state afterα is executed ins, Φ(α, s), is defined as follows:

Φ(α, s) =







s if n = 0
⊥ if s′ = ⊥ or an is not executable ins′

Res(an, Φ(α[n − 1], s)) otherwise

For an action sequenceα and a states, if Φ(α, s) 6= ⊥ then we say thatα is executable
in s. α is executable in a set of statesS if it is executable in every states ∈ S.

A planning problemis specified by a triple〈D, s0, ∆〉, whereD is an action domain,
s0 is a state describing the initial state of the world, and∆ is a fluent formula (orgoal),
representing the goal state.2 A sequence of actionsα = [a1; . . . ; am] is aplan for∆ if
Φ(α, s0) 6= ⊥ and∆ holds inΦ(α, s0).

Given a planning problem〈D, s0, ∆〉, answer set planning solves it by translat-
ing it into a logic programΠ(D, s0, ∆), whose answer sets correspond to plans for
∆. The signature ofΠ(D, s0, ∆) includes terms corresponding to fluent literals and
actions ofD, as well as non-negative integers used to represent time steps. We often
writeΠ(D,n) to denote the restriction ofΠ(D, s0, ∆) to time steps between0 andn
(i.e., plans of length at mostn). Atoms ofΠ(D, s0, ∆) are formed using the following
(sorted) predicate symbols:

2 For simplicity of our discussion, we will assume that∆ is a set of fluent literals. Encoding the
goal can be done as in [22].
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– fluent(F ) is true ifF is a fluent;
– literal(L) is true ifL is a fluent literal;
– contrary(L,L′) is true ifL is the complement of literalL′;
– h(L, T ) is true if the fluent literalL holds at time stepT ;
– occ(A, T ) is true if the actionA occurs at time stepT ;
– poss(A, T ) is true if the actionA is executable at time stepT .

In our representation, lettersT , F , L, andA (possibly indexed) (resp.t, f , l, anda)
are used to represent variables (resp. constants) of sorts time, fluent, fluent literal, and
action correspondingly. For a set of fluent literalsγ, we define:

h(γ, T ) = {h(l, T ) | l ∈ γ} not h(γ, T ) = {not h(l, T ) | l ∈ γ} ¬γ = {¬l | l ∈ γ}

The set of rules ofΠ is divided into the following five subsets:
• Dynamic causal laws:for each statement of the form (1) inD, the rule:3

h(f, T+1)← occ(a, T ), h(ψ, T ) (3)

belongs toΠ(D, s0, ∆). This rule states that if the actiona occurs at time stepT
and the preconditionψ holds at that time step thenf holds afterward.
• Executability conditions:for each statement of the form (2) inD, Π(D, s0, ∆)

contains the following rule:

poss(a, T )← h(ψ, T ) (4)

← occ(a, T ), not poss(a, T ) (5)

This rules state thata is executable at the time stepT iff there exists one of the
executability conditions of the form (2) such thatψ holds at time stepT .
• Initial state:Π(D, s0, ∆) contains the rule

h(s0, 0)←

• Action generation:Π(D, s0, ∆) contains the rule

1 {occ(A, T ) : action(A)} 1←

which states that, at every time step, exactly one action must occur.
• Goal:Π(D, s0, ∆) contains the constraint

← not h(∆,n)

• Inertia: Π(D, s0, ∆) contains the following rule for the inertial law:

h(L, T )← h(L, T − 1), not h(¬L, T ), T > 0 (6)

This rule says that a literalL holds at time stepT if it holds at the previous time
step and its negation does not hold atT .

3 In practice, the atomh(ψ, T ) has to be replaced by a conjunction of atoms for each literal in
ψ.
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• Auxiliary rules:Π(D, s0, ∆) also contains the following rules:

literal(F )← fluent(F ) (7)

literal(¬F )← fluent(F ) (8)

contrary(F,¬F ) ← fluent(F ) (9)

contrary(¬F, F ) ← fluent(F ) (10)

The first constraint stops two complementary fluent literalsfrom holding at the
same time. The last four rules are used to define fluent literals and complementary
literals.

The next theorem states that the programΠ(D, s0, ∆) correctly solves the planning
problem〈D, s0, ∆〉 (see, e.g., [22, 29]).

Theorem 1. Given a planning problem〈D, s0, ∆〉,
◦ for each plana1, . . . , an for ∆, the programΠ(D,n) ∪ {occ(ai, i − 1) | i =
1, . . . , n} is consistent;
◦ if A is an answer set ofΠ(D,n) thena1, . . . , an is a plan for∆whereocc(ai, i−
1) ∈ A for i = 1, . . . , n.

2.2 ASP − PROLOG

In order to support our development activities, we need a framework with the following
characteristics:
• It provides access to an inference engine for answer set programming—to allow

answer set planning;
• It provides access to a general purpose, declarative programming framework, which

allows arbitrary forms of reasoning and transformation of an action theory.
For this project, we selected a recently developed framework calledASP− PROLOG [10].
ASP− PROLOG is a fully modular system, which allows the integration of modules
written in Prolog with modules written in the SMODELS flavor of answer set program-
ming. EachASP− PROLOG program is a composition of modules. It allows pro-
grammers to compose modules expressed using different flavors of logic programming,
including Prolog, Constraint Logic Programming, and answer set programming. Each
program is composed of a main module—at this time restrictedto be a Prolog or CLP
module and encoded in CIAO Prolog4—and a collection of modules organized accord-
ing to an acyclic graph structure (e.g., see Fig. 2).

Each Prolog module is allowed to import predicates defined inother modules,
through an import declaration, and to export predicates defined within the module (all
solutions to the given predicates are exported). Similarly, each ASP module is allowed
to import and export predicates.

Importing from a Prolog modulem will effectively achieve the effect of enriching
the local module with the least Herbrand model ofm projected over its exported predi-
cates. Importing from an ASP module will allow to either perform skeptical reasoning—
e.g., in

4 http://www.clip.dia.fi.upm.es/Software/Ciao
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Fig. 2. Program Organization inASP − PROLOG

:- import(aspmodule1, ’aspmodule1.lp’).
...
... :- ... aspmodule1:p(5) ...

aspmodule1:p(5)will succeed only ifp(5) holds in each answer set ofaspmodule1—
or to access each individual answer set—e.g., in

:- import(aspmodule1, ’aspmodule1.lp’).
...
... :- ... aspmodule1:model(Q), Q:p(5) ...

the conjunctionaspmodule1:model(Q), Q:p(5) will succeed ifp(5) holds in
at least one answer set ofaspmodule1.

Prolog modules are also allowed to perform meta-operationson other modules—
e.g., they can useclause to read the clauses of a module, and they can useassert
andretract to add or remove rules.

In the context of this project, answer set programming modules are employed to
encode the answer set planners, while the Prolog modules areused to perform analysis
of action theories and to drive the planning process (e.g., implement heuristics). Prolog
is particularly advantageous, thanks to its ability to easily manipulate the syntax of
action theories and its flexible search and backtracking mechanisms.

3 Describing Biochemical Pathway in Answer Set Planning

The problem of finding a biochemical pathway can be represented as a planning prob-
lem. The propertieslevel, simple, andcomplex (representing, correspondingly, the
substrate level of a molecule, a simple molecule, and a complex molecule) can be spec-
ified as domain predicates, and the two rules

molecule(X)← simple(X)
molecule(X)← complex(X)

encode the fact that every molecule is either simple or complex. There are five actions:
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◦ choose(X,L1, L2)—the action requires thatX is a simple molecule andL1 is a
higher substrate level thanL2; the effects of this action are that the simple molecule
is chosen andL1 indicates the substrate level considered.
◦ initialize(X)—creates the simple moleculeX if it has been chosen;
◦ associate(X1, X2, X3)—this is an action if the association reaction betweenX1,
X2, andX3 exists; the effect of this action is to create the moleculeX3 if the two
moleculesX1 andX2 are available;
◦ associate with catalyze(X1, X2, X3)—creates the moleculeX3 if the two molecules
X1 andX2 are available and a catalyzed association reaction betweenX1,X2, and
X3 exists;
◦ synthesize(X1, X2)—creates the moleculeX2 from the moleculeX1 if it is avail-

able and there is a synthesis reaction betweenX1 andX2.
A planning problem in this domain is characterized by the following parameters:

– The number of simple molecules;
– The number of complex molecules;
– The number of substrate levels;
– The number of association reaction combinations;
– The number of catalyzed association reaction combinations; and
– The number of synthesis reaction combinations.

The number of actions in this domain grows very fast. The nexttable describes some of
the biochemical planning problems, used in the recent planning competition5, in terms
of the parameters listed above. The last two columns indicate the number of potentially
useful actions and the length of a known plan in each problem.

Problem # Simple # Complex# Number# Asso.# Cata.# Syn.# Actions Plan
MoleculesMolecules Subs Combi. Combi.Comb. length

1 16 9 4 7 5 0 75 5
2 12 26 4 14 0 14 75 10
3 19 24 4 21 5 10 111 14
4 22 46 4 33 2 22 145 14
5 22 66 7 53 0 25 254 26
10 39 117 14 99 9 102 795 84
15 45 143 18 120 12 149 1135 ?

Table 1.Biochemical Pathways as Planning — Problem and Parameters

3.1 Using Answer Set Planning: Some Problems

The first problem we have to deal with when using answer set planning to tackle this
planning domain is the size of the ground instances. Besidesthe set of laws describing
the actions’ effects and executability conditions, the setof action generation rules is very
large. The current parserlparse is effective only for problems with short solutions.
This led us to search for ways to reduce the size of the ground instances.

5 Seehttp://zeus.ing.unibs.it/ipc-5/
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One of the commonly used techniques in planning is to examinethe planning graph
[4]. Intuitively, a planning graph is a structure consisting of alternative sets of fluents
and actions,F0, A0, . . . , Fn, An, . . ..Fi is the set of fluents that can be reached by every
possible action sequences whose length is less than or equalto i, andAi is the set of
possible actions that can be executed afteri actions. The planning graph has been useful
in analyzing planning problems and extracting heuristics [5]. Given a planning problem,
a planning graph can be easily computed in Prolog, using the following rules:6

forward_closure(0, Fluents, Actions) :-
findall(G,(fluent(G), initially(G)), Fluents),
findall(A,(action(A), executable(A,[])), Actions).

forward_closure(Time, Fluents, Actions) :-
Time1 is Time-1,
forward_closure(Time1, PrevFluents, PrevActions),
collect_applicable(PrevFluents,NewActions),
collect_consequence(NewActions,NewFluents),
union(PrevFluents, NewFluents, Fluents),
union(PrevAction,NewActions,Actions).

wherecollect applicable determines the actions whose (positive) executability
conditions are met byPrevFluents, andcollect consequences collects all
the positive consequence of the actions inNewActions. The collection of actions
and consequences can be easily realized using appropriate instances of thefindall
predicate—e.g., for the consequences:

collect_consequences([],[]).
collect_consequences([Action|Rest],Fluents) :-

findall(Res,(causes(Action,Res1,_),
member(Res,Res1),
\+(Res=neg(_)
), List1),

collect_consequences(Rest,List2),
append(List1,List2,Fluents).

A planning graph can provide us with the set of actions that can be possibly executed
given the initial state of the world, and the set of fluents that can be possibly changed
their value fromfalse to true. This information allows us to(1) remove actions that
can never be executed,(2) remove fluents that never change value, and(3) simplify
the remaining actions. The above can be repeated until everyaction can be possibly
executed and every fluent might change its value fromfalse to true. The planning
graph can also be used in a backward fashion, to eliminate actions that are irrelevant to
the goal. This can be done using the following Prolog rules:

back_closure(0,Fluents,Actions) :-
findall(G,goal(G),Fluents), Actions=[].

back_closure(Time, Fluents, Actions) :-

6 Simplified to enhance readability.
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Time1 is Time-1, back_closure(Time1,RFluents,RActions),
findall(A, (action(A), causes(A,Cons),

intersect(Cons,RFluents)),NewActions),
findall(F1, (member(A,NewActions),

executable(A,Cons), member(F1,Cons),
fluent(F1)), Set1),

findall(F2, (member(A,NewActions), causes(A,Cons),
member(F2,Cons),fluent(F2)), Set2),

union(RActions,NewActions, Actions),
union(RFluents, Set1, Set2, Fluents).

The result of the execution of this module are described in Table 2.
Problem Forward Forward + BackwardPlan Found

# Fluents# Actions# Fluents # Actions by smodels

1 61 75 45 37 Yes
2 67 75 55 34 Yes
3 95 111 76 51 Yes
4 115 145 93 63 Yes
5 142 254 120 163 No
10 250 795 211 638 No
15 297 1135 252 953 No

Table 2.Simplifications due to forward and backward planning graph analysis

It should be noted that the application of this method allowsfor a domain represen-
tation which is less susceptible to the specification of actions and fluents. For example,
we examine the PDDL representation of the domain and define theassociate action
by the rule

action(associate(X,Y,Z)):-
molecule(X), molecule(Y), complex(Z),
association_reaction(X,Y,Z). (*)

In doing so,association reaction(X,Y,Z) becomes a static property of the
domain. This is slightly different than the encoding of [12]where the representation

action(associate(X,Y,Z)):-
molecule(X), molecule(Y), complex(Z). (**)

is used. In this caseassociation reaction(X,Y,Z) is viewed as a fluent. The
second representation (**) will be better than the first one (*) if the information on
whether or notassociation reaction(X,Y,Z) holds is not a static relation.
This encoding, will, however, increase the size of the grounded program tremendously
comparing to the first encoding as the number ofassociate(X,Y,Z) actions is
now the product of the square of the number of molecules and the number of com-
plex molecules. As an example, consider the first instance ofthe problem (Table 1). In
this instance, there are 25 molecules, 9 complex molecules,and 7 possible association
reactions among the molecules. Thus, the second encoding will yield 25*25*9=5625
possibleassociate actions while the first encoding records only 7 possible actions.
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Planning graph analysis allows us to remove the actions thatmight be defined but
are not possible in the domain. We experimented with both representations and found
that the number of actions that are retained for the plan computation step is the same.
For this reason, there is little change in the number of actions between the two tables if
onlyforward analysis is used as we used the first encoding in our experiment.

3.2 Landmarks Recognition

The size of the ground program does matter in the sense that ifthe grounderlparse
cannot finish its work, our quest of computing a plan using answer set programming
cannot even begin. The second problem that answer set planning needs to face is the
size of the search space. To this end, we investigate anothertechnique, calledordered
landmarks, that has been developed in [14] and is currently implemented in various
planners, such as FF [13]. Let us recall some of the definitions.

Definition 1. Given a planning problemP = 〈D, s0, ∆〉, a fluent literall is called a
landmarkof P iff for every solutionα = [a1; . . . ; ak] of P , there exists an integeri,
1 ≤ i ≤ k, such thatl ∈ Φ(α[i], s0).

Intuitively, a landmarkl represents a “necessary” precondition that needs to be satisfied
before (or at the same time) the goal can be achieved.

Example 1.LetD = {a causesf if h b causesf if h,¬f c causesh} It is easy to
see thath is a landmark of the problem〈D, {¬f,¬h}, {f}〉.

Definition 2. Given a planning problemP = 〈D, s0, ∆〉 and two fluent literalsl and
l′. There is anecessary orderbetweenl and l′, denoted byl →n l′, iff l′ 6∈ s0 and for
every action sequenceα = [a1; . . . ; ak], if l′ ∈ Φ(α, s0) thenl ∈ Φ(α[n− 1], s0).

The ordering betweenl andl′ states thatl is necessary for achievingl′. In Example 1,
there is a necessary order betweenh andf .

Definition 3. LetP = 〈D, s0, ∆〉 be a planning problem andl, l′ two fluent literals.

1. Let S(l,¬l) be the set of statess such that there exists an action sequenceα =
[a1; . . . ; ak], s = Φ(α, s0), l′ ∈ e(ak, s), andl 6∈ Φ(α[i], s0) for 0 ≤ i ≤ k.

2. l′ is in the aftermath of l if, for all statess ∈ S(l,¬l′), and all solutionsα =
[a1; . . . ; ak] of the planning problem〈D, s,∆〉, there are1 ≤ i ≤ j ≤ k such that
l ∈ Φ(α[i], s) andl′ ∈ Φ(α[j], s).

3. There is areasonable orderbetweenl and l′, denoted byl →r l′, if l′ is in the
aftermath ofl and

∀s ∈ S(l,¬l′) : ∀α = [a1, . . . , ak] : l ∈ Φ(α, s)→ ∃i : ai causes¬l′ if ψ ∈ D.

Intuitively, S(l,¬l′) is the set of states in whichl′ is just added to the state andl has not
been achieved yet. The aftermath relation states that for every solution starting from
S(l,¬l′), l′ must be achieved simultaneously withl or at some later point.l →r l

′ states
that for everys ∈ S(l,¬l′), every action sequence achievingl deletesl′ at some point.
This implies that a planner can try to achieve a state¬l′ before try to achieve the goall.
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The main problem in utilizing this knowledge is that the computation of the af-
termath ordering or reasonable ordering among landmarks isPSPACE-complete. As
such, in systems employing this technique, only an approximation of this ordering is
computed and used in the search process. The key ideas in thistask are:

◦ Compute a graph (calledLGG), consisting of the landmark candidates with an ap-
proximated greedy necessary order between them;
◦ Remove fromLGG the candidates that cannot be proved to be landmarks; and
◦ Use the landmarks as intermediate goals in the search for a solution.

The search starts with the goal as the disjunction of all leafnodes ofLGG. As soon as
one disjunct is satisfied, theLGG is updated, by removing the node corresponding to
the achieved landmark and the links to and from this node. Theset of leaf nodes is then
recomputed (as a disjunction) and set as the new goal. The planner continues until all
landmarks have been achieved.

3.3 Implementation

The Prolog preprocessor described earlier has been extended to support theLGG com-
putation. The graph is described by a list of nodes and a list of edges. The main predicate
for theLGG computation is:

hoffmann(Fluents,Actions, Nodes, Edges) :-
compute_goal_state(Goals,Fluents),
compute_initial_state(Init),
candidate(Goals,[],[],Nodes1,Edges1,Fluents,Actions),
findall([neg(X),X],

(member(neg(X),Nodes1), member(X, Nodes1)), CEdges),
append(CEdges,Edges1,Edges2),
verify_landmarks(Nodes1,Edges2,Fluents,Init,Actions,Goals,

Nodes,Edges).

The core of the computation is performed by the predicatecandidate, which
navigates the dependence graph, composed of executabilityconditions and effects of ac-
tions, to locate elements that represent potential landmarks. Theverify landmarks
procedure is simply used to verify that the elements collected in theLGG graph are in-
deed reachable w.r.t. the given initial state of the action theory.

This recursive predicatecandidate is defined as follows:7

candidate([],N,E,N,E,_,_).
candidate([A|B],N,E,FinalNodes,FinalEdges,Fluents,Actions) :-

level(A,0),!,
candidate(B,N,E,FinalNodes,FinalEdges,Fluents,Actions).

candidate([A|B],N,E,FinalNodes,FinalEdges,Fluents,Actions) :-
level(A,L2),
findall(X,(member(X,Actions),causes(X,List,_),

member(A,List),level(X,L1),L1 =:= L2-1
),Actions),

7 The definition as been simplified for readability.
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findall(Y,appears_always(Y,Actions),Cback),
findall(Y1,appears_forward(Y1,Actions),Cforward),
append(Cback,B,B21), append(B21,Cforward,NewB),
findall([Z,A],(member(Z,Cback),level(Z,ZZ),ZZ>0),NewEdges1),
findall([N1,N2],(member(N1,Cback),level(N1,ZZ1), ZZ1>0,

member(N2,Cforward)), NewEdges3),
append(E,NewEdges1,NewEdges2),
append(NewEdges3,NewEdges2, Edges1),
candidate(NewB,[A|N],Edges1,FinalNodes,FinalEdges,Fluents,Actions).

The candidate procedure iterates until the set of items of interest (initialized to the
set of goals) becomes empty. Candidate nodes are added to theset if they have a level
greater than 0 (i.e., they are not part of the initial state) and they either

– appear in the preconditions of all the actions that in one step produce anotherLGG
node (predicateappears always), or

– appear in the consequence of all the actions that in one step produce anotherLGG
node (predicateappears forward).

This is intuitively illustrated in figure 3. The edges are created in the obvious manner to
link fluents connected by the selected actions.
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Fig. 3. Intuition behind theLGG construction

4 Experimentation

We implemented the planning graph and theLGG computation in Prolog. The simplified
planning problem is then fed intosmodels. In all, we were able to solve5 problems
from the set of problems given at the planning contest, a results comparable with most of
the planning systems competing in the IPC’2006 (see [12]). The first four instances can
be solved using a single call tosmodels (as shown in Table 2). For the5th instance,
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we useASP− PROLOG in the following way. We have a Prolog module that performs
the following activities:
◦ It takes(a) an answer set program representing the instance with the parameter
length, and(b) a disjunctive goal consisting of the leaf nodes of the landmark
graph, and callssmodels to find a plan for the disjunctive goal; the value of the
parameterlength is iteratively changed from1 to 2, to 3, etc., until an answer set
is returned (as described in [9].
◦ It analyzes the answer set, creates the new initial state andthe new goal (by remov-

ing achieved goals from the landmark graph), and repeats thefirst step.
We observed that the system does not require backtracking onthe choice of satisfied
landmark. Analyzing the problem and the landmark graph, we found that the landmark
graph does indeed provide an ordering that can be achieved one by one. Whether this is
always the case (even for this domain) is an important question that is currently under
investigation.

5 Conclusions

In this paper, we described our preliminary investigation of how to bring state-of-the-art
techniques developed by the planning community to the realmof answer set planning.
Our preliminary results shows that the adoption of logic programming technologies
does not prevent the use of simplification techniques (such as reachability analysis and
landmarks identification), and these techniques can be introduced in an elegant and
declarative manner. In particular, the use of logic programming (specifically, Prolog)
significantly simplifies the problem of implementing different forms of analysis of the
action theories.

We demonstrated our approach on a challenging planning instance, dealing with a
problem from systems biology and obtained from the most recent International Planning
Competition.
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