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Abstract. The paper describes an experiment of answer set planningdhdm-
ical pathway planning. The focus is on large planning pnoblestances. It is
shown that well-known planning techniques, such as plangimph analysis,
landmarks recognition, and planning using landmarks aeulgn answer set
planning and can be easily incorporated in an answer setipigusystem.

1 Introduction

Over the past decade, answer set planning [6,17, 26] hasreeaoviable planning
approach. It has been successfully applied in conformamtryshg [7, 25], conditional
planning with sensing actions and incomplete informat8] [ planning with domain-
specific knowledge [22], or dealing with user’s preferen@3. It has also been ap-
plied successfully in several real-world problems [1, 2hsiver set planning builds on
the idea of using answer set programming [20, 19] to suppertprocess of reason-
ing about actions. The success of answer set planning redtsmfactors. The first
one is the availability of efficient answer set solvers, sasbnodel s [21], dl v [8],
cnodel s [16], andASSAT [18]. The second factor is the combination of the simplic-
ity and expressiveness of logic programming, which allowsrple representation and
reasoning about action and change.

Despite its success and its elegance, and despite the genexid of excellent in-
ference engines for answer set programming, answer setiptais not capable of
handling large problem instances. In our experiments, anset planners perform well
in problem instances that admit short solutions, while temters difficulties in in-
stances with long solutions—e.g., typically, when the targf the minimal solution is
more than 20, the computation time grows beyond acceptabéts. One of the main
reasons behind this problem is that answer set planninguedsers did not concen-
trate on the development of special purpose planners. Rdktefocus has been on
the development of methodologies for using answer set progring in planning. It
is expected that large problem instances will be solvablenbye efficient answer set
solvers. While this is certainly true, it raises the quastibwhether the currently avail-
able technologies have more to offer.

Another reason leading to the fact that answer set planrdangat cope with large
planning instances lies in the way solutions are computeshgwer set programming.



Planning for Biochemical Pathway in ASP 117

Most inference engines rely on a two-phase computationinQuhe first phase, the
program is grounded, and possibly simplified. Ttgar se is a typical program used
for this phase. The actual solution (expressed by a calleaf answer sets) will be
computed by one of the answer set solvers in the second phaisecomputing style
does not allow for a direct application of well-known plangitechniques to answer set
planning (e.g., the use of the planning graph to simplifydbmain, the use of heuristic
in deciding which actions should be chosen, etc.) as manlyadet techniques require
the ability to affect the way the computation search develefmference engines for
answer set programming typically do not expose the seamteps to the programmer.
Furthermore, answer set planning puts a huge burden on thander,l par se, as
the size of the grounded program for large problem instarsceften too large to be
produced or too large to be acquired by the answer set solver.

The limitation of the grounder has an important consequende representation
of planning domains and instances, which sometimes regjaioareful analysis of the
domain and instances. For instance, if we wish to define daregtX,Y) where X
andY” are variables with domaif,, andD,, respectively, a typical representation would
lead to a clause of the form

action(p(X,Y)) :— du(X),dy(Y).

Depending on the instanc®( andD,), | par se will simplify this clause and gener-
ate the correct set of actions—described by ground factseofdrmaction(p(zx,y)).
From the knowledge representation perspective, this taiody a good practice, since
it allows a simple specification of the problem instancedy(dacts need to be speci-
fied). This representation can, however, quickly increasenumber of rules that the
grounder has to deal with, as

(a) the number of parameters increases; and/or

(b) the size of the domain of the parameters increases.
As we will see later, this representation does increasazb@$the grounding programs
significantly.

In this work, we investigate the use of well-known planniaghniques in the con-
text of answer set planning. The planning techniques dészlig this paper involve a
simplification of a planning problem based @achability analysig13] andlandmark
recognition, and the use of landmarks in planning [14].

We choose th&iochemical Pathwagomain, one of the planning domains used in
the recent International Planning Competition [12] as aangple for our case study.
The main reason behind this selection is the conceptuallisitypof the domain, and
the need to deal with large instances. The following is aregtcfrom the domain
description available at [12]:

This domain is inspired by the field of molecular biology, apécifically bio-
chemical pathways. “A pathway is a sequence of chemicalti@acin a bi-
ological organism. Such pathways specify mechanisms ipddia how cells
carry out their major functions by means of molecules andtieas that pro-
duce regular changes. Many diseases can be explained bgtslefgathways,
and new treatments often involve finding drugs that cortea$é defects” [27].
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We can model parts of the functioning of a pathway as a planpiblem by
simply representing chemical reactions as actions. TheHgmical pathway
domain of the competition is based on the pathway of the Mdiam&ell
Cycle Control as it described in [15] and modeled in [3].

There are different kinds of basic actions correspondintheadifferent kinds of reac-
tions that appear in the pathway. For example, one of theratcalledassociateis
encoded in PDDL as follows

(:action associate
:paraneters (?x1 ?x2 - nolecule ?x3 - conpl ex)
:precondition (and (association-reaction ?x1 ?x2 ?x3)
(avail abl e ?x1) (avail able ?x2))
:effect (and (not (avail able ?x1))
(not (available ?x2)) (available ?x3)))

Fig. 1.Actionassoci at e

In the above specificatiorgx1, ?x2, and ?x3 denote variables; the condition
(avai |l abl e ?x) states thaPx is available;( associ ati on-reacti on ?x1
?x2 ?x3) says that there is an association reaction betvfeehand?x2 to create
?x3. This action creates the complex molectie3, by associating the two molecules
?x1 and?x2. This action is executable only if the two molecul®sl and?x2 are
available and it is known that the two molecukesl and?x2 can combine in a reaction
to produce?x 3.

A planning instance, in this domain, is given by a set of adé molecules and the
information encoding the knowledge about the possibilityreating new molecules by
association, syntheses, and other types of interactions.

This paper discusses different ways to introduce curremtrphg techniques, taken
from advanced planning systems, in answer ser planningpaper also presents some
preliminary experimental results; these provide encangaimdication that answer set
planning can be used to tackle large planning instancestaietise presentation with
the basics of answer set planning, and a brief descriptioth@ASP — PROLOG
system. We then discuss the problems faced by answer setepsain the biochemical
pathway domains, discuss a preliminary implementatioh@ftianning graph analysis
and landmark recognition techniques, and their use in ansgtglanning.

2 Preliminaries

2.1 Answer Set Planning

We will use a variation of the high-level action descriptianguageA of [11] to repre-
sent action theories. We assume the presence of two firsfejmtisets of names called
actionsandfluents A fluent literalis either a fluenyf or its negation-f. We will also
say thatf and—f are complement of each other. For a fluent litérakl denotes its

1 A complete description of the domain is included in [24].
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complement. A fluent formula is a propositional formula domsted from fluent liter-
als. For a set of fluent literatg, -y = {—l | [ € v}. For a set of fluent litera}, / holds
in v if I € ~. In such a language, an action domainis a set of propositions of the
following form:

a causes f if Q)
a executable ¢ (2)

wheref andy’s are fluent literal and fluent formula, respectively, ariglan action. The
axiom (1) represents eonditional effecof a, while axiom (2) states an executability
condition ofa.

A set of fluent literals is consistent if it does not contai tweomplementary fluent
literals. A state (ofD) is a maximal and consistent set of fluent literals. An actios
executable in a stateif there exists an executability condition (2) such tiiat s. The
effects of an actiom in a states is denoted by(a, s) and is given by

e(a,s) ={f|acausesfif ¢ € D,y Cs}.

Given a state and an actiom executable iry, the state resulting from the execution of
a in s, denoted byRes(a, s), is defined by

Res(a, s) = sUe(a, s) \ —e(a, s).

Leta = [a1;...;a,) be a sequence of actions; we will denote witli] the sequence
of actionsa[i] = [a1;. . .; a;], where, by conventiony[0] denotes the empty sequence.
The Res function can be easily extended to describe the effectsedaence of actions.
Given a domain descriptiof, a states and a sequence = [aq;. .. ;ay] Of actions,
the final state after is executed iy, &(«, s), is defined as follows:
S ifn=0
b(a,8) =4 L if s = L ora, is not executable in’

Res(an, P(aln — 1], s)) otherwise

For an action sequenceand a state, if &(«a, s) # L then we say that is executable
in s. « is executable in a set of stat8sf it is executable in every statec S.

A planning problenis specified by a tripleD, sy, A), whereD is an action domain,

s is a state describing the initial state of the world, ahi a fluent formula (ogoal),
representing the goal state\ sequence of actions = [a;; .. .;a,,] is aplan for A if
P(a, s9) # L andA holds ind(«, sp).

Given a planning probleniD, sq, A), answer set planning solves it by translat-
ing it into a logic programlI (D, so, A), whose answer sets correspond to plans for
A. The signature ofI(D, sy, A) includes terms corresponding to fluent literals and
actions of D, as well as non-negative integers used to represent tirps.sfée often
write I7(D, n) to denote the restriction dff (D, so, A) to time steps betweehandn
(i.e., plans of length at mosf). Atoms of I1(D, sy, A) are formed using the following
(sorted) predicate symbols:

2 For simplicity of our discussion, we will assume thafs a set of fluent literals. Encoding the
goal can be done as in [22].
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— fluent(F)is trueif F is a fluent;

— literal(L) is true if L is a fluent literal;

— contrary(L, L") is true if L is the complement of literal’;
— h(L,T) s true if the fluent literall holds at time steff’;

— occ(A, T) is true if the actiond occurs at time stef’;

— poss(A,T) is true if the actionA is executable at time stép.

In our representation, lettef8, I, L, and A (possibly indexed) (resg, f, [, anda)
are used to represent variables (resp. constants) of gogsftuent, fluent literal, and
action correspondingly. For a set of fluent litera)sve define:

B, T) = {h(L,T) | L€} not h(y,T) = {not h(1, T) | L€ v} —~y ={~I|l €~}

The set of rules of! is divided into the following five subsets:
¢ Dynamic causal lawsfor each statement of the form (1) i, the rule?

h(f,T+1) < occ(a,T), h(v),T) 3)

belongs tolI (D, sg, A). This rule states that if the actianoccurs at time stefy’
and the preconditionh holds at that time step thehholds afterward.

e Executability conditionsfor each statement of the form (2) B, II(D, s, A)
contains the following rule:

poss(a, T) — h(y,T) (4)
— occ(a, T),not poss(a,T) (5)

This rules state that is executable at the time stépiff there exists one of the
executability conditions of the form (2) such thaholds at time steff’.
e Initial state: IT(D, so, A) contains the rule

h(So, O) —
e Action generationiI (D, sg, A) contains the rule
1{occ(A,T) : action(A)} 1 —

which states that, at every time step, exactly one actiort ougir.
e Goal: I1(D, sy, A) contains the constraint

— not h(A,n)
e Inertia: II(D, sg, A) contains the following rule for the inertial law:
h(L,T) — h(L,T —1),not h(~L,T),T >0 (6)

This rule says that a literdl holds at time stef” if it holds at the previous time
step and its negation does not hold’at

% In practice, the atori(v, T) has to be replaced by a conjunction of atoms for each litaral i
.
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e Auxiliary rules: I1(D, sy, A) also contains the following rules:

literal(F) «— fluent(F) (7
literal(—F) «— fluent(F) (8)
contrary(F,—F) «— fluent(F) 9
contrary(—F, F) — fluent(F) (10)

The first constraint stops two complementary fluent litefedsn holding at the
same time. The last four rules are used to define fluent l¢enadl complementary
literals.
The next theorem states that the progrBifiD, sg, A) correctly solves the planning
problem(D;, sy, A) (see, e.g., [22,29]).

Theorem 1. Given a planning probleniD, sq, A),
o for each planay,...,a, for A, the program/I(D,n) U {occ(a;,i — 1) | i =
1,...,n} is consistent;
o if Ais ananswer setdf7(D,n)thena,,...,a, is a plan forA whereocc(a;, i —
1)e Afori=1,...,n

2.2 ASP — PROLOG

In order to support our development activities, we needraémmork with the following
characteristics:
e It provides access to an inference engine for answer setaroging—to allow
answer set planning;
e It provides access to a general purpose, declarative progiiag framework, which
allows arbitrary forms of reasoning and transformationrofation theory.
For this project, we selected a recently developed framievaitedASP — PROLOG [10].
ASP — PROLOG is a fully modular system, which allows the integration ofdutes
written in Prolog with modules written in theM®DELS flavor of answer set program-
ming. EachASP — PROLOG program is a composition of modules. It allows pro-
grammers to compose modules expressed using differentglaftogic programming,
including Prolog, Constraint Logic Programming, and ansset programming. Each
program is composed of a main module—at this time restritddzk a Prolog or CLP
module and encoded in CIAO Protbg-and a collection of modules organized accord-
ing to an acyclic graph structure (e.g., see Fig. 2).

Each Prolog module is allowed to import predicates definedtirer modules,
through an import declaration, and to export predicatesiddfivithin the module (all
solutions to the given predicates are exported). Similadgh ASP module is allowed
to import and export predicates.

Importing from a Prolog module: will effectively achieve the effect of enriching
the local module with the least Herbrand modehoprojected over its exported predi-
cates. Importing from an ASP module will allow to either penfi skeptical reasoning—

e.g., in

“http://ww.clip.dia.fi.upm es/Software/ G ao
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Answer
Goals Substitutions

———————- ——
Main
Prolog Module

snwer

imported asels
predicates
constraints solutions
rules/facts’

Prolog CLP ASP
Module Module Module

Fig. 2. Program Organization iASP — PROLOG
;- inport(aspnodul el, 'aspnodul el.lp’).

:- ... aspnodul el: p(5)

asprodul el: p(5) willsucceed only ifp( 5) holds in each answer seta§ pnodul e1—
or to access each individual answer set—e.g., in

.- inport(aspnodul el, 'aspnodul el.lp’).

:- ... aspnodul el: nodel (Q, Q p(5)

the conjunctioraspnodul el: nodel (Q, Q p(5) will succeedifp(5) holdsin
at least one answer seta$pnodul el.

Prolog modules are also allowed to perform meta-operationsther modules—
e.g., they can usel ause to read the clauses of a module, and they canagseer t
andr et r act to add or remove rules.

In the context of this project, answer set programming meslare employed to
encode the answer set planners, while the Prolog modulesatkto perform analysis
of action theories and to drive the planning process (ergplément heuristics). Prolog
is particularly advantageous, thanks to its ability to lgasianipulate the syntax of
action theories and its flexible search and backtrackinghan@sms.

3 Describing Biochemical Pathway in Answer Set Planning

The problem of finding a biochemical pathway can be represkss a planning prob-

lem. The propertiesevel, simple, and complex (representing, correspondingly, the
substrate level of a molecule, a simple molecule, and a acaxmpblecule) can be spec-
ified as domain predicates, and the two rules

molecule(X) «— simple(X)
molecule(X) «— complex(X)

encode the fact that every molecule is either simple or cermflhere are five actions:
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o choose(X, L1, Lo)—the action requires thaX is a simple molecule and, is a
higher substrate level thdhy; the effects of this action are that the simple molecule
is chosen and.; indicates the substrate level considered.

o initialize(X )—creates the simple molecul¢ if it has been chosen;

o associate(X1, X2, X3)—this is an action if the association reaction betwégn
X,, and X3 exists; the effect of this action is to create the molecXijef the two
moleculesX; and X, are available;

o associate_with_catalyze(X1, X2, X3)—creates the molecul€; if the two molecules
X; and X, are available and a catalyzed association reaction betWeeX,, and
X3 exists;

o synthesize(X;, Xo)—creates the molecul€, from the moleculeX; if it is avail-
able and there is a synthesis reaction betwEemand X5.

A planning problem in this domain is characterized by théofeing parameters:

— The number of simple molecules;

— The number of complex molecules;

— The number of substrate levels;

— The number of association reaction combinations;

— The number of catalyzed association reaction combingtants
— The number of synthesis reaction combinations.

The number of actions in this domain grows very fast. The table describes some of
the biochemical planning problems, used in the recent jilgntompetitioR, in terms
of the parameters listed above. The last two columns inglitet number of potentially
useful actions and the length of a known plan in each problem.

Problem # Simple|# Complex# Numbef# Asso|# Cata|# Syn)# Actiong Plan
Molecules Molecule§ Subs |Combi|Combi/Comb lengt

1 16 9 4 7 5 0 75 5

2 12 26 4 14 0 14 75 10

3 19 24 4 21 5 10 111 14

4 22 46 4 33 2 22 145 14

5 22 66 7 53 0 25 254 26

10 39 117 14 99 9 102 795 84

15 45 143 18 120 12 149 | 1135 ?

Table 1. Biochemical Pathways as Planning — Problem and Parameters

3.1 Using Answer Set Planning: Some Problems

The first problem we have to deal with when using answer seinjig to tackle this
planning domain is the size of the ground instances. Besideset of laws describing
the actions’ effects and executability conditions, theo§action generation rules is very
large. The current parsémpar se is effective only for problems with short solutions.
This led us to search for ways to reduce the size of the grastdrices.

5Seehttp://zeus.ing.unibs.it/ipc-5/
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One of the commonly used techniques in planning is to exathmplanning graph
[4]. Intuitively, a planning graph is a structure consigtiof alternative sets of fluents
and actionsFy, Ao, ..., Fy,, A, .. .. F; is the set of fluents that can be reached by every
possible action sequences whose length is less than or ®qgialnd A4; is the set of
possible actions that can be executed aftations. The planning graph has been useful
in analyzing planning problems and extracting heurist¢sGiven a planning problem,

a planning graph can be easily computed in Prolog, usingah@afing rules®

forward_cl osure(0, Fluents, Actions) :-
findall (G (fluent(Q, initially(G), Fluents),
findall (A (action(A), executable(A[])), Actions).
forward_cl osure(Time, Fluents, Actions) :-
Timel is Tinme-1,
forward_cl osure(Tinel, PrevFluents, PrevActions),
col | ect _applicabl e(PrevFl uent s, NewAct i ons),
col | ect _consequence( NewAct i ons, NewFl uent s),
uni on( PrevFl uents, NewFl uents, Fluents),
uni on( PrevActi on, NewActi ons, Acti ons).

wherecol | ect _appl i cabl e determines the actions whose (positive) executability
conditions are met b¥r evFl uent s, andcol | ect _consequences collects all
the positive consequence of the actiondNewAct i ons. The collection of actions
and consequences can be easily realized using appropstaeces of théi ndal |
predicate—e.g., for the consequences:

col |l ect _consequences([].[])-
col l ect _consequences([Action| Rest], Fluents) : -
findall (Res, (causes(Action, Resl, ),
nmenber ( Res, Resl),
\ +(Res=neg(_)
), Listl),
col | ect _consequences( Rest, Li st 2),
append(Listl,List2, Fluents).

A planning graph can provide us with the set of actions thatlmpossibly executed
given the initial state of the world, and the set of fluents ttemn be possibly changed
their value fromfalse to true. This information allows us t¢1) remove actions that
can never be executef) remove fluents that never change value, &)dsimplify
the remaining actions. The above can be repeated until eaign can be possibly
executed and every fluent might change its value framse to true. The planning
graph can also be used in a backward fashion, to eliminaienadhat are irrelevant to
the goal. This can be done using the following Prolog rules:

back_cl osure(0, Fl uents, Actions) :-
findall (G goal (G, Fluents), Actions=[].
back_cl osure(Tinme, Fluents, Actions) :-

8 Simplified to enhance readability.
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Timel is Time-1, back_cl osure(Tinel, RFl uents, RActi ons),
findall (A, (action(A), causes(A Cons),
i ntersect (Cons, RFl uents)), NewActi ons),
findall (F1, (menber (A, NewActions),
execut abl e( A, Cons), menber (F1, Cons),
fluent(F1)), Setl),
findall (F2, (menber (A, NewActions), causes(A Cons),
nmenmber (F2, Cons), fl uent (F2)), Set?2),
uni on( RAct i ons, NewAct i ons, Actions),
uni on(RFl uents, Setl, Set2, Fluents).

The result of the execution of this module are described biera.

Problen Forward Forward + Backward Plan Found
# Fluent$# Actiond# Fluents # Actions |by snodel s
1 61 75 45 37 Yes
2 67 75 55 34 Yes
3 95 111 76 51 Yes
4 115 145 93 63 Yes
5 142 254 120 163 No
10 250 795 211 638 No
15 297 1135 252 953 No
Table 2. Simplifications due to forward and backward planning grapdiysis

It should be noted that the application of this method alléavsa domain represen-
tation which is less susceptible to the specification ofoactiand fluents. For example,
we examine the PDDL representation of the domain and defeesthoci at e action
by the rule

action(associate(X Y,2)):-
mol ecul e(X), nol ecul e(Y), conpl ex(2),
associ ation_reaction(X YV, Z2). (*)

In doing so,associ ati on_reacti on(X, Y, Z) becomes a static property of the
domain. This is slightly different than the encoding of [W#jere the representation

action(associate(X Y,2)):-
nmol ecul e( X), nol ecul e(Y), conplex(2). (**)

is used. In this casassoci ati on_reaction(X, Y, Z) is viewed as a fluent. The
second representation (**) will be better than the first ofeif(the information on
whether or notassoci ati onreaction(X Y, Z) holds is not a static relation.
This encoding, will, however, increase the size of the gdmghprogram tremendously
comparing to the first encoding as the numbemetoci at e( X, Y, Z) actions is
now the product of the square of the number of molecules aadchttmber of com-
plex molecules. As an example, consider the first instant¢eeoproblem (Table 1). In
this instance, there are 25 molecules, 9 complex molecaitesy possible association
reactions among the molecules. Thus, the second encodihgield 25*25*9=5625
possibleassoci at e actions while the first encoding records only 7 possibleoasti
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Planning graph analysis allows us to remove the actionsniigitt be defined but
are not possible in the domain. We experimented with bothesgmtations and found
that the number of actions that are retained for the plan coatipn step is the same.
For this reason, there is little change in the number of astletween the two tables if
only f or war d analysis is used as we used the first encoding in our expetimen

3.2 Landmarks Recognition

The size of the ground program does matter in the sense ttegt groundel par se
cannot finish its work, our quest of computing a plan usingransset programming
cannot even begin. The second problem that answer set ptaneeds to face is the
size of the search space. To this end, we investigate anettiemique, calledrdered
landmarks that has been developed in [14] and is currently implententevarious
planners, such as FF [13]. Let us recall some of the defirgtion

Definition 1. Given a planning probler® = (D, sy, A), a fluent literall is called a
landmarkof P iff for every solutiono: = [ay;...;ax] of P, there exists an integer
1 < <k, suchthat € &(afi], so).

Intuitively, a landmarK represents a “necessary” precondition that needs to tsfiedti
before (or at the same time) the goal can be achieved.

Example 1.Let D = {a causes f if h bcausesf if h,—f ccausesh} Itiseasy to
see that: is a landmark of the probledD, {—f, -h}, {f}).

Definition 2. Given a planning probler? = (D, sy, A) and two fluent literald and
I’. There is anecessary orddretweerl and!’, denoted by —,, I/, iff I’ € sy and for
every action sequenee= [ay;...;ax), if I’ € (e, s9) thenl € (afn — 1], so).

The ordering betweehand!’ states that is necessary for achievirig In Example 1,
there is a necessary order betwéesnd f .

Definition 3. LetP? = (D, sp, A) be a planning problem and!’ two fluent literals.

1. Let Sy, ;) be the set of states such that there exists an action sequence-
[a1;...5ak], s = (e, 80), " € e(ag, s), andl & P(afil, so) for 0 < i < k.

2. " is in the aftermath of [ if, for all statess € S ), and all solutionsa. =
[a1;...;ax] of the planning problenD, s, A), there arel < i < j < k such that
I € &(ali],s) andl’ € d(alj], s)-

3. There is areasonable orddsetween, and!’, denoted by —,. ', if I’ is in the
aftermath of and

Vs € Sy : Vo = [ay, ..., ax] : 1 € D(a,s) — Ji : a; causes—l' if ¥ e D.

Intuitively, S(; ;) is the set of states in whidhis just added to the state ahtias not
been achieved yet. The aftermath relation states that fnyesolution starting from
S(,-11), I must be achieved simultaneously witbr at some later point. —,. I’ states
that for everys € S(; ), every action sequence achievihdeletes’ at some point.
This implies that a planner can try to achieve a stdfeéefore try to achieve the goal
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The main problem in utilizing this knowledge is that the cargtion of the af-
termath ordering or reasonable ordering among landmarRSRACE-complete. As
such, in systems employing this technique, only an appration of this ordering is
computed and used in the search process. The key ideas tagkiare:

o Compute a graph (calledGG), consisting of the landmark candidates with an ap-
proximated greedy necessary order between them;

o Remove fronLGGthe candidates that cannot be proved to be landmarks; and

o Use the landmarks as intermediate goals in the search fduthioso

The search starts with the goal as the disjunction of all heafes ofL GG. As soon as
one disjunct is satisfied, theGG is updated, by removing the node corresponding to
the achieved landmark and the links to and from this node sehef leaf nodes is then
recomputed (as a disjunction) and set as the new goal. Thegiaontinues until all
landmarks have been achieved.

3.3 Implementation

The Prolog preprocessor described earlier has been exi¢mdepport the GG com-
putation. The graph is described by a list of nodes and afleiges. The main predicate
for theLGG computation is:

hof f mann( Fl uent s, Acti ons, Nodes, Edges) :-
conput e_goal _state(Coal s, Fl uents),
conpute_initial _state(lnit),
candi date(Goal s,[],[], Nodes1, Edges1, Fl uents, Actions),
findall ([ neg(X), X],
(menber (neg( X), Nodes1), nenber (X, Nodesl)), CEdges),
append( CEdges, Edges1, Edges?2),
verify_l andmar ks(Nodes1, Edges2, Fl uents, I nit, Acti ons, Goal s,
Nodes, Edges) .

The core of the computation is performed by the predicatedi dat e, which
navigates the dependence graph, composed of executabitititions and effects of ac-
tions, to locate elements that represent potential lankisn@heveri f y_| andmar ks
procedure is simply used to verify that the elements cadkat theL GG graph are in-
deed reachable w.r.t. the given initial state of the actiaoty.

This recursive predicateandi dat e is defined as follows:

candidate([],NE NE, _, ).
candi dat e([ Al B], N, E, Fi nal Nodes, Fi nal Edges, Fl uents, Acti ons) : -
level (A 0),!,
candi dat e( B, N, E, Fi nal Nodes, Fi nal Edges, Fl uents, Acti ons).
candi dat e([ Al B], N, E, Fi nal Nodes, Fi nal Edges, Fl uents, Acti ons) : -

I evel (A L2),
findall (X, (nermber (X, Actions), causes(X, List,_),
menber (A, List),level (X, L1),L1 == L2-1
), Acti ons),

” The definition as been simplified for readability.
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findall (Y, appears_al ways(Y, Acti ons), Chack),

findall (Y1, appears_forward(Y1, Actions), Cforward),

append( Cback, B, B21), append(B21, Cf orwar d, NewB) ,

findall ([Z, A, (menmber (Z, Cback), | evel (Z, 2Z), ZZ>0) , NewEdges1),

findall ([ N1, N2], (menber (N1, Cback), | evel (N1, 2z1), ZZ1>0,
menber (N2, Cforward)), NewEdges3),

append( E, Newkdges1, NewkEdges?2),

append( NewEdges3, NewkEdges2, Edgesl),

candi dat e( NewB, [ A| N], Edges1, Fi nal Nodes, Fi nal Edges, Fl uent s, Acti ons).

The candidate procedure iterates until the set of itemstefast (initialized to the
set of goals) becomes empty. Candidate nodes are addeddettii¢hey have a level
greater than O (i.e., they are not part of the initial state) they either

— appear in the preconditions of all the actions that in ong pteduce anothdrGG
node (predicatappear s_al ways), or

— appear in the consequence of all the actions that in one sbejuge anothelt GG
node (predicatappear s_f or war d).

This is intuitively illustrated in figure 3. The edges areatesl in the obvious manner to
link fluents connected by the selected actions.

Level i-1 Level i

causes

Action

Action ) node

Action

causes

Fig. 3. Intuition behind thed. GG construction

4 Experimentation

We implemented the planning graph andltli& computation in Prolog. The simplified
planning problem is then fed intonodel s. In all, we were able to solve problems
from the set of problems given at the planning contest, dtsesomparable with most of
the planning systems competing in the IPC'2006 (see [12jg.first four instances can
be solved using a single call smodel s (as shown in Table 2). For thg” instance,
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we useASP — PROLOG in the following way. We have a Prolog module that performs
the following activities:
o It takes(a) an answer set program representing the instance with tramster
| engt h, and(b) a disjunctive goal consisting of the leaf nodes of the larmttma
graph, and callsnodel s to find a plan for the disjunctive goal; the value of the
parametel engt h is iteratively changed from to 2, to 3, etc., until an answer set
is returned (as described in [9].
o Itanalyzes the answer set, creates the new initial stat¢hemiew goal (by remov-
ing achieved goals from the landmark graph), and repeafirshestep.
We observed that the system does not require backtrackinigeoohoice of satisfied
landmark. Analyzing the problem and the landmark graph,oved that the landmark
graph does indeed provide an ordering that can be achiewelyoone. Whether this is
always the case (even for this domain) is an important quedtiat is currently under
investigation.

5 Conclusions

In this paper, we described our preliminary investigatibinaw to bring state-of-the-art
techniques developed by the planning community to the redlamswer set planning.
Our preliminary results shows that the adoption of logicgreenming technologies
does not prevent the use of simplification techniques (saekachability analysis and
landmarks identification), and these techniques can bedutred in an elegant and
declarative manner. In particular, the use of logic prograng (specifically, Prolog)
significantly simplifies the problem of implementing diféet forms of analysis of the
action theories.

We demonstrated our approach on a challenging planningriost dealing with a
problem from systems biology and obtained from the mostrdogernational Planning
Competition.
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