Visual Querying and Application Programming
Interface for an ASP-based Ontology Language

Lorenzo Gallucd? and Francesco Ricta

! Department of Mathematics, University of Calabria, 8702#&e (CS), Italy
ricca@mt.unical.it
2 DEIS, University of Calabria, 87036 Rende (CS), Itghd | ucci @lei s. unical . it
3 Exeura S.r.l., c/o University of Calabria, 87036 Rende (@@)y gal | ucci @xeura. it

Abstract. Answer Set Programming (ASP) is a logic-based programmengdi-
gm which has been recently exploited for solving complex-veald applica-
tions in an effective way. However, ASP systems currentlgsniinportant tools
for the development of industry-level applications, susheasy-to-use graphic
environments and application programming interfaces.

In this paper, we present two new tools, tailored for OntofaR ASP-based
ontology representation and reasoning language), whimesent a step towards
overcoming the above-mentioned limitations: a novel Jisuerying interface,
which allows non-expert users to compose and run querigsaalava API, en-
abling the development of software systems embedding ASgtams.

1 Introduction

Motivation. Answer Set Programming (ASP) is a novel programming parasigich
has been proposed in the area of non-monotonic reasonirigginghrogramming. The
idea of ASP is to represent a given computational problem logia program whose
answer sets correspond to solutions, and then use a sofiredt Buch a solution [1]. The
language of ASP is able to express all problems belongirfggtodemplexity classes?
and 1’ (under brave and cautious reasoning, respectively) [2ksTASP is strictly
more powerful than SAT-based programming (unless somelydieved complexity
assumptions do not hold), and, at the beginning, it has beefitgbly exploited to
solve problems of high complexity from the Al field (e.g. di@gis and planning under
incomplete knowleddt.

Furthermore, the availability of some efficient ASP systdike DLV [3], GnT [4],
Clasp [5], NoMore+[6] and Cmodels [7], made ASP a powerful tool for developing
advanced knowledge-based applications; and the vialufitthe approach has been
confirmed by the recent applications of ASP systems for sglproblems in the areas
of Knowledge Management (KM), Security, and Informatiotelyration [8].

* Supported by M.I.U.R. within the PRIN project “Potenziarteere Applicazioni della Pro-
grammazione Logica Disgiuntiva” and within Internatidmation project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensieonihe di ottimizzazione.”

4 Note that, both the above-mentioned problems are compbetdné complexity clas? or
13

Visual Querying and API for ASP-based Ontology Languages 57

However, ASP systems are far away from comfortably enalitiegdevelopment
of industry-level applications, mainly because they misgartant tools for supporting
users and programmers. In particular, friendly user iat®$ are missing, and there is
a lack of advanced Application Programming Interfaces A8 implementing appli-
cations on top of ASP systems.

In this paper, we try to overcome the above-mentioned ltioita by developing
and implementing advanced interfaces for both users angrgmumers of an ASP-
based system called OntoDLV [9]. OntoDLV is conceived fotabmgy representation
and reasoning, and it is already employed in a couple of indliapplications [10, 11].

OntoDLP. An ontology is the specification of a common vocabulary byrdefj the
meaning of terms and their relations, usually modeled bygigrimitives such as con-
cepts organized in taxonomy, relations, and axioms. Ogyolepresentation languages
have become a central tool in many research areas and iyartin the field of
the Semantic Web. However, in general, the most common agydhnguages miss
“rule-based” inference mechanisms, an important featansidered indispensable for
enabling agents to reason about the knowledge represeng@dontology [14].

OntoDLP [9] is a novel ontology representation languagectvhiaturally com-
bines the reasoning power of ASP with the benefits of a set wlayy-representation
constructs. In particular, the language includes, besidesoncept ofelation, the
object-oriented notions aflass object (class instancepbject-identity, complex ob-
ject, (multiple) inheritance, and the concept of modular programming by means of
reasoning modules

A classcan be thought of as a collection of individuals that belaggther because
they share some features. An individual ofnject is any identifiable entity in the uni-
verse of discourse. Objects, also called class instaneegapnambiguously identified by
their object-identifier (oid) and belong to a class. A clasdéfined by a name (which
is unique) and an ordered list of attributes, identifying iroperties of its instances.
Each attribute has a nhame and a type, which is, in truth, &.cldss allows for the
specification otomplex objectéobjects made of other objects).

Classes can be organized in a specialization hierarchyatartgpe taxonomy) us-
ing the built-inis-arelation fnultiple inheritancg

Relationships among objects are represented by mearaations which, like
classes, are defined by a (unique) name and an ordered ligtribtiges (with name
and type). As in DLP, logic programs are sets of logic rules emnstraints. However,
OntoDLP extends the definition of logic atom by introducitass and relation predi-
cates, and complex terms (allowing for a direct access teabpyoperties). In this way,
the OntoDLP rules merge, in a simple and natural way, theadatiVe style of logic
programming with the navigational style of the object-otexl systems. In addition,
OntoDLP logic programs are organizedregasoning modulegaking advantage of the
benefits of modular programming.

The OntoDLP language has been implemented in the OntoDLi¢s)9], which
is a cross-platform visual development environment fonvdedge modeling and ad-

5 Even if there are some proposal combining Description L-bgised languages with rules (e.g.
see [12,13])

58 Lorenzo Gallucci and Francesco Ricca

vanced knowledge-based reasoning. The OntoDLV systemlassign integrates the
DLV system [3] exploiting the power of a stable and efficiettfDsolver.

Importantly, the strongly-typed nature of OntoDLP allowedthe implementation
of a number of type-checking routines that verify the camess of a specification on
the fly, resulting in an help for the programmer.

Contribution. In this paper, we present two novel and important featurékefOn-
toDLV system which represent a first step towards overcorttiegabove-mentioned
limitations of ASP systems:

— anadvanced visual-quering interface/hich allows the user to formulate and run
gueries on OntoDLV by using an intuitive graphic interfacka QBE;

— and, anApplication Programming Interfacerhich enables the implementation of
Java applications embedding OntoDLP ontologies and réagomodules.

The remainder of this paper is structured as follows. In #d Bection, we present
an informal overview of the OntoDLP language; followed, iac8on 3 by a descrip-
tion of the OntoDLV system. After that, in Section 4 and 5, wegent the visual-query
interface and the OntoDLV API , respectively. Finally, Sect6 we draw our conclu-
sions.

2 The OntoDLP Language

In this section we informally describe the OntoDLP langyagkenowledge representa-
tion and reasoning language which allows one to define anebison on ontologies.

An ontology in OntoDLP can be specified by meanslasse@ndrelations Classes
are organized in aimheritance(ISA) hierarchy, while the properties to be respected are
expressed through suitabdxioms whose satisfaction guarantees the consistency of
the ontology.Reasoning moduleallow us to express rich forms of reasoning on the
ontologies.

For a better understanding, we will describe each constnacseparate section and
we will exploit an example (théving being ontology, which will be built throughout
the whole section, thus illustrating the features of thglage.

OntoDLP is actually an extension of the ASP language, whah theen enriched
by ontology representation concepts, and hereafter werssthe reader to be familiar
with ASP syntax and semantics (for further details refe{p. [

2.1 Classes

A classcan be thought of as a collection of individuals that belorggether because
they share some properties.

Classes can be defined in OntoDLP by using the the keyelassfollowed by its
name, and class attributes can be specified by means ofattiiisute-name : attribute-
type) whereattribute-names the name of the property ardtribute-typeis the class
the attribute belongs to.

Suppose we want to model thiging beingdomain, and we have identified four
classes of individualgpersonsanimals food, andplaces

Visual Querying and API for ASP-based Ontology Languages 59

For instance, we can define the clagssonhaving the attributes name, age, father,
mother, and birthplace, as follows:

class person(name:string, age:integer, father:person, maghenson, birthplace:place).

Note that, this definition is “recursive” (both father andtimar are of typeersor).
Moreover, the possibility of specifying user-defined céssas attribute types allows
for the definition of complex objects, i.e. objects made dfeotobject®. Moreover,
many properties can be represented by using alphanumarigsstand numbers by
exploiting the built-in classestring and integer (respectively representing the class
of all alphanumeric strings and the class of non-negativebars).

In the same way, we could specify the other above mentiorasges in our domain
as follows:

class placepame:striny}
class food(hame:string, origin:plage
class animal(hame:string, age:integer, speed:int@ger

Each class definition contains a set of attributes, whiclalledclass schemerhe
class scheme represents, somehow, the “structure” of @taevek have about) the indi-
viduals belonging to a class.

Next section illustrates how we represent individuals indi_P.

2.2 Objects

Domains contain individuals which are calledjectsor instances

Each individual in OntoDLP belongs to a class and is uniMgédéntified by using
a constant calledbject identifieqoid) or surrogate

Objects are declared by asserting a special kind of logis fasserting that a given
instance belongs to a class). For example, with the follgwivo facts

rome : place(name:"Rome”).
john:person(name:”John”, age:34, father:jack, mothenm birthplace:rome).

we declare that “Rome” and “John” are instances of the gtdase and person re-
spectively. Note that, when we declare an instance, we inatedd give an oid to the
instance (e.gromeidentifies a place named “Rome”), which may be used to fill an at
tribute of another object. In the example above, the atieibirthplace is filled with the
oid romemodeling the fact that “John” was born in Rome; in the same Wagk’ and
“ann’ are suitable oids respectively filling the attributiasher, mother(both of type
person).

The language semantics (and our implementation) guarativeereferential in-
tegrity, bothjack, annandromehave to exist whejohnis declared.

6 Attributes model the properties thaustbe present in all class instances; propertiesrtfight
be present or not should be modeled by using relations. kretbrds, an attributén : k) of
a classc is a total function frome to k; while partial functions from: to k£ can be represented
by a binary relation ofc, k).

60 Lorenzo Gallucci and Francesco Ricca

2.3 Inheritance

OntoDLP allows one to model taxonomies of objects by usimegakll-known mecha-
nism of inheritance.

Inheritance is supported by OntoDLP by using the speciaryinelationisa. For
instance, one can exploit inheritance to represent som@agmategories of persons,
like studentsaandemployeeshaving some extra attribute, like a school, a company etc.
This can be done in OntoDLP as follows:

class studentisa {persor}(classemployeésa {person}(
code:string, salary:integer,
school:string, skill:string,

tutor:person). company:string,

tutor:employeg

In this case, we have thaersonis a more generic concept superclasand both
studentandemployeeare a specialization (aubclasyof person Moreover, an instance
of studentwill have both the attributes: code, school, and tutor, Wwhice defined lo-
cally, and the attributes: name, age, father, mother, artdgt@ce, which are defined
in person We say that the latter are “inherited” from the superclzason An analo-
gous consideration can be made for the attributesmgdloyeavhich will be name, age,
father, mother, birthplace, salary, skill, company, artdrtu

An important (and useful) consequence of this declarasaiat each proper in-
stance of botlemployeandstudentwill also be automatically considered an instance
of person(the opposite does not hold!).

For example, consider the following instancestfdent

al:student(name:"Alfred”, age:20, father:jack, mothéetty, birthplace:rome,
code:”100", school:"Cambridge”, tutor:hanna).

It is automatically considered also instance of person kmie:
al:person(name:”Alfred”, age:20, father:jack, motheetty, birthplace:rome).

Note that it is not necessary to assert the above instance.

In OntoDLP there is no limitation on the number of superaags.e. multiple in-
heritance is allowed). We complete the description of iitarce recalling that there is
also another built-in class in OntoDLP, which is the supasslof all the other classes
and is calletbbject (or T). For a formal description of inheritance we refer the reade
to [9].

2.4 Relations

Relationships can be modeled in OntoDLP by mearRal&tions

Relationsare declared like classes: the keywogthtion (instead otlasg precedes
a list of attributes.

As an example, the relatidnend, which models the friendship between two per-
sons, can be declared as follows:

Visual Querying and API for ASP-based Ontology Languages 61

relation friend(persl:person, pers2:person).

Like classes, the set of attributes of a relation is cadlgtemewhile the cardinality
of the scheme is called arity. The scheme of a relation defiveestructure of its tuples
(this term is borrowed from database terminology).

In particular, to assert that two persons, say “john” andl™hre friends (of each
other), we write the following logic facts (that we call teg):

friend(persl:john, pers2:bill). friend(persl:bill, pg2:john).

Thus, tuples of a relation are specified similarly to classances, that is, by assert-
ing a set of facts (but tuples are not equipped with an oid).

2.5 Axioms and Consistency

An axiomis a consistency-control construct modeling sentencesatkalways true (at
least, if everything we specified is correct). They can beldiseseveral purposes, such
as constraining the information contained in the ontolagy @erifying its correctness.

As an example suppose we declared the relation colleagueh associates persons
working together in a company, as follows:

relation colleague (empl:employee, emp2:employee).

Itis clear that the information about the company of an elygdqrecall that there is
an attribute company in the scheme of the class employed)baunsistent with the
information contained in the tuples of the relation colieagTo enforce this property
we assert the following axioms:

(1) :—colleague(empl : X1,emp2 : X2),not colleague(empl : X2, emp2 : X1)
(2):=colleague(empl : X1,emp2: X2),
X1 : employee(company : C),not X2 : employee(company : C).

The above axioms states théit) the relation colleague is symmetric, afJ if two
persons are colleagues and the first one works for a compeamyaiso the second one
works for the same company.

If an axiom is violated, then we say that the ontology is irsistent (that is, it con-
tains information which is, somehow, contradictory or netnpliant with the intended
perception of the domain).

2.6 Reasoning modules

Given an ontology, it can be very useful to reason about theeitldescribes.

Reasoning modulemre the language components endowing OntoDLP with power-
ful reasoning capabilities. Basicallyy@asoning modulés a disjunctive logic program
conceived to reason about the data described in an ontdteggoning modules in On-
toDLP are identified by a name and are defined by a set of (dgshfjunctive) logic
rules and integrity constraints.

62 Lorenzo Gallucci and Francesco Ricca

Syntactically, the name of the module is preceded by the keywodulewhile
the logic rules are enclosed in curly brackets (this allows collect all the rules
constituting the encoding of a problem in a unique definitdantified by a name).

As an example consider the following module, which allowsittgle out in the
derived predicatgoungAndShyhe names of the persons who are less than 18 years
old, and who have less than ten friends:

module(shy Friends){
youngAndShy(N) :—P : person(name : N,age : A), A < 18,
#count{F : friend(persl : P,pers2: F)} < 10.}

Note that, this information is implicitly present in the otdgy, and the reasoning
module just allows to make it explicit.

2.7 Querying

An important feature of the language is the possibility dfieg queries in order to
extract knowledge contained in the ontology, but not diyeexpressed. As in DLP a
query can be expressed by a conjunction of atoms, which, io[@iP, can also contain
complex terms.

As an example, we can ask for the list of persons having arfathe is born in
Rome as follows:

X:person(father:person(birthplace:place(name: “Ronig?

Note that we are not obliged to specify all attributes; rathe can indicate only the
relevant ones for querying. In general, we can use in a quatythe predicates defined
in the ontology and the derived predicates in the reasonindutes.

For instance, consider the reasoning modtigFriendglefined in the previous sec-
tion, the following query asks whether there is a person whwasne is “Jack” and is
“young and shy”:

youngAndShy(X), X:person(name:”Jack”))?

3 The OntoDLV System

OntoDLV is a complete framework that allows one to specifiyigate, query and per-
form reasoning on OntoDLP ontologies. We refrain from diédeg the implementation
details of OntoDLYV in this paper. Rather, we illustrate ther@ll OntoDLV architec-
ture, and present the main features of the system; subsguerihe following sec-
tions, we will describe the main components of the graphisat interface of OntoDLV.

The system architecture of OntoDLV, depicted in Figure b lsa divided in three
abstraction levels. The lowest level, nan@ctoDLV corecontains the components im-
plementing the main functionalities of the system, namegrsistency Manager, Type
Checkey andRewriter. The Persistency Manager provides all the methods needed to
store and manipulate the ontology components. In partficiil&xploits theParser

Visual Querying and API for ASP-based Ontology Languages 63

submodule to analyze and load the content of several OntaBxiFfiles, and DB
Managersubmodule to implement data persistency on relationabdatzs through Hi-
bernate/JDBC.

The admissibility of an ontology is ensured by the Type Cleeckodule which
implements a number of type checking routines. Resvriter module translates On-
toDLP ontologies, axioms, reasoning modules and querias tequivalent ASP pro-
gram which runs on the DLV system, and redirects results assiple error mes-
sages to the Persistency Manager. Rasvriterfeatures a number of optimization and
caching techniques in order to reduce the time used by icttegawith DLV. All

Graphicai User interface
{GUi)

(OntaDLV API)

OntoDLV Core
s ~ S N ~
i | Persisiency Manager |

(

{

|

|

L

(

|

|

| — Type

Manager
v A4 v
e
TextFles

Fig. 1. The OntoDLV architecture

C——" | VIR SE—

the features implemented by tmtoDLV corg(data persistency, browsing invocations
results etc.) can be employed by both system developersragtdammers through a
sophisticated application interface (which will be delsed in detail in Section 5): the
OntoDLV API Eventually, the end user exploits the system through ay+teasse vi-
sual environment calle@UI (Graphical User Interface), which is built on top of the
OntoDLV API TheGUI combines a number of specialized visual tools for authgring
browsing and querying a OntoDLP ontology. In particulag @I features a graph-
based ontology viewer and a graphical query environmenicfwhill be described in
detail in the next Section).

The OntoDLV system has been implemented in Java and exhatOLV system,
a state-of-the-art ASP solver that has been shown to peréffiaiently on both hard
and “easy” (having polynomial complexity) problems

The DLV system is a highly portable software written in IS@+Cavailable for
various operating systems. Thus, the OntoDLV system rudenevariety of operating
systems.

4 Visual Querying

In this section we describe the visual query interface ofQh&oDLV system. This tool
has been designed in a way that a non-expert user can asleguétiout worrying
about the syntax of the language, and a programmer can cenagpaistest in an easy
way complex queries. The query interface is integratedeérQhtoDLV Graphical User

64 Lorenzo Gallucci and Francesco Ricca

Interface. We fist report a description of the GUI, in ordegiee an idea of the en-
vironment in which the query tool is embedded, and then d&sdr by running an
example.

4.1 The OntoDLV GUI

The OntoDLV GUI was designed to be simple for a novice to usid@éd and use,
and powerful enough to support experienced users. A snapshize system running
the ontology described in Section 2 is depicted in Figuretz GUI presents several

a- o

nwoived in Axloms
“ » | i1 Xopersondiather:Y) , Y:person{lathet
o). Yape
New | Remove | Newnstance | | [
— « » —
— = i 1°] | {'oeson _Showl
Wornings. A
s) L peofect RatanTelephonebtumber|
“Fad
o \ 4 : ‘
N - w & Sugloyes)
8 potiect! o
- < w? 2
— »
\.a-‘!‘“: I, nmi. " e
oy oaton) student

Fig. 2. OntoDLV GUI: Browsing and editing the ontology.

panels offering access to several facilities combiningkttevsing environment with
the editing environment.

The class/subclass hierarchy is displayed both in an iedetext (on the left in
Figure 2) and a graph-based form (on the bottom in Figure 2).

The user can browse the ontology by double-clicking the stémthe panels. The
structure of each ontology entity (classes, relations, iagthnces) can be displayed
in the middle of the screen by switching between severalddigfanels. For example,
in Figure 2 the class person is selected in the class listlamdlass panel shows the
scheme of that class. In particular, the name and the typbeotlass attributes are
shown in a table, while, on the left, both the relations arel akioms involving the
class, together with the list of the instances, are repanted indented text form.

Visual Querying and API for ASP-based Ontology Languages 65

In the editing phase, the user enters the domain informatydiiling in the blanks
of intuitive forms and selecting items from lists (explogian simple mechanism based
on drag-and-drop). An up-to-date list of messages infotmasuser about the occur-
rence of errors (e.g. type checking messages, etc.) in tisdogy under development.
When the user clicks on an error message item the system fyoshpws the entity
involved in it. Reasoning and querying can be performed tgcsag the appropriate
panel, where the user can create/edit reasoning moduleguenmigs, respectively. The
reasoning module panel contains a text editor featuringasycoloring and a simple
auto-complete feature. The interface also allows the réagamodality (both brave
reasoning and cautious reasoning are supported) to beéexblaad the reasoning mod-
ules needed to solve the specified reasoning task to be edibkbled.

4.2 Querying Interface

After creating or loading an ontology, the most common of@ngperformed by users
is to query the system to obtain information stored in theologty. This task can be
performed in OntoDLV by running queries through an apprmterinterfacé Even if
the OntoDLP language simplifies (w.r.t. standard ASP laggsaathe task of writing
a query by exploiting both complex terms and strong typihgs bperation may be
performed by expert users only. In order to make more ineigind easy this task, and
to allow a non-expert user to query an ontology, the systeatufes a full graphical
query interface similar to the QBE (Query By Example) editavhich are nowadays
largely adopted for formulating queries on relational dates. Compared to relational
QBE interfaces (like, e.g., the QBE of MS Access), ours fater is more powerful
thanks to the exploitation of the strong typing informatadrthe underlying language.
Thus, by using the graphical interface an user can creatéegweithout worrying about
the syntax, simply selecting classes and relations fromptreels (elements can be
added exploiting drag-and-drop) and creating links betvedass attributes and relation
parameters.

In order to practically understand how the interface wonksdescribe it by the fol-
lowing example. Suppose the system already loaded thglbeéing ontology described
in Section 2, and an we want to compose the following query:

X : person(father : person(birthPlace : place(name : ” Rome”)))?

(i.e. who are the people whose father was born in a place n&oe?).

This query can be easily composed by selecting from the &fely displaying the list

of classes of the ontology (Fig. 3a), the person class, amtldnyging it inside the query
panel. Automatically, a box representing the person clagsther with its attributes
(name, age, father, and birthplace, namely) appears inahel gFig. 3b). To complete
the query we now have to indicate that the father of this pergas born in a place
named “Rome”. To do that, we just drag the attribute fath¢iobthe box representing
the class person (Fig. 3c). The system automatically buildist (by exploiting the

strongly typed nature of the language) suggesting classbietations that can correctly
“join” with the attribute father, which is of the type persffig. 3d). In this case, we

” Due to space constraints, and since we are mainly interestiscribing the graphical query
editor, we refrain from describing the text-based quergrfiace.

Lorenzo Gallucci and Francesco Ricca

1
|
=l

Towma | f]
© food
S
o S —
s O o |
O name |
L__age /i
O faifer
(] _mother
1 binwptace |
(a) (h) (c)
\a) (o))
Consistency Check | Consistency creck |
Ciass | Reiation | G | Reiation [Axiom | [Ciass | Reiation | Ciassi [Reiationi [foxiom |
[Toxivai | visuai |
¥ & oieid iass | Retation | Cotlection Class | intensional Relation { Agoregate Operator |
© animal —_—
g e —
. - [person s
© sl O_m | o
Iperson .
ST N Sl
O ee 1 IensionalREIANON G gori_empioyee | Brage!
[tatmer) tatier
[mother | £ mother |
[virhpiace | 1 birtptaca |
(d) (©]
Filo_Options_Help. [Fiteoptions_welp
<[o[>] Consistency Check | Reasoning <[2[5] Consistency Check | _Reasoning | |
Class | Relation | Class | Relation | Y | Axiom |~ Class | Relation | Class | Relation | | Axiom ||
(15A [ust | teual | visuat | ai=al [touar | visua |
4@ oject Class | Relation | Collection Class | intensional Relation erator + @ ovjest Class | Reation | Collection Class | Intensional Relation | Aggregate Operator
® animal © animal
® tood ® tooa
T g Bacen [person | person | s el [person person
B skl 0 o [=] B skl O_ o O_ v
[_name =) __name | Biname
O ase | O age O_ae | O age
0o [_father [fathervs [father
O _mather | 1 mothor O _mother | 1 motne
L] birthplace O birthplace L] virthplace [birthlace
® ®
[Fueoptions e
<[o[>] Consistency Check Reasoning Consistency Check Reasoning
Class | Relation | | Class | Retation | I | xiom |~] Class | Relation | I [axiom |
1S [ust ISA | LsT Visual
7 @ otjact Ciass | Relation | Collection Class | intensional Relation ¢4 object
© animal © anmal
2 ot ® 1000
Qe pen Coposon] [paen | 8--a
® skl O_m | O wova O 1ous ® skl
£ name [l s O veme
O_age | O e ||,
[father:v4 O tather
[1_mother_|) mother
& bitiwics | 0 bitptacos |
(b) @
File Options _Help
<[9[>] Consistency Check Reasoning
Class | Relation Class_| Relation |~ I [axiom | | auery |
(isA | usT
7 @ object [Ciass | Relation | Collection | | nggregate operator |
= ® animal
—® food !
-0 p
9 sesen [=
® skl O_w | O wvs | O wows |
[__name] BEsoers) e
0 age [age SO
[father:v4 O tather
O _mother | 1 mother
[_birthplace [_vinnplace:vs [N

(U]

Fig. 3. OntoDLV GUI: How to build a query.

Visual Querying and API for ASP-based Ontology Languages 67

select the person class in order to indicate that the fath@iperson having birthplace
attribute valued to rome. Consequently, another box of pgrson appears (Fig. 3e),
and we link the oid field with the father attribute of the onigi person box (Fig. 3f).
We continue by applying the same criterion; in particulag, dvrag-out (Fig. 3g) the
birthplace attribute (which is of type place) of the secortspn box (representing the
father) and we select the place class (creating a place bk&diwith the birthplace
attribute, see Fig. 3h). Finally, we double click on the natigbute (which is of type
string) of the place box to set the value of this attributeRorhe” (Fig. 3i). The obtained
query is shown in Figure 3j. It is easy to see that the graplinterface makes the
meaning of that query more intuitive, and it allows an unegreed user to work with
the system without knowledge about the underlying syntaailde Importantly, the
system helps the user suggesting the classes or the reflasibare allowed to “join”
a given attribute, exploiting the strongly-typed naturettoé language. Moreover, to
help expert users, a sort of “reverse-engineering” proaedliows to smoothly switch
between the text editing and the visual editing environment

5 OntoDLV API

In order to enable third parties develop their own knowletgeed applications on
top of OntoDLV, we developed an application programmingifgce named OntoDLV
API. Since OntoDLYV is a Java application, the OntoDLV API leen written in this
language. In particular, all the operations the user canirede.g. creation and brows-
ing of ontology elements, reasoner invocations etc.) ardenag&ailable through a suit-
able set of Java interfaces. It is worth noting that, the OhY6API is characterized by
a rather high level of abstraction; and it is composed ofatikaly rich set of Java inter-
faces, together with a single factory class (like, e.g.,JtkéP API from Sun). However,
the extensive usage of standard Java components (e.g.heoihtérface< ollection
andIterator play a central role) makes expert programmers rapidly famaith our
interface.

It is impossible, due to space constraints, to give here @epth description of all
the methods and classes which constitute the OntoDLV ARVelver, in the following
subsections we describe its core components and we skstaloiiking principles by
running an example.

5.1 Core APl Components and Ontology browsing

In the core part of the OntoDLV API each language construeisécschema, relation
schema, instance etc.) has an associated Java interfagéitegit. In particular, the
available interfaces ar&lass, Relation, ClassInstance, Tuple, Query, Axiom,
ReasoningModule. All the concrete objects implementing the above-mentioine
terfaces are made available to the user through anothefacéecontaining a set of
browsing methods calle@omponent Browser. In particular,Component Browser
has seven methods which return lists of component, namkglyses(), relations(),
classInstances(), tuples(), queries(), axioms(), modules(). The first method re-
turns the list of all class objects, the second one the ligtllafelation objects and so

68 Lorenzo Gallucci and Francesco Ricca

forth. For example, itb is aComponent Browser, one can print out the definition of
all known classes with this code:

for (Class cl: cb.classes()) Systemout.println(cl);

It is worth noting that these lists are not “materializatidnf the corresponding
entitie$; they rather represent virtual “views” aggregating a seblojects, possibly
coming from many sources (e.qg. different physical stotpgmd they are a extensions
of Java standard’ollections, which henceforth can manipulated using well-known
Java methods such add(), contains(), remove(), etc.

The same principle, based on lists@émponents, is applied to browse the content
of schemas and instances. For example,dliess component has a method which
returns the list of all superclasses of the given class oHjéareover, the lists returned
by the browsing methods also provide the user the abilityetégpmselectionover the
set of objects through specialized methods. Those methalisd “selectors”, return a
list of the same kind as the one they were called on (cascadilfgyare allowed), but
filtered on the basis of a given criterion.

A number of selection criteria has been designed by exptpitie properties of each
collection; and, for instance, a list of classes has a sqt@dialized selectors that deal
with the schema properties (suchfasingSubclass() andhavingSuperclass()). As
an example, the following code snippet allows one to prirttthe names of all classes
(if any) which are common ancestors of batfilass andbClass:

Systemout.printf("C ass nanmes are: %",
ch. cl asses() . havi ngSubcl ass(ad ass).
havi ngSubcl ass(bd ass) . nanes());

Similarly, a list of instances (namely, eith€iassInstanceLists or TupleLists)
may be queried for the occurrence of a particular value foattibute by using the
methodhavingValue(). For example, one can obtain the list of instancesaof
class) having, among their attribute values, both the nut®#4 and the string “Rome”
(clearly, for different attributes of a given instance) listway:

Cl assl nst ancelLi st speci al | nstances =
ch. cl assl nstances() . havi ngVal ue(1974) . havi ngVal ue(" Rone") ;

5.2 OntoDLP API Usage

In this section, we show how to use OntoDLV API by running aaraple. In particular,
we describe a snippet of Java code which uses the API to déalte living being
ontology introduced in Section 2. We refrain from reportadfjthe technical details
(package inclusions, main function declaration etc.) levhie focus on the part of the
code where the APl methods are used. In particular, we regodgram which executes
the following four operations:

8 Importantly, whereas core data is always kept in memory, infgrmation derived by the
framework for internal purposes (such as collections, dépeecy graphs, computed attributes,
etc.) is “memoized” (basically, it is stored to make the catagion efficient); but, if needed,
the garbage collector of the Java virtual machine can medtail his allows the API to dynam-
ically adapt the memory usage to the available system ressur

% As described in Secion 3 OntoDLV Core supports both filesysied database persistency,
which are handled transparently by the API

Visual Querying and API for ASP-based Ontology Languages 69

. load a text file containing the living being ontology;

. add some new data to the relatipriends;

. build the reasoning moduly F'riends described in Section 2.6;

. perform the queryoungAndShy(X), X:person(name:”Jack”)}@nd print the ob-
tained results in standard output.

A WN P

To perform step 1, we first create an instance oRhgectclass, which, in general,
allows one to handle many different sources of data (e.g.files, and/or, relational
databases).

Proj ect project = ProjectFactory. buil dEnptyProject();
Then, we load the "living-beings.dlpp” text by writing:

proj ect. bui | dSt r eanReposi tory("LB",
new File("living-beings.dlpp"));

This statement, actually, creates a riRepositoryclass object that handles the data
stored in the "living-beings.dlpp” text file. Basically,ahext file is parsed, and an in-
memory representation of its content can be handled exmdhat object.

Then, we add some tuple to the relatifriends (step 2) by writing as follows:

reposi tory. buil dTupl e("friend(persl:ted, pers2:frank).");
repository. buil dTupl e("friend(persl:frank, pers2:josh).");

In order to perform step 3, we build an object of the clRessoningModuleand
we add a rule within it:

Reasoni nghMbodul e nodul e = ont ol ogy. bui | dReasoni nghbdul e(
"shyFriends");
nmodul e. bui | dRul e("youngAndShy(N) :- P:person(nane: N, age:A),
A<18, #count{ F : friend(persl:P, pers2:F)} < 10.");

Eventually, we perform step 5 by building@uerylnvocatiorobject as follows:

String queryText = "youngAndShy(X), X person(nane:"Jack"))?";
Queryl nvocation querylnvocation =

pr oj ect . get Engi ne() . perfor mQuery(queryText, Derivati onMode. BRAVE) ;
queryl nvocati on. i nvokeSynchronousl y();

The last statement, basically, performs a synchronougatian of the internal rea-
soner (i.e. the current thread it is constrained to waitl timéi output is computed); then
we get and print the results on standard output by writing:

QueryResult result = querylnvocation.getResults();
Systemout.printf("Results: \%", result.toString());

6 Conclusions

In this paper we have presented two novel tools tailored foméegrated ontology
development and reasoning platform called OntoDLV:

70

Lorenzo Gallucci and Francesco Ricca

— avisual query interfaca la QBE, which simplifies the usage of the system for both

developers and unexperienced users;

— anapplication programming interfacevhich enables the programmers to embed

ASP programs in systems that are based on Java.

These tools represent a step towards the development oédvarks supporting the
implementation of industry-level applications based orfPAS

References

1.

10.

11.

12.

13.

14.

Lifschitz, V.: Answer Set Planning. In Schreye, D.D.,:d€LP’99, Las Cruces, New
Mexico, USA, The MIT Press (1999) 23-37

. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalo§CM TODS 22(3) (1997) 364-418
. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACMLTTB) (2006) 499-562

. Janhunen, T., Niemelg, I.: Gnt - a solver for disjunctagic programs. In: Proceedings of

the Seventh International Conference on Logic ProgrammaimbNonmonotonic Reasoning
(LPNMR-7). LNCS 2923

. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Cdriilitven Answer Set Solving.

In: Proceedings of the Twentieth International Joint Cogrfiee on Artificial Intelligence
(IJCAI'07), AAAI Press/The MIT Press (2007)

. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, Tihe nomore++ Approach to

Answer Set Solving. In: Logic for Programming, Artificialtilligence, and Reasoning,
12th International Conference, LPAR 2005. LNCS 3835

. Lierler, Y.: Cmodels for Tight Disjunctive Logic Programin: W(C)LP 19th Workshop on

(Constraint) Logic Programming, Ulm, Germany. Ulmer Imiatik-Berichte, Universitat
Ulm, Germany (2005) 163—-166

. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, WhkFM., Greco, G., lanni, G., Katka,

E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, MStaniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incompleteldnconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Confeeeno Management of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (200359917

. Ricca, F., Leone, N.: Disjunctive logic programming wigpes and objects: The divsys-

tem. Journal of Applied Logics (2005) To appdart p: / / www. kr. t uwi en. ac. at/
research/reports/rr0510. ps. gz.

Ruffolo, M., Leone, N., Manna, M., Sacca’, D., Zavatto; &xploiting ASP for Semantic
Information Extraction. In: Proceedings ASP05 - Answer Betgramming: Advances in
Theory and Implementation, Bath, UK (2005)

Cumbo, C., liritano, S., Rullo, P.: Reasoning-basedwadge extraction for text classifica-
tion. In: Discovery Science. (2004) 380-387

Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Deption logic programs: Combining
logic programs with description logics. In: Proceedingshef Twelfth International World
Wide Web Conference, WWW2003, Budapest, Hungary. (2003548

Horrocks, I., Patel-Schneider, P.F.: A proposal for whrales language. In: Proceedings
of the 13th international conference on World Wide Web, (WVZ®04), New York, USA
(2004) 723-731

Horrocks, I., Patel-Schneider, P.F., Boley, H., TaBet,Grosof, B., Dean, M.: Swrl: A
semantic web rule language combining owl and ruleml| (2008C\Viember Submission.
http://ww. w3. or g/ Subm ssi on/ SWRL/ .

