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Abstract

Efforts to reduce social bias in machine learning has in-
creased in the past several years. As data privacy concerns
grow, finding techniques to train private, debiased machine
learning models becomes increasingly important. Federated
Learning (FL) has emerged as a popular privacy-preserving
machine learning strategy. FL, however, by not providing
complete access to training data, brings with it a unique set of
difficulties in bias mitigation that have yet to be explored. In
this paper, we delve into these difficulties, and how they can
affect bias measured in federated learning models.

Introduction

Machine learning applications are used throughout the world
to make decisions on matters with real-world consequences
[1]. These decisions can affect whether a patient gets one
medical treatment over another [11], which job applicant
gets an interview [14], or which loan application gets ap-
proved [2, 7]. Over the past several years, attention has been
brought to the potential social bias machine learning algo-
rithms learn and subsequently induce onto the applications
they are involved in [4]. Bias mitigation efforts, as a result,
have swelled.

Many bias mitigation efforts focus on centralized machine
learning [3, 8, 17], where all training data is stored and pro-
cessed in a single place. However, as machine learning users
and efforts grow exponentially, the issue of data privacy be-
comes more and more pertinent [15]; centralized machine
learning often does not address these concerns. Directives
to protect individual data abound, such as the Health In-
surance Portability and Accountability Act (HIPAA), Eu-
ropean General Data Protection Regulation (GDPR), New
York’s Stop Hacks and Improve Electronic Data Security
(SHIELD) Act, and more. As privacy-preserving techniques
have grown, machine learning approaches such as federated
learning (FL) [13, 10] have emerged.

FL maintains data privacy by allowing multiple parties to
collaboratively train a model without sharing their data. FL
is already utilized in real-world settings, i.e. Google Gboard
with cell phones, enterprise frameworks such as IBM Feder-
ated Learning [12].
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Figure 1: An overview of federated learning

As seen in Figure 1, during each round of training, parties
(P,) train a local model (M), and are queried (Q) by the ag-
gregator (A) to send model updates (R,,); these updates can
be model parameters or a party’s local model. The aggre-
gator utilizes these to update the global model, usually fol-
lowing a specific model fusion strategy. This strategy, called
the fusion algorithm, takes the model updates (R1...R,,) as
input and can combine them in a myriad of ways, based on
the design. It may simply average each party’s weights, or
perform a more involved aggregation, then return the global
model. This process repeats for several rounds until a certain
accuracy or maximum number of training rounds has been
reached.

Designed for centralized machine learning, most bias mit-
igation approaches measure and reduce undesired bias with
respect to a sensitive attribute, such as race or sex, in the
training dataset. Unfortunately, existing techniques are not
directly applicable to the federated learning setting. As fed-
erated learning bars full access to the training dataset, find-
ing methods to address bias without directly examining sen-
sitive information is an open challenge. FL is unique, and as
the number bias mitigation methods in centralized machine
learning grow, it is increasingly apparent that there are ad-
ditional considerations to be made about how bias affects
federated learning models.

In this paper, we investigate four sources of bias, three
unique to training in the federated learning setting. These are
traditional bias sources, party selection and subsampling,



data heterogeneity, and fusion algorithms. We hope this dis-
cussion will stimulate research in this nacient field.

Causes of Bias
Traditional Causes of Bias

Each party in a federated learning process trains their local
model similarly to how it would be trained in a centralized
machine learning. Factors, such as prejudice, underestima-
tion, and negative legacy [9], that have been recognized as
causing discrimination in centralized machine learning, ap-
ply to federated learning as well.

However, new sources of bias occur when training in a FL
fashion. Through the model updates shared at each round,
each party will introduce its own biases to the global model.

In the following, we introduce unique challenges to fed-
erated learning algorithms, setting and processing.

Data Heterogeneity

Unlike in centralized machine learning, federated learning
faces a unique challenge related to data heterogeneity. Par-
ties each have a local dataset that they use to train their lo-
cal model. It is very possible that each party’s subgroup of
data differs greatly from the overall data composition from
all parties involved. Additionally, in FL parties might be ca-
pable of dynamic participation, where they can drop out of
a FL process and rejoin later on for various reasons, i.e.
connectivity restraints. Overall and relative data composi-
tion thereby may be constantly changing, which affects how
the global model learns bias.

For example, say a chain of hospitals wants to use feder-
ated learning to train an image classifier for detecting heart
disease. Each hospital, in a different location, trains their lo-
cal model with their patients’ data. A hospital in a predom-
inantly minority neighborhood of a larger, predominantly
non-minority city is likely to have a very different set of pa-
tients in its local dataset, relative to the overall composition
of the hospital chain’s set of patients.

Fusion Algorithms

When an aggregator incorporates local model updates into
the global federated model, it follows a strategy dictated
by a fusion algorithm. Fusion algorithm designs vary, and
influence the bias measured in the final model. For exam-
ple, some are designed to equally incorporate model updates
from parties, while others may perform a weighted average
based on party size (i.e. parties with larger datasets influence
the global model more than parties with smaller datasets)
[13]. Depending on the application of the federated learning
task, this could have negative effects on sensitive groups. In
recent work, researchers have proposed examining parties’
contributions to the global model to decide, or to what ex-
tent, their model updates will affect the global model. Many
solely examine how model accuracy is affected, which does
not inform about the effect on model bias. Some robust ag-
gregation methods will leave out party replies that are dis-
similar from the rest altogether [5, 16], which easily can ex-
clude minority groups.

In the same hospital example as above, some hospitals
training together have very different dataset sizes. This could
be based on some hospitals being located in areas where
the population is socioeconomically disadvantaged, thereby
those hospitals have less patients that can afford an expen-
sive medical procedure; these hospitals’ datasets would be
smaller. Involvement in a federated learning process that re-
wards larger party size with more global model influence
would diminish these hospitals’ contributions to the global
model, and incorrectly give the impression that the model
is comprehensively learning from the hospital chain’s set of
patients. This example can be easily reproduced for situa-
tions where other sensitive attributes like age, sex, or race
can affect whether or not a user’s data is systemically kept
out of a federated learning task.

Party Selection and Subsampling

Parties involved in a federated learning process are queried
by the aggregator at each round of training to send their
model updates, which the aggregator will then incorporate
into the global federated model. However, not all parties
might be involved in every round of training [13, 6]. There
are two main FL use cases, either where parties are as small
as cell phones, and the number of parties in such FL sys-
tems is vast, or when parties are much larger entities and
the number of parties is fewer. Especially in FL tasks with
a large number of parties, the aim may be to satisfy a quota
of parties’ updates to begin the next round of training. De-
pending on the federated learning task, different attributes,
some bias-correlated, can affect whether a party is included
in a training round.

Consider a scenario where a company wants to train a
model to improve the user experience in its cell phone app,
and engages users in a FL process. In this example, each
phone is a party, and the question of which model updates
are included is dependent on network speed. Faster devices,
which are likely to be newer, are likely to be represented
at disproportionately higher rates than slower devices. Like-
wise, devices in geographic regions with slower networks
may be represented at disproportionately lower rates. Inclu-
sion here is correlated with socioeconomic status, and is a
systemic source of bias.

Conclusion

Bias identification and mitigation in centralized machine
learning has been discussed in recent years. Since then, fed-
erated learning has emerged and been rapidly put into prac-
tice, due to its potential to mitigate privacy and regulatory
concerns related to machine learning. The shift from central-
ized to federated learning comes with challenges that stem
from limited access to training data, alongside other barri-
ers. Overcoming these obstacles is key to understanding new
sources and causes of bias in FL settings. We have identi-
fied four causes of bias affecting federated learning, three of
which are unique to the FL process. Successful solutions to
mitigate bias should consider multiple components of the FL.
process, and ultimately ensure data privacy is maintained.
We hope this paper inspires further exploration in this area.
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