
cb

S. Götz, L. Linsbauer, I. Schaefer, A. Wortmann (Hrsg.): Software Engineering 2021 Satellite Events,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

State of the Art in Software Tool Qualification with DO-330:
A Survey

Mohamad Ibrahim1, Umut Durak2

Abstract: In safety-critical software development, tool qualification is one of the pillars that supports
the validity and correctness of the critical software leaving no space for errors that might overthrow
the stability of the system. This paper provides a general overview of tool qualification in functional
safety standards, then focuses particularly on the avionics standard DO-330 by highlighting the
important aspects in the qualification process. In this paper we provide a comprehensive survey
on the prime aspects that qualifier should consider when conducting tool qualification, and helpful
recommendation on what Qualification Kits should include for tool developers. We first review
concepts from inside DO-330 standard, afterwards we move to more practical topics collected from
real examples, and finally present Qualification Kits’ cases and findings. We conclude with challenges
and recommendations.

Keywords: Avionics, Safety Standards, Tool Qualification

1 Introduction

The automotive domain functional safety standard ISO 26262 [Ro11] defines the software
tools to be “a computer program used in the development of an item or element”. DO-
330 [RT11b], the Software Tool Qualification Considerations supplement to the avionics
standards RTCA DO-178C [RT11a] Software Considerations in Airborne Systems and
Equipment Certification, defines a tool as “a computer program or a functional part thereof,
used to help develop, transform, test, analyze, produce, or modify another program, its data,
or its documentation”. The tool does not include the final software product code itself, the
compiled libraries nor software operating system [Hi17].

CENELEC 50128 [CE20] -The railways software development standard- states that “The
qualification of a tool is a process whereby it is demonstrated that a tool is usable for the
realization of a software application with a definite SSIL (Software Safety Integrity Level)”.
The aviation standard’s supplement DO-330 defines the tool qualification as “the process
necessary to obtain certification credit for a tool”. In other words, tool qualification is the
documentation of evidences that show the tool is reliable and suitable for the intended
purpose in the context of a specific project. Boulanger defines tool qualification in [Bo17]
1 Technical University of Clausthal, Institute for Informatics, Julius-Albert-Straße 4, 38678 Clausthal-Zellerfeld,
Germany, mohamad.ibrahim@tu-clausthal.de
2 German Aerospace Center (DLR), Institute of Flight Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany,
umut.durak@dlr.de

Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/
mailto:mohamad.ibrahim@tu-clausthal.de
mailto:umut.durak@dlr.de


2 Mohamad Ibrahim, Umut Durak

as “a process that allows us to demonstrate that a tool can be used as part of the realization
of a software application with a determined safety goal”.

Software tools fall into two categories [Hi17], Software Development Tools and Software
Verification Tools. Such categorization was used in the previous RTCA standard DO-
178B [RT92] as a basis to determine the Tool Qualification Level (TQL), but this is no
more the case with DO-178C [RT11a] (discussed in 2.1). The categories diverge in that the
development tools can insert an error in the software but verification tools cannot, however
they can fail to detect an error in the software [Hi17]. In that manner, each standard has
its own categories’ naming convention. For instance, IEC 61508 [Co10] recognizes three
categories of tools: T1 generates no output in the executable code, T2 takes care of the
testing, and T3 generates output to the executable code. T1 corresponds to no qualification,
while T2 resembles Software Verification Tools and T3 resembles Software Development
Tools. Different standards can vary in naming but they all lead to that same concept.
Examples of Development Tools are compilers, linkers, modeling tools, code generators,
code manipulators, etc. Verification Tools include test cases generators, code static analysis,
test automation, structural coverage tools, test results checker, etc.

In software engineering, the utilization of tools introduces risks but it is inevitable [Sl12]
for two reasons: first, it automates a lot of the processes which contributes to the reduction
of effort and time. Second, it eliminates the human error stemming from the manual and
repetitive work. Tool utilization risks are either introducing errors to the software or failing
to detect errors. In the light of this and out of the 4-eyes principle [Ma18], the need for tool
qualification to prove that the tool functions correctly and as intended becomes evident.

There is a common principle between all functional safety standards: “qualification of the
tool is required only when this tool replaces, reduces or automates one of the software
life-cycle processes”. However, this qualification is not required in case the output of the
target process is verified for integrity. In other words, if the activities or tasks required by a
standard rely on the correct functioning of the tool then tool qualification is a must [CSM11].

1.1 Tool Qualification Standards

Tool qualification is a process that is conducted in the framework of a functional safety
standard which is generally associated with a specific domain. Every domain has its
own safety document used in certification acquisition, e.g. RTCA DO-178C for airborne
systems [RT11a], ISO 26262 for automotive [Ro11], CENELEC EN-50128 for railways
[CE20]. Not to mention, IEC 61508 is however a multi-domain standards for functional
safety [Co10]. These standards are descriptive standards. Descriptive standards “focus on
defining requirements on appropriate environments, methods and processes to develop
safety-critical products” [AEkT12], whereas prescriptive standard “focus on giving an
exhaustive list of product features that a safety-critical product should exhibit” [AEkT12].
The first is the most dominant type in functional safety standards.



State of the Art in Software Tool Qualification with DO-330: A Survey 3

Some standards uses the term "certified toolsïnstead of "qualified tools"like in IEC 61508.
However, what mainly sets the DO-330 from the other domain-specific standards is that it
can be used in other domains/industries but only when conjugated with a domain-specific
standard [Po13]. However using it in other industries is not a common practise, mainly due
to the fact that each domain has its own standard that should be followed to be certified. In
addition, the avionic standard is more rigorous than most industries’ standards, and that
makes it an excluded option. Another difference that has a big impact on the qualification
effort is that for relatively low qualification level tools -and sometimes for all levels- it is
accepted by many standards (e.g. ISO 26262, EN 50128,IEC 61508) to use pre-qualified
tools certified by a domain authority (e.g. TÜV SÜD). For example, Parasoft tool which is
a testing solution for safety-critical systems, is TÜV SÜD certified and thus does not need
Qualification for all levels, except when used for aerospace [Co]. Sometimes pre-qualified
tools that are accepted by certification authorities need additional measures specific to
the use of the tool in order to obtain the required certification credit, e.g. Polyspace from
Mathworks [CSM11]. In contrast to other standards, TQ in DO-330 follows a methodology
that is similar to the certification of a flight software itself developed under DO-178C [Fr11],
as its main goal is providing the certification authorities evidence that the tools used on the
software lifecycle fit the safety requirements mandated by the standard.

There is no common approach for qualification, each standard has its own [CSM11]. In
general, there are four methods/approaches for tool qualification that is accepted by most
standards [Ro11]:

1. Increased confidence from use (proven in use argumentation)

2. Evaluation of the development process (process assessment)

3. Validation of the software tool in the operational environment

4. Development in compliance with a safety standard

DO-330 only accepts the last two methods. The 3rd method represents TQL-5 (the lowest
Qualification Level of DO-330), and the 4th method consists of presenting evidence of
developing the tool according to a safety standard such as DO-178C and thus it involves
input from the developer. The validation is the only method that is applicable in every
standard [WS14].

Nevertheless, all the standards share the same three phases: Planning, Analysis and
performing the Qualification [Ho20]. Planning is to determine what tools are needed, how
they are going to be used (their input and output) and what processes they replace, reduce
or automate. Following that the qualifier should analyze the impact of using the tool and
the error detection-likelihood, and based on that determine the TQL (Tool Qualification
Level). TQL term is used in DO-330, other standards have equivalent terms for it, e.g. in
ISO 26262 it is TCL (Tool Confidence Level). The standards require that tool users classify
the tools by performing risk assessment that shows what impact tool error might have on



4 Mohamad Ibrahim, Umut Durak

the final safety-critical system [KRH15]. Finally, performing the Qualification based on one
of the methods mentioned above.

Structure of the paper. Section 2 is a summarization of the most important aspects of the
DO-330. In section 3 listed the most important aspects that are found during the literature
scan but not explicitly described in the standard document. Section 4 dedicated to tool
qualification kits, their purpose, usage, content and examples. In section 5 we discuss
challenges, limitations and important considerations. Finally, we conclude in section 6.

2 Theoretical Tool Qualification Aspects

The use of tools to assist software development exist since the early days of assembler
programs [BB03]. Nonetheless, there was no mention of tool qualification until the release
of DO-178B in 1992. The process of tool qualification in DO-178B was briefly mentioned
in the document itself with no further clarification or guidance and no different roles were
addressed. Busser et al. described DO-178B in [BB03], “The requirements on tools, and
their associated qualification requirements imposed by DO-178B, have not been completely
or consistently understood by developers of the software systems that must be qualified”.
For that reason and due to the new advances in software engineering that triggered a great
diversity in tools, a new standard was needed. The purpose of the new standard was “to
tackle the complexity of new software development structure and workflows for assuring
safety”, along with its supplement DO-330 which addresses “Software Tool Qualification
Considerations”. This section will be dedicated to introducing the most important aspects
of tool qualification based on the conducted literature survey.

2.1 Tool Classification and Analysis

All the standards adopt the premise “The qualification depends on how the tool will be used
and not the tool itself” [Gr]. Thus, all qualification processes starts with evaluating the tool
impact on the process workflow of the software lifecycle. DO-178C defines three criteria
(Tool Impact) for the Tool under Qualification:



State of the Art in Software Tool Qualification with DO-330: A Survey 5

Tab. 1: DO-178C Tool Impact Criteria [RT11b]

Criteria 1 corresponds to Development Tools category from DO-178B, while Criteria 2 and
3 represents verification tools. Criteria 3 tools should be extended to Criteria 2 if they are
used for eliminating or reducing a process that is mandated to be used by DO-178C in the
Software Lifecycle. [Po13] presents an example that demonstrates this. A proof tool can
be used to automate verification of source code, thus criteria 3 is applicable in this case.
However, if the tool user claimed that the verification eliminates the need to check for a
class of error then criteria 2 becomes applicable. Important aspect worth noting is analysing
the tool impact should not be outside the tool context, instead, it should take into account
the way the impact of the undetected errors may be leveraged or mitigated by subsequent
tools or processes [Ca14].

Based on the criteria of the tool, finding the TQL is a matter of table lookup activity. The
following table determines the TQL:

Tab. 2: TOOL QUALIFICATION LEVEL DETERMINATION

Software Criteria
Level 1 2 3
A TQL-1 TQL-4 TQL-5
B TQL-2 TQL-4 TQL-5
C TQL-3 TQL-5 TQL-5
D TQL-4 TQL-5 TQL-5

The TQ processes benefit from the detailed information provided by the tool analysis and
classification phase. The provided information identifies potential errors that should be
proved to be absent, contained or avoided by following safety guidelines or by certain
measures.



6 Mohamad Ibrahim, Umut Durak

2.2 Qualification Lifecycle and Processes

Software quality cannot be added to a product after it is developed [Hi17]. Thus, DO-330
defines TQ lifecycle processes (Fig.1 adopted from [MM17]) to qualify the tools and meet
the required quality and assurance:

1. Tool Operational Process

2. Tool Planning Process

3. Tool Development Process

4. Tool Verification Process

5. Integral Processes is done throughout the entire tool qualification lifecycle.

Tool Lifecycle Processes (under RTCA DO-330)

Software Life Cycle Processes (under RTCA DO-178C)

To
ol

 P
la

nn
in

g

Tool Operational Process
Software Lifecycle
Processes are met

by the tool

Tool Operational
Testing

Tool installed in
Operational
Environment

Tool Operational
Requirements

Review
Tool Operational
Requirements

TQ need is
established

Tool Quality Assurance and Configuration Control

To
ol

 Q
ua

lifi
ca

tio
n 

Li
ai

so
n 

Pr
oc

es
s

Tool Development and Verification Processes

Verification Processes

Tool
Requirements Tool Design Tool Coding and

Integration Tool Testing

Fig. 1: Tool Qualification Lifecycle

Tool Operational Process is the user responsibility. The main objectives involved in this
process include: tool qualification need is established, TOR (Tool Operational Requirements),
tool executable code installed and TOR is validated [MM17]. This process main output
is TOR, which should be reviewed and tested against Tool Operational Validation and



State of the Art in Software Tool Qualification with DO-330: A Survey 7

Verification Case Procedures (TOVVCP) [MM17]. An important aspect of using a tool is
the human factor risk, in which the tool user may lose understanding of how to operate the
tool/toolchain. This factor is no lesser than others because the user ignorance of the tool
may lead him to false evaluation of the error sources. Therefore, the user in this process
should familiarize himself enough on the tool/toolchain’s functionality, status, operation
and needed controls [Ca14].

Tool Planning Process defines the tool qualification processes and their interaction/interre-
lationship for the TQ lifecycle. In the planning process, standards, verification environment
and development environment should be defined. Lastly, the qualifier should enumerate
the DO-330 objectives and describe how they will be fulfilled. Output data for this phase
includes: Plan for Software Aspects of Certification (PSAC), Tool Qualification Plan (TQP),
Tool Verification Plan (TVP), Tool Configuration Management Plan (TCMP), Tool Quality
Assurance Plan (TQAP) and Tool Standards (requirements, design, code).

Tool Development Process is the implementation process of the tool. High Level Re-
quirements (HLR), Low Level Requirements (LLR) and code are developed considering
traceability, transition and integration criteria in the process. It is important to distinguish
Tool Operational Requirements (TOR) that comes from the tool user and describe the
functions and features required by the Tool User, and The tool requirements which is derived
from the TOR Fig. 1. Tool (functional) requirements describes the developer prospective of
what functions and features the tool will have.

Tool Verification Processes is done sequentially in two phases, the first is the verification
of the tool functional requirements in which the tool developers’ work needs to be
verified against the intended functionality (Fig. 1 the "Tool Development and Verification
Processes"block). Secondly, is the tool operational verification and validation process in
which the tool user’s work needs to be verified against the intended usage (Fig. 1 the "Tool
Operational Process"block). Verification of the operational requirements means the tool
behave as intended, and validation means that the operational requirements are correct.

2.3 Qualification Objectives

The objectives of DO-330 are listed in eleven tables in Annex A of the standard. They can
be summarized based on the target TQL [Hi17] [He20]:

1. TQL-5
• The software tools to be qualified (PSAC)

• TOR are defined

• Qualification strategy (TQP)

• Tool-specific information (SECI)



8 Mohamad Ibrahim, Umut Durak

• Ensure that TOR covers the processes eliminated or reduced in PSAC (PSAC
Coverage)

• Configuration Management: Identify and version control configuration items

• Basic quality assurance is conducted.

• TOR verification and validation

2. TQL-4
• Tool requirements management: includes defining, tracing, verifying and

validating the tool requirements.

• Establishing 5 plans: Tool Qualification Plan, Tool Development Plan, Tool
Verification Plan, Tool Configuration Management Plan and Tool Quality
Assurance Plan

• Development of integration of the tool

• More rigorous configuration management

• Tool executable code is compatible and robust with the tool requirements

3. TQL-3
• Requirements, design, and code are verified against standards for adherence

• Transition criteria, interrelationships among processes of the tool is defined

• Tool development environment is selected and defined.

• LLR are developed and defined

• Requirements-based testing is analysed on the level of statement coverage

• Analysis of the tool data and control coupling

4. TQL-2
• Tool verification process activities should be done with independence

• External components analysis and definition

• Tool source code verification

• LLR verification

• Requirements-based testing is analysed on the level of decision coverage

5. TQL-1
• Increased independence

• Verification of external components

• Modified Condition / Decision Coverage



State of the Art in Software Tool Qualification with DO-330: A Survey 9

This numeration is an abstraction of the objectives from the standards DO-330, and additive,
meaning that each TQL includes its own objectives plus all the previous levels’ objectives.

2.4 COTS Tool Qualification

What is significance about COTS tools is that the tool is not developed from the TOR that
comes from the user [Po13]. The approach to handle this situation is described in the DO-330
section 11.3. The approach can be summarized by separating the TOR into developer-TOR
that was used to develop the Tool, and the user-TOR which provides additional constraints
on how the tool should behave in the operational environment. In case of qualifying to
TQL-4 or above the developer should provide Qualification Kit/Package to assist the user in
the qualification process. Section 4 gives deeper look into Qualification Kits. Nevertheless,
It is important to consider that the burden of tool qualification is not on the organization
developing the tool, but on the organization qualifying the tool, because tool usage reliability
depends on the user’s use of the tool rather than the generic capabilities of the tool [BB03].

In the standard DO-330 there is no clear distinction between Tool User and Tool Developer,
but certain keywords can identify the role for the task, e.g. öperational"can indicate the
task belongs to the Tool User [Po13]. The Tool user is the responsible for initiating the
Qualification process by arguing the tool’s need and level of qualification. The developer
on the other hand provides all the necessary plans that guides the tool development and
verification processes [Po13].

The tool is developed according to the plans by the tool developer, afterwards, the tool user
integrates the tool in the operational environment [Po13]. In addition to the verification
of the output of the planning, requirements, design, coding and integration processes, the
developer should conduct tests in the tool verification environment including verification of
test results and structural coverage analysis. On the user side verification and validation
activities should be conducted in the tool operational environment [Po13].

Software Quality assurance and Software Configuration Management processes is done
based on an arrangement shared between the developer and the user [Po13]. Finally,
Qualification Liaison Process is the user duty and it is based in gathering the data from the
Tool User and Developer processes [Po13]. Marques et al. [MM17] organized the user and
developer responsibilities nicely in his work (Table 3 and Table 4).



10 Mohamad Ibrahim, Umut Durak

Tab. 3: Tool User Objectives [MM17]

Tab. 4: Tool Developer Objectives [MM17]

2.5 Qualification Alternative Methods

Some tools are hard to qualify based on the DO-178C/DO-330 standard, therefore, qualifiers
usually make workarounds. The DO-330 [RT11b] mentions the possibility to use alternative
methods to qualify a tool. Potential alternatives methods according to the standard include
but not limited to: exhaustive input testing, formal methods (e.g. [Wa17] [Fr11] and [So09])
and dissimilar tools. Formal methods is the most used among the three with no literature
found that uses the other two.

Looking at other popular approaches like [BPS12], in which the authors suggest an approach
to avoid qualifying complex components in their model-based testing tools. The approach
is based on replaying the test execution against the model to identify erroneous test case
executions, and instead of qualifying the test tool they qualify the replaying mechanism and
its interface with the system under test. Other approaches depend on the use of qualified
tools to verify the output of unqualified tools as discussed theoretically in FAQ D.7 DO-
330 [RT11b], and practically in [Sl12] and [Ei19]. It is suggested in [Sl12] chaining the
tools in a way that increases the safety of the overall toolchain where some tools can act
as error sources and others as error sinks. Eisemann -the author of [Ei19]- considered



State of the Art in Software Tool Qualification with DO-330: A Survey 11

qualifying TargetLink code generator to be difficult task. Instead, the team qualified tools
EmbeddedTester and EmbeddedValidator and used them to apply verification steps required
by the DO-178C/DO-331 on the output of TargetLink.

2.6 Other Qualification Aspects

Protection as defined by DO-330 [RT11b] is "The use of a mechanism to ensure that a tool
function cannot adversely impact another tool function". It is used when a tool has multiple
functions qualified at different levels. It is noteworthy that protection is used when a tool is
used to verify an unqualified tool [Po13] and in toolchains (toolchains are discussed further
in subsection 3.3).

External components used by the tool should be described with their interfaces based on
the tool design process objectives. Then they should be verified for correctness and tested.
Examples of external tools are primitive functions provided by the operating system or
compiler runtime library, or functions provided by a COTS or open source library [RT11b].

The use of previously qualified tools is discussed in section 11.2 of DO-330. This use falls
into three aspects [Po13]:

1. Reuse of previously qualified tools that are unchanged: if TQL, lifecycle data, tool
operational environment, TOR and the tool version are still the same then the tool
needs no re-qualification.

2. Changes to the tool operational environment: in this case a re-qualification is not
needed only if the user can prove that the tool verification environment is representative
of the new tool operational environment. Additionally, the analysis shown that TOR
are still applicable in the new operational environment.

3. Changes to the tool itself: in this case the impact analysis should identify the needed
re-verification activities, e.g. “traceability analysis, data coupling and control coupling
analysis, regression testing, requirements review, etc.” [RT11b]

3 Practical Tool Qualification Aspects

This section surveys TQ literature for prominent and noteworthy aspects that come from
practical application of the standard DO-330, and not directly discussed in the standard
document itself.

3.1 Tool Qualification Level-5 vs 4+

TQL-4 and above require the certification applicant to describe all the functionalities of the
tool and do a verification and validation against the requirements [Po13]. Pothon adds, if



12 Mohamad Ibrahim, Umut Durak

the applicant cannot have the required data from the developer then he is up against three
options:

1. Qualify the tool to TQL-5

2. In case of COTS, section 11 in DO-330 allows the user to augment the data in order
to satisfy the applicable TQL objectives.

3. A tool can be qualified to TQL-5 and then use the Service History to justify qualifying
it to TQL-4.

What makes TQL-5 an attractive option for many projects is that it does not need data from
the Tool Development and Verification Processes which is provided by the developer. This
makes the tool qualification process user-dependent activity. In practice, The number of
software tools that meet TQL-4 and above is small, “the reason for this is that the effort
required for such a tool qualification is certainly a factor of 3-10 greater than a qualification
according to TQL-5” [He20]. Further analysis of the methods shows what each TQL’s
equivalence is [He20]:

Tab. 5: TOOL QUALIFICATION TQL’s EQUIVALENCE

TQL Equivalent DAL
TQL-1 DAL A
TQL-2 DAL B
TQL-3 DAL C
TQL-4 DAL D

From our experience in research projects we recommend that qualifier aims for TQL-5,
since it produces fast results suitable to meet early milestones. Then at later stages, moving
to TQL-5 can be easily be built upon previous TQL-5 data plus new documents and
proofs about tool design, tool verification and validation and tool and lifecycle environment
configuration. In addition, plans should be provided: TQP, TDP, TVP, TCMP and TQAP.

3.2 Qualification Common Cases

Tools which typically reside in categories like: requirements management, configuration
management/data management, and quality management can be excluded from the tool
qualification process [Hi17]. Hilderman et al. adds on the other hand, compilers, assemblers,
and linkers are typically Criteria 1 tools, but their output is often checked by another
verification activity (i.e. review or testing). Thus, in most cases they do not require
qualification.



State of the Art in Software Tool Qualification with DO-330: A Survey 13

AutocodeGenerator (ACG) is an example ofCriteria 1Tool that require tool qualification. The
rationale behind qualifying such a tool is to eliminate the code verification process performed
for every version of the software, and instead qualify the ACG once by claiming certification
credit for the repetitive verification process that was eliminated [Po13]. Other types that is
qualified in practice are: implementation tools that produce code representations, simulation
tools and Binary translation tools such as cross-compiler or format generator [Hi17].

Examples of Criteria 2 and 3 tools which may require qualification include [Hi17]:

1. Tools that automate code reviews and design reviews against standards

2. Tools that generate test cases and/or procedures from requirements

3. Tools that determine pass/fail status

4. Tools that track and report structural coverage results

5. Tools which determine requirements coverage results.

We explore practical qualification example that consider different operational scenarios
which require different TQLs [KRH15]. Krauss et al. [KRH15] present a qualification
example of a safety analysis tool, specifically System-Theoretic Process Analysis (STPA).
The tool identifies the system potential errors and hazards based on the Systems-Theoretic
Accident Model and Processes (STAMP) accident model [Le04].

The authors distinguished four operational scenarios of the tool. The first scenario, the tool’s
output is manually verified for completeness and consistency, and according to DO-330
this case does not need any further qualification’s effort. For the second scenario the tool is
used as a modeling tool without manual verification of the output. Because the verification
process is skipped criteria 2 is selected and the corresponding level is TQL-3 for level A and
TQL-4 for level B to D. In the third scenario the tool output models are used for verification
(e.g. formal model checker). In this case the tool is used as a verification tool, which might
fail to detect an error, therefore criteria 2 still applies in scenario 3. The last operational
scenario suggested in [KRH15] is to use the tool as Autocode generator as a safety control
loop to identify new errors stemming from the generated code. In this case the tool might
introduce an error in the final software if there is an error with STPA data, therefore criteria
1 is applied.

3.3 Toolchain

The standards discussed in 1.1 define how to classify each tool individually. However,
dealing with a toolchain implies extra effort to ensure that the tool integration does not
introduce new errors [CBT14]. Toolchain is the orderings of the engineering tools which the
software product will transit through [AEkT12]. Tool integration can be defined as “what



14 Mohamad Ibrahim, Umut Durak

supports the development process in correctly moving from one engineering tool to another
in a toolchain” [AEkT12]. Examples of tool integration include data transformation and
event-based scripts in react to user or process action.

Asplund [As15] identifies certain safety-related characteristics of toolchains that should be
addressed in the qualification process:

1. Lack of traceability for completeness and consistency

2. Lack of formally defined data semantics

3. Lack of data integrity

4. Lack of automated transformations of data

5. Lack of possibility to automate tool usage

6. Lack of data mining

7. Lack of process notifications and process control

8. Lack of possibility to create customized GUIs

The authors of [Sl12] discuss how to model a toolchain, determine tool impact, identify
potential error sources and identify measures to detect and prevent them. Despite the fact
that this model was used to express tool qualification based on ISO26262, we claim that it
can be applied when qualifying using DO-330 after changing some terms. The model (Fig.
2) represents two aspects [Sl12]:

1. The toolchain structure (tools, use cases and artifacts)

2. The tool confidence (potential errors and assigned checks or restrictions)

When modeling toolchains, there are generally two approaches. A bottom-up approach,
in which tools are handled as separate units which may result in ignoring risk introduced
by integration. The second approach is a top-down approach for toolchain modelling and
qualification, this approach starts with tasks rather than technology [As15] and takes into
account risks that stems from the interaction of the toolchain.

A top-down approach is presented in [AEkT12]. The proposed approach organizes devel-
opment efforts in tool qualification and handle different types of safety constraints from
top to bottom. This approach splits the the process to four layers that start from the more
general to more specific development efforts. Top level is the management of development
efforts (organisation level) that imposes constraints on the next level. Below is the operator
level that represents the processes of the software lifecycle. The third level is the toolchain
level that specifies the order of the tools, it imposes constraints on the tool level, at this
level safety is ensured by addressing the previously mentioned characteristics of toolchains



State of the Art in Software Tool Qualification with DO-330: A Survey 15

Fig. 2: Domain Model for Toolchain [Sl12]

3.3. Tool level is the basic block and most specific level, here the safety is ensured through
standard software qualification taking into account constraints from higher levels.

3.4 Model-Based Tool Qualification

Model-based Tool Qualification is the utilization of models to represent, guide and evaluate
the Tool Qualification Process. Some Tool Qualification Kits are designed with the purpose
of aiding the qualification Process using models. To give an idea we show a case in point, the
tool qualification model from [SB13] is split into three models. The first model is intended
to capture the complete toolchain, tool’s features and use cases. The main focus of the model
is tracking the data flow within the toolchain -called SStructural Model". This model is then
enriched with certain measures associated with features to mitigate potential error types
-called Änalysis Model". Finally, a model that represents the test cases and their assigned
potential errors. The TQP for Testwell CTC++ [WS14] uses this qualification model in their
approach. A big advantage of the model-based qualification kits/methods is that it is simple
to extend the model with new test cases designed by the user. The construction and the
usage of the tool qualification model is depicted in Fig. 3 [SB13].



16 Mohamad Ibrahim, Umut Durak

Fig. 3: Tool Qualification Model [SB13]

4 Tool Qualification Kit/Package

Approving the tool for use when developing according to a functional safety standard
is usually a documentation-heavy formal process. It requires time-consuming manual
completion which is prone to human error [Co]. To address this, Tool developers normally
create a Tool Qualification Kit/Package to aid the tool user in this endeavour. Slotosch et
al. [SB13] define the goal of the Qualification Kit as “the ability to qualify as many features
as possible with the fewest error reduction measures that could restrict the tool application
and functionalities”. Tool Qualification Kit aims to provide the following support:

1. Supports the tool user during the determination of the critical errors and supplies test
cases that provide confidence in the absence of the critical errors [SB13].

2. Automates the creation of the documentation required for tool qualification, e.g.
Tool Qualification Plan (TQP), Tool Classification Report (TCR), Tool Qualification
Report (TQR) [Co].

3. Reduce the amount of work depending on the selected tool’s functionalities needed
for the project [Co].

4. Provides a guide that reduces the manual testing efforts and executing automated tests
for specific capabilities and use cases [Co].



State of the Art in Software Tool Qualification with DO-330: A Survey 17

A scan of COTS Tool Qualification Kits that has a publicly accessible data, has revealed
that the most common content normally includes:

1. User manual and a starting guide

2. Tool Safety Manual (TSM)

3. Tool Qualification Plan/Plan template (TQP)

4. The default Tool Operational Requirements (TOR)

5. Tool Verification Plan (TVP)

6. Tool Configuration Index (TCI)

7. Tool Accomplishment Summary (TAS)

8. Tool Qualification Test cases/suits

9. Test automation mechanism

10. Standards data/document templates or means to generate them

11. Tool artifacts (Source code, models, etc.) to backup verification and validation

One of the main challenges of creating a Tool Qualification Kit is designing test cases that
cover the features and identifies relevant errors for a specific use case. When choosing what
tool features to be qualified using a Tool Qualification Kit we will be in one of three cases
depending on the test cases provided by the Qualification Kit [SB13]:

1. The feature cannot be used, since there are no tests that covers errors of the feature
(Red).

2. The feature can be used with the restriction that a certain set of safety guidelines is
applied to eliminate the potential errors of the feature (Yellow).

3. The feature can be used without constraints, since there are tests available that provide
evidence for the absence of the potential errors (Green).

A perfect Qualification Kit is the one that leaves the user in the third case whatever tool’s
features he chooses to use.

4.1 COTS Qualification Kits

Here we present some real Qualification Kit examples:

BTC tools TQK [Gr] can be used in two methods. The first is with the evaluation of the
development process which does not require any additional work from the Tool User side.



18 Mohamad Ibrahim, Umut Durak

BTC tools are pre-certified from TÜV Süd which covers qualification method 2 from 1.1
“Evaluation of the development process”. For the 3rd method "Validation of the software
tool", the package provides a test suit that covers 600 software unit (e.g. Simulink models).
For that reason, BTC Tool can be qualified based on DO-330 using the Qualification Kit
only to TQL-5.

Parasoft [Co] is a testing solution for C/C++ embedded application targeting safety-
critical software development. Parasoft TQK automates the process of creating the required
documentation that supports the qualification process. It includes static analysis, unit testing
and coverage of the requirements. Parasoft supports DO-178B/C and DO-330 compatible
qualification process for all of its software levels. In addition, it supports pre-qualification
as discussed in 1.1 based in the TÜV SÜD certification.

Polarion [Sib] is an application Lifecycle Management for requirements, test and quality,
change control and configuration management. The Polarion Tool Qualification Kit provides:
work items, work item linkage, workflow structure, reports templates and set of standard
use cases.

Axivion [AG] is static checker of code and design. Its Qualification Kit contains: test suits to
verify the use of standards, test automation and repetition mechanism and a set of violation
examples of the standards MISRA, CERT and AUTOSAR C++14, which allows tool user
to validate the tool.

VectorCAST [DO] is a platform addresses the automation of software verification process
of the DO-178C. In addition to test cases and templates the kit includes the developer-
TOR and Tool Qualification Document (TQD). VectorCAST has a different qualification
process approach than the previously mentioned Kits. It starts with submitting to Vector
the necessary information about the intended use and the configuration file of the tool
operational environment. Then Vector provides a customized qualification package for those
specific operational environment.

In the last example we will shed the light on is Texas Instruments C/C++ ARM compiler
TQK. This Kit allows the user to create specific use case(s) by selecting the features the user
intends to use [SB13]. The Qualification Kit includes; User manual, document templates,
TQP, TQR, TSM, Tests, Test Automation Unit, An instrumented version of the compiler to
measure the coverage and scripts to install and collect code coverage measurement.

5 Tool Qualification Challenges, Limitation and Recommendations

The COTS tools are developed by teams other than those using the software tools. Those
teams often have no background in the development of safety-related software according to
DO-178C or comparable standards [He20], which limits the qualification feasibility. Franca
et al. [Fr11] showcase an example where the development team had to use a compiler that
they had no idea how it works internally, they had no choice but to verify the output of the



State of the Art in Software Tool Qualification with DO-330: A Survey 19

compiler. However, even that was expensive and slow to perform. Finally, they decided
on making the compiler produce constant set of code patterns for each symbol. This was
possible by limiting the compiler optimizations and thus getting away with verifying small
set of patterns.

This leads to an important a consequential limitation. Mostly, tools come loaded with many
features, extensions and customization options. This load should be minimized to reduce the
qualification effort and complexity [ESD13]. Even after striping down the tool’s features,
it is still hard to verify the code against requirements manually, because it is error-prone
and time-consuming and involves line-by-line code review to satisfy objectives [ESD13].
A solution to this is the use of automated code inspection tools like SSimulink Code
Inspector" [Sia].

However, in reality the tools used for development are generally not qualified because they
cost too much and affect the ROI (return on investment) [ESD13]. An alternative is to create
an automated mechanism that verify the output of the development tools using a qualified
verification tools which discussed previously in 2.5. This fact is confirmed by [BF10], which
states that it is a common practice today to use non-qualified and non-certified development
tools in the aerospace industry, especially for compilers, linkers and code generators. Along
with the trend of not qualifying development tools goes another trend that stresses qualifying
verification tools [ESD13]. Those tools will automate the verification and validation of the
output of the non-qualified development tools. That looks to be is the meta/norm in the
industry, particularly when model-based design approach is applied.

Nonetheless, a huge downside of TQ remains that the qualified tool cannot use updates and
patches from the developers without the need of a re-qualification.

6 Conclusion

This paper has surveyed the tool qualification domain, particularly under the avionics
functional safety standard DO-178C and its supplement DO-330. It made a comparison with
other domain-specific standards and summarizes its most prominent concepts and aspects
both from inside and outside the standard document. In addition, practical qualification
cases were presented, discussed and analysed for limitations and challenges. Several
Tool Qualification Kits have been explored and a typical Qualification Kit contents and
functionalities has been induced and presented.

No doubt that tool qualification-wise the standard DO-178C/DO-330 is a substantial
improvement over DO-178B. It is better in defining clear and straightforward qualification
processes, addressing COTS tools with different roles, suggesting alternative methods
despite their rareness and sometimes unusability.

Due to the increased complexity of modern software the qualification process mandated by
DO-178C/DO-330 fall behind in two main areas. First, it does not cope with the increased



20 Mohamad Ibrahim, Umut Durak

costs of qualification. That may force the organizations to cut efforts on safety and quality
to achieve reasonable profit or drop avionics development. The second is the absence of
the acceptance of the pre-certified software tools. This can have a valid argument which
says that the reuse of software is dangerous. That is to some extent true, however one can
argue that when using the software tool in the same use case (e.g. static code checking) the
proofs of the validity of the tool does not change, especially when the tool does not affect
the behaviour of the avionic software. In addition, the current avionics standards fail on
providing the qualifier with enough flexibility in the way they prove their tools correctness
and validity.

Out of this survey, authors claim that the area of tool qualification and its methods still
posses improvement potential. The endeavour of making the tool qualification process less
vague and more time- and effort-efficient by developing and enhancing software engineering
techniques will occupy the industry and researchers for years to come.

Acknowledgment

This work is supported by the project ’Qualifizierte Software-Parallelisierung für Multicore-
Avioniksysteme’ QSMA funded by the German Federal Ministry of Economics and Energy
(BMWi)’s LuFo VI program (Grant No. 20Q1961A).

Nomenclature

𝐴𝐶𝐺 Autocode Generator

𝐶𝐸𝑁𝐸𝐿𝐸𝐶 European Committee for Electrotechnical Standardization

𝐷𝐴𝐿 Development Assurance Level

𝐼𝐸𝐶 International Electrotechnical Commission

𝐼𝑆𝑂 International Organization for Standardization

𝑃𝑆𝐴𝐶 Plan for Software Aspect of Certification

𝑅𝑇𝐶𝐴 Radio Technical Commission for Aeronautics

𝑆𝐸𝐶𝐼 Software Life Cycle Environment Configuration Index

𝑇𝐴𝑆 Tool Accomplishment Summary

𝑇𝐶𝐼 Tool Configuration Index



State of the Art in Software Tool Qualification with DO-330: A Survey 21

𝑇𝐶𝐿 Tool Confidence Level

𝑇𝐶𝑅 Tool Classification Report

𝑇𝑂𝑅 Tool Operational Requirements

𝑇𝑂𝑉𝑉𝐶𝑃 Tool Operational Validation and Verification Case Procedures

𝑇𝑄 Tool Qualification

𝑇𝑄𝐾 Tool Qualification Kit

𝑇𝑄𝐿 Tool Qualification Level

𝑇𝑄𝑃 Tool Qualification Plan

𝑇𝑄𝑅 Tool Qualification Report

𝑇𝑆𝑀 Tool Safety Manual

𝑇𝑉𝑃 Tool verification plan

𝑇𝑉 Technical Inspection Association

Bibliography
[AEkT12] Asplund, Fredrik; El-khoury, Jad; Törngren, Martin: Qualifying Software Tools, a Systems

Approach. In (Ortmeier, Frank; Daniel, Peter, eds): Computer Safety, Reliability, and
Security. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 340–351, 2012.

[AG] Axivion-GmbH: , Tool Qualification Kit - Axivion.

[As15] Asplund, Fredrik: The future of software tool chain safety qualification. Safety Science,
74:37–43, April 2015.

[BB03] Blackburn, Mark; Busser, Robert D: Guidelines for Software Tool Qualification. 2003.

[BF10] Beine, Michael; Fleischer, Dirk: AModel-Based ReferenceWorkflow for the Development
of Safety-Related Software. pp. 2010–01–2338, October 2010.

[Bo17] Boulanger, Jean-Louis: Certifiable software applications. 2, 2,. 2017. OCLC: 964698597.

[BPS12] Brauer, Jörg; Peleska, Jan; Schulze, Uwe: Efficient and Trustworthy Tool Qualification for
Model-Based Testing Tools. In (Nielsen, Brian; Weise, Carsten, eds): Testing Software
and Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 8–23, 2012.

[Ca14] Camus, Jean Louis; Pothon, Frédéric; Dewalt, Michael; Ladier, Gérard; Boulanger, J.-L;
Blanquart, Jean-Paul; Quere, Philippe; Ricque, Bertrand; Gassino, Jean: Tool Qualification
in Multiple Domains: Status and Perspectives. 02 2014.



22 Mohamad Ibrahim, Umut Durak

[CBT14] Cecile Braunstein, Jan Peleska, Stefan Rieger; Torre, Izaskun De La: Toolchain Qualifica-
tion Process Description. openETCS ,ITEA2 Project, jan October 2014.

[CE20] CENELEC: EN 50128 - Railway applications - Communication, signalling and processing
systems - Software for railway control and protection systems. jun 2020.

[Co] Corporation, Parasoft: , Parasoft Tool Qualification Kits for Certification.

[Co10] Commission, International Electrotechnical: IEC 61508 - Functional Safety of Electrical/-
Electronic/Programmable Electronic Safety-related Systems. jun 2010.

[CSM11] Conrad,Mirko; Sandmann, Guido;Munier, Patrick: Software Tool Qualification According
to ISO 26262. In: SAE 2011 World Congress & Exhibition. SAE International, apr 2011.

[DO] DO-178/ED-12 Tool Qualification - Vector.

[Ei19] Eisemann, Ulrich: Applying Model-Based Techniques for Aerospace Projects in Accor-
dance with DO-178 C , DO-331 , and DO-333. 2019.

[ESD13] Estrada, Raymond G.; Sasaki, Gen; Dillaber, Eric: Best practices for developing DO-178
compliant software using Model-Based Design. In: AIAA Infotech@Aerospace (I@A)
Conference. American Institute of Aeronautics and Astronautics, Boston, MA, August
2013.

[Fr11] França, Ricardo Bedin; Favre-Felix, Denis; Leroy, Xavier; Pantel, Marc; Souyris, Jean:
Towards Formally Verified Optimizing Compilation in Flight Control Software. p. 10
pages, 2011.

[Gr] Gros, Markus: , When and how to qualify tools according to ISO 26262 · BTC ES.

[He20] Heininger, Martin: , RTCA DO330 - The standard for tool qualification, July 2020.

[Hi17] Hilderman, Vance: DO-330: TOOL QUALIFICATION OVERVIEWFOR AVIONICS
ENGINEERS AND MANAGERS. www.afuzion.com, 2017.

[Ho20] Horvath, Kristof: , Confidence in Software Tools: Tool Qualification in Safety-critical
Development, January 2020.

[KRH15] Krauss, Sven Stefan; Rejzek, Martin; Hilbes, Christian: Tool Qualification Considerations
for Tools Supporting STPA. Procedia Engineering, 128:15 – 24, 2015. Proceedings of the
3rd European STAMP Workshop 5-6 October 2015, Amsterdam.

[Le04] Leveson, Nancy: A new accident model for engineering safer systems. Safety Science,
42(4):237 – 270, 2004.

[Ma18] Martin Heininger: , IEC 61508 – Tool qualification – When? Why? How?, May 2018.

[MM17] Marques, J.; Marques da Cunha, A.: COTS tool qualification using RTCA DO-330:
Common pitfalls. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference
(DASC). pp. 1–6, 2017.

[Po13] Pothon, Frédéric; Pomies, Laurent; Comar, Cyrille; Delseny, Hervé; Ben Brosgol, Ben:
DO-330/ED-215 Benefits of the New Tool Qualification Document. ACG Solutions, jan
2013.



State of the Art in Software Tool Qualification with DO-330: A Survey 23

[Ro11] Road vehicles – Functional safety, jan 2011.

[RT92] RTCA: DO-178B Software Considerations in Airborne Systems and Equipment Certifica-
tion. Radio Technical Commission for Aeronautics, 1992.

[RT11a] RTCA: DO-178C Software Considerations in Airborne Systems and Equipment Certifica-
tion. Radio Technical Commission for Aeronautics, 2011.

[RT11b] RTCA: DO-330 Software Tool Qualification and Considerations. Radio Technical
Commission for Aeronautics, 2011.

[SB13] Slotosch, Oscar; Beemster, Marcel: Model-Based Tool Qualification of the TI C/C++
ARM® Compiler. 2013.

[Sia] Simulink Code Inspector.

[Sib] Siemens: , Polarion, Tool Qualificaiton Kit.

[Sl12] Slotosch, Oscar; Wildmoser, Martin; Philipps, Jan; Jeschull, Reinhard; Zalman, Rafael:
ISO 26262 - Tool chain analysis reduces tool qualification costs. In (Plödereder, Erhard;
Dencker, Peter; Klenk, Herbert; Keller, Hubert B.; Spitzer, Silke, eds): Automotive - Safety
& Security 2012. Gesellschaft für Informatik e.V., Bonn, pp. 27–38, 2012.

[So09] Souyris, Jean; Wiels, Virginie; Delmas, David; Delseny, Hervé: Formal Verification of
Avionics Software Products. In (Cavalcanti, Ana; Dams, Dennis R., eds): FM 2009:
Formal Methods. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 532–546, 2009.

[Wa17] Wagner, Lucas G.; Cofer, Darren; Slind, Konrad; Tinelli, Cesare; Mebsout, Alain: Formal
Methods Tool Qualification. NASA STI Program, NASA/CR–2017-219371, feb 2017.

[WS14] Wildmoser, Martin; Slotosch, Oscar: , Tool Qualification Plan for Testwell CTC++, nov
2014.


