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Model-based Monitoring of Integrated UML State Machine
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Abstract: Logging and monitoring are important in long-living software to understand how the
software behaves in production. In current model-based software development technology, monitoring
information is still either shown for the code level or the model level. The mapping between runtime
information from the generated—and usually manually extended—code and the model has to be made
manually. In this paper, we present an approach for creating integrated model/code runtime views for
UML state machines in Java code, by exploiting code generation templates that allow for mapping
models and code at runtime. We evaluated the applicability of our approach and the performance of
our prototype tool in artificial use cases. We found that the approach is applicable in that context, but
that there is a considerable performance overhead in the current implementation.
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1 Introduction

Logging and monitoring [vHWH12] are central concepts for maintaining long-living
software systems. While many software systems use logging and monitoring to collect
information about the current status of the execution and its history, this information alone is
insufficient in model-based software engineering (MBSE) [Vö06]. Model-based systems are
to some extend developed on a higher level of abstraction than the source code. These models
of the system are used for generating code. Further code is implanted into the generated
code as behavior descriptions, and contextual code links the generated code. Monitoring
then happens via logging on the level of source code, by using source code log statements
to capture state changes or similar events that happen during the execution of software. The
information attached to a log event is usually a timestamp and brief description of the event
in question. There are challenges with this type of logging in MBSE: (C1) Where and how to
log events is usually not specified for a project but is left to the developers. When there is no
such clear logging concept, the logging of events is not systematic and therefore often does
not provide a good source of information. (C2) Log events can answer the question of what
happened (observed behavior), but it does not answer why it happened and what should
have happened (intended behavior). This is a problem because the deviations between the
observed behavior and the intended behavior are of special interest.
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A systematic logging with relations to the model and the code can help to overcome
these challenges for a more efficient monitoring and debugging process of model-based
systems. Model-based development has the potential to improve logging by employing
code-generation techniques. When logging is implemented into code generation templates,
log events can be systematically generated. But this log information only explains the
model-based behavior. If the implanted or contextual code has issues or uses the generated
code in a wrong way, code-based logging information is necessary. To holistically learn
about the behavior, log information needs to explain the behavior on the model-level and on
the code-level in combination. In this paper, we present our approach to integrated logging
and monitoring of UML state machine models in Java source code. Our contributions
are specifically: (1) a method for an integrated monitoring of UML state machines and
the execution of Java code, (2) code generation templates for UML state machines, that
incorporate systematic logging on the model and the code-level, (3) a prototype tool that
implements the method and code-generation, and (4) an application and performance
evaluation of our tool in artificial use cases.

We present an approach to create a unified view on the system behavior, that gives access
to logged events at runtime, showing the code and model level, taking the meta model
information into account for providing context information to developers. The remainder
of this paper is structured as follows: Section 2 presents an example use case. Section 3
describes our approach on a conceptual level. Our implementation is sketched in Section 4.
Section 5 shows the application on a model-based implementation of an ATM and discusses
our approach. We describe related work in Section 6 before we conclude in Section 7.

2 Motivation Example

This section introduces a running example use case for showing the benefits of our approach
for logging and monitoring with integrated UML state machine models and code. We will
show the logging via the evaluation of state machine transition guards. For this event, we
describe all the steps from the meta model specification to the monitoring system.

State machines are a powerful and intuitive tool for describing how a system reacts to events.
It comprises states and transitions between states. Each state represents a specific behavior
and transitions define changes between states depending on events and conditions. When the
state of the state machine is changed, the observed behavior of the state machine changes
too. Harel [Ha87] introduced the concepts of nesting and orthogonality to state machines,
which were adapted by Object Management Group (OMG) for the UML Unified Modeling
Language (UML) [OM17]. UML is a widely used general-purpose modeling language. In
this work, we use UML state machines as the meta model for state machines.

As a use case, we have chosen an automated teller machine (ATM) which we want to
monitor during its execution (see Fig. 1). The ATM consists of multiple states and reacts to
events. A customer of a bank using the ATM would usually find the machine in an idle state.
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When a bank card is inserted, the machine will start serving the customer. The card will be
read for authentication, a transaction will be selected and executed, and finally, the card
is ejected. After this, the machine goes back to the idle state for the next customer. Other
states define the behavior when the machine starts up or when an error occurs.

BankATM

 Init

Off

Idle

SelfTest

Maintenance OutOfService

ServingCustomer

 Init

Authentication SelectingTransaction Transaction

 FinishedServing

/entry readCard()
/exit ejectCard()

 

 

 

Service

Failure

Service

 

[selfTestPassed()]TurnOff / shutDown()

Failure

TurnOff / shutDown()

TurnOn / startUp()

CardInserted Cancel
 

    

Failure

Fig. 1: UML state machine model of an automated teller machine (ATM). Guard and effect names are
simplified for presentation purposes.

3 Integrating Runtime Information of UML State Machine Models
and Code

In this section, we give an overview of the methods and artifacts used and generated in our
work. Fig. 2 shows the artifacts of this work and their relations. The state machine elements
must be mapped to corresponding code templates that implement the execution semantics.
Based on the templates, code can be generated, that implements two artifacts: code that
contains the business logic and the instrumentation code for logging. We deliberately chose
to separate both artifacts. This allows, e.g. a programmer, to only focus on the business logic.
The instrumentation code is later weaved together with the business logic. The resulting
artifact is instrumented code, which is an executable representation of the model. Executing
the instrumented code will generate events that can be captured and analyzed by monitoring
logic. We created a list of events to capture during the state machine execution from
systematically analyzing the semantics of each element in the meta model. The monitoring
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Fig. 2: The artifacts of this work and their relations.

logic takes events and resolves code, model, and meta model information that are related to
the observed event.

3.1 Connecting model and code

Modeling is not new to software development. Models have long been used to document
the inner structure of software. However, models do not always have the same status
as code. Manually updating the model is time-consuming and therefore expensive. This
leads—especially when deadlines have to be met—to neglecting to update the model. As a
result the models become outdated and less useful [Vö06]. MBSE gives the model the same
meaning as the source code. The model is not only used as documentation, but as a part of
the software that can increase the quality and the speed of software development [Vö06].

In this work, we build on themodel integration concept (MIC) of Konersmann [Ko18, KG20],
which defines mappings and transformations between model elements and model-
representing code, taking non-generated code into account. With the MIC, modeling
languages can be used to describe abstract design aspects, while code describes implementa-
tion details. However, the MIC focuses on models at design time only and does not consider
runtime information and monitoring. We propose a mapping between UML state machines
and Java that is suitable for logging purposes. The resulting code is made be embedded into
a contextual code and allows for embedding implanted code.

Existing patterns for implementing state machines (e.g., [Ga96, Fo04, Go15, HJ17]) do not
consider integrated logging on the model and code level. In Tab. 1 we give a high-level
overview of our mapping. A detailed definition can be seen in [Eh19]. We represent states
as classes, similarly to the state pattern from Gamma et al. [Ga96]. While the state pattern
gives hints to structure the code template, it leaves multiple challenges. The pattern does not
account for nesting or orthogonality, since it uses a much simpler meta model that has no
concept of regions. We use packages in Java to represent regions, which helps us to group
nested states. Further, the state pattern raises questions on where the transitions are defined.
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Meta Model Element Representation in Code

StateMachine Class
Region Package
Vertex (Abstract) Only concrete subclasses are represented in code
State (Subclass of Vertex) Class
FinalState (Subclass of State) Class
Pseudostate (Subclass of Vertex) Class
Transition Method in source Vertex Class

Tab. 1: Table of the main elements of the meta model and their representation in code.

In our solution transitions are located in and handled by the source vertex. One condition
to fire a transition is that the source vertex has to be active. Since we maintain the active
vertices in a tree structure (state configuration) we can efficiently evaluate guards to check if
a transition can fire. No check is required to test if a vertex is active.

Fig. 3 shows a visual representation of our code template for a transition. The left column
shows the meta model for state machines, the center column shows the model and the
right column shows the code. The solid boxes group elements belonging to a transition,
the dashed boxes highlight the constraint (guard), the dotted boxes highlight the behavior
(effect). Monitoring a guard is part of our running example.

public boolean tryTransitionTransition1() {
  return testTransitionTransition1() 

              && doTransitionTransition1();
}

public boolean testTransitionTransition1() {
  return transitionGuardTransition1();

}

public boolean transitionGuardTransition1() {
  return (context.getImplantedCode().guard1());

}

public void transitionEffectTransition1() {
  context.getImplantedCode().effect1();

}

Model CodeMeta Model

TransitionExample

State1

[guard1()]  /  effect1()

State2

Transition1

Fig. 3: Code template of the UML transition element.

3.2 Connecting code and monitoring

Analyzing the semantics of the meta model gives us insights into critical points in the state
machine execution. For each meta model element, we created a list of events that cover
these critical points. Tab. 2 shows an excerpt of the list of events. The first column shows
the name of the event, the second column shows when the event is registered, and the last
column shows the point in the code where the event is registered in form of an AspectJ
[CCH04] notation in relation to the code representation in Tab. 1.
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Monitoring Event Position Pointcut signature

TransitionCompletionEvent after public boolean Vertex+.doTransition*()
TransitionStartEvent before public boolean Vertex+.doTransition*()
TransitionEffectBehaviorFinishedEvent after public void Vertex+.transitionEffect*()
TransitionEffectBehaviorStartEvent before public void Vertex+.transitionEffect*()
TransitionGuardEvaluationEvent around public boolean Vertex+.evaluateGuard*()
TransitionTestedEvent after public boolean Vertex+.testTransition*()

Tab. 2: An excerpt of the captured events that concern transitions.

For each event, we create a description and a list of information that helps to understand
the event. We distinguish the information by its origin. Runtime information is captured
during runtime, while code, model, and meta model information can be obtained from the
respective artifacts. In Fig. 4 we show the TransitionGuardEvaluationEvent as an example.
The evaluation of the guard is of special interest for monitoring, since this information
explains why a transition is executed or not. All monitoring events contain a timestamp of
the event’s occurrence and the current state configuration. Both are runtime information.
Additionally, each event will contain information about the current location in the code and
the method signature.

TransitionGuardEvaluationEvent

This event is generated when a transition guard is evaluated.

Attached Information

• Runtime: A timestamp of the event occurrence
• Runtime: The current state configuration
• Runtime: The boolean value of the guard
• Code: The location in the source code where the monitoring event is generated
• Code: The signature of the method where the monitoring event is generated
• Model: The transition
• Model: The source vertex of the transition
• Model: The target vertex of the transition
• Meta-Model: The type of the element

Fig. 4: An example of an event captured for monitoring, with a description of the event and attached
information.

Using a systematic model-based approach to instrument the code has multiple benefits: The
first observation is that this step does not require manual interaction with the source code.
Rules can be defined for how the monitoring statements are inserted. When the code is
automatically instrumented based on rules, the statements are generated in a uniform and
systematic way. Defining these rules forces us to think about which events are relevant for
monitoring.
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4 Implementation

In this section, we describe how we implemented the tool prototype for our approach. The
input of our tool is a UML state machine model. The outputs are instrumentation code
and code that implements the business logic in Java. Both are woven together to get the
instrumented code. During execution of the instrumented code, events are submitted to a
monitoring system, which enriches the events with model information and allows us to
query for specific information. We go on by describing each artifact and component in
detail.

We use the Eclipse Papyrus Modeling environment3 version 4.8.0 to create our models.
This allows us to graphically model and save UML state machines. The models are saved
using the XML Metadata Interchange (XMI) [OM15], a standardized XML interchange
format widely used in the industry for exchanging UML models.

The code template is defined with Xtend4 template expressions. Xtend is a general purpose
programming language related to Java. Since we only use the template expressions of that
language for code generation, we will not go further into detail about Xtend in general. When
the code is generated, the code template will transform the previously defined state machines
model into two artifacts. First, the business logic, which is a set of Java classes grouped in a
package, that contains the the model code, including entry points the implanted code. And
second, the instrumentation code is generated. The instrumentation code comprises AspectJ
pointcuts and advices. The pointcut defines where an advice is applied.

List. 1 shows the pointcut (line 2-4) and advice (line 5-15) for the TransitionGuardEvalua-
tionEvent. The purpose of the advice is to generate the event and pass it to the monitoring
system. The first part of the advice (line 5-12) collects information that is common for all
event types. After that (line 15) information specific to that event type is added, in this case,
the return value of the guard evaluation. List. 2 shows the method in the business logic
code that is matched by the pointcut shown in List. 1. When the method is executed the
TransitionGuardEvaluationEvent is generated, populated with the desired information, and
passed to the monitoring system.

5 Evaluation

We evaluated the applicability and functional correctness of our approach by creating a
model of an artificial ATM system (see running example in Section 2) and applying the
approach via the implemented tool prototype. We also evaluated the performance of the
integrated monitoring in comparison to a non-monitored solution.

List. 3 shows the output of our monitoring system. This includes the information required
to realize a unified view of the system that provides context information to monitoring
3 https://www.eclipse.org/papyrus/

4 https://www.eclipse.org/xtend/

https://www.eclipse.org/papyrus/
https://www.eclipse.org/xtend/
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1 // TransitionGuardEvaluationEvent

2 boolean around(sm.bankATM.interfaces.Vertex vertex) :
3 execution(public boolean sm.bankATM.regionTop.SelfTest.evaluateGuardT3())
4 && target(vertex){
5 monitoring.events.MonitoringEvent event = generateEvent(

6 MonitoringEventTypes.TransitionGuardEvaluationEvent, //Event name (Event)

7 System.currentTimeMillis(), //Timestamp (Runtime)

8 vertex.getContext().getStateMachine(), //State configuration (Runtime)

9 "_478fMLfSEeqxh_nJ0zRETQ", //Model element id (Model)

10 "T3", //Model element name (Model)

11 thisJoinPoint.getSourceLocation(), //Source code location (Code)

12 thisJoinPointStaticPart.getSignature()); //Method signature (Code)

13 [...]

14 //Return value (Runtime)

15 event.getRuntimeInformation().put(RuntimeInformationKey.ReturnValue, returnValue);

16 [...]

17 }

List. 1: Commented instrumentation code for a TransitionGuardEvaluationEvent.

1 public boolean evaluateGuardT3() {
2 return (getContext().getImplantedCode().selfTestGuard());
3 }

List. 2: A code snippet representing the transition guard that will be matched by the TransitionGuardE-
valuationEvent.

events. Fig. 5 shows the relationship between a logged event in the running example: the
runtime information, the code that is executed, the model that is represented by the code,
and the meta model that describes the model type. The arrows indicate how the event log
has traces to each view of the system. The meta model information is used to resolve the
model elements’ type information.

Event

TransitionGuard
EvaluationEvent

Runtime

Time: 
1607620204856

StateConfiguration:
{SelfTest}

ReturnValue: true

Model

ModelElementName: T3
ModelElementId:  _478f[...]
Source: SelfTest
Target: Idle
NestingDepth: 0

SelfTest

Idle

[selfTestPassed()]

Code

Signature: boolean
SelfTest.evaluateGuardT3()

LineOfCode:
SelfTest.java:63
public boolean evaluate

GuardT3() {

return selfTestPassed();

}

Meta Model

Def 14: StateMachine
Def 14.1: Transition

0..1 +guard
0..1 +transition

Transition

Constraint

Fig. 5: Integrated view of model-based monitoring with linked views.

In our performance evaluation, we compared the execution times of multiple state machines
without any monitoring; with collecting monitoring events, but without resolving model
information; and with monitoring and resolving model information from the model.Without
monitoring means that the code is not instrumented. This is done by removing the AspectJ
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1 ----------------------------------------

2 [Event] TransitionGuardEvaluationEvent
3 ----------------------------------------

4 [Runtime] Time: 1607620204856
5 [Runtime] StateConfiguration: StateMachine: {SelfTest}
6 [Runtime] ReturnValue: true
7 [Code] Signature: boolean sm.bankATM.regionTop.SelfTest.evaluateGuardT3()
8 [Code] LineOfCode: SelfTest.java:63
9 [Model] ModelElementId: _478fMLfSEeqxh_nJ0zRETQ
10 [Model] Source: SelfTest
11 [Model] Target: Idle
12 [Model] ModelElementName: T3
13 [Model] NestingDepth: 0
14 [Meta Model] Type: org.eclipse.uml2.uml.Transition

List. 3: The monitoring output of the TransitionGuardEvaluationEvent of the Transition T3.

file. I.e., no monitoring statements are woven into the model representing code. With
monitoringmeans, that the code is instrumented via AspectJ. I.e., monitoring statements are
woven into the model representing code.With monitoring and model information resolution
mean, that the code is instrumented and the model is used to resolve model information
when the monitoring event is created. The model used for the performance test consists
of an initial pseudostate, the displayed number states in between, and a final state. All the
mentioned vertices are connected to the next vertex by a single transition.
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Fig. 6: The results of the performance test.

The performance test (see results in Fig. 6) shows that the monitoring system has a
considerable performance impact. With monitoring turned on, the execution time is about
200 times higher for a state machine with one state and about 12 times higher for a
state machine with 500 states. The infrastructure introduces a constant delay of about
8000 µs (see the difference without and with monitoring for one state). Resolving model
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information introduces a performance overhead. This can be managed by resolving the
model information only when needed. The monitoring system in the tool prototype was
not optimized for performance. It was developed to show the advantages of model-based
monitoring. Therefore, we suggest in future work to incorporate a monitoring framework
that is optimized for performance.

6 Related Work

Monitoring of state machines has been subject to related work for many years. To the best
of our knowledge, none provides an integrated view of runtime information on the model
and code level. In this section we briefly discuss representatives of related approaches.

Balz [Ba11] describes the integration of non-hierarchical state machines with code, without
focusing on the integration of monitoring and debugging. The MIC underlying our approach
can be considered an evolution of Balz’ work. Tan et al. [Ta08] describe an approach to
analyze existing log files by deriving a state machine. This derived state machine is used to
construct high-level analysis on the log data. Their approach shows that higher-level model
information can be used to put log information into context, while it does not answer how
state machines can be implemented or logged. Amar et al. [Am18] extract state machines
from log files to spot differences in different versions or different deployment context of one
piece of software. Jung et al. [JHS13] create an instrumentation aspect language (IAL) to
specify monitoring probes based on model information. Using the IAL in our context could
simplify the instrumentation. Heinrich et al. [He15] proposes an extensions to the iObserve
[Ha13] monitoring and analysis approach, that integrates design time and run time views
for cloud-based software. They focus on architectural models while our approach focuses
on UML state machines. Bošković et al. [BH09] suggest with MoDePeMART a declarative
specification of performance metrics in a domain specific modeling language. They focus
on performance metrics while our approach focuses on explaining behavior. Using a domain
specific modeling language to configure the instrumentation can facilitate adapting our
approach because implementation details, like the use of AspectJ, can be hidden.

7 Conclusion

This research aimed to improve debugging and monitoring of state machines with the
unique information only the model can deliver, to the benefit of model-based long-living
software systems. As challenges, we identified that (C1) logging is usually not systematic
for a project, and (C2) code-based log events describe observed behavior, but it is difficult
to derive the intended behavior when the code was generated from a model and extended
manually.

To overcome these challenges we developed a method for monitoring state machine
executions of integrated state machine models following the model integration concept of
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Konersmann [Ko18]. For this, we developed model/code mappings that are specifically
suited for logging purposes, for embedding them into contextual code, and for embedding
implanted code. These mappings were extended with systematic logging, which resolves
code, model, and meta model information at the given program state. We evaluated our
prototype using an artificial use case and a performance evaluation. The approach was
applicable in the example use case. The performance is promising, yet requires optimization
for productive use.

The use of systematic model/code mappings enables us to systematically weave instrumen-
tation code into the system (C1). In contrast to traditional logging that is focused on either
the code level or the model level, our approach presents the data in an integrated fashion. It
therefore provides the runtime information of the model-based system in the context of a
model and the code (C2). In future work we plan to extend monitoring and debugging views
in IDEs like Eclipse with the now technically joint information and employ user studies to
evaluate how the integrated views affect debugging processes.

Acknowledgements: The work presented in this paper is partially funded by the German
Federal Ministry of Education and Research (BMBF) under the grant number 01IS19084D.
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