CEUR-WS.org/Vol-2814/paper—-A6-4.pdf

S. Gotz, L. Linsbauer, I. Schaefer, A. Wortmann (Hrsg.): Software Engineering 2021 Satellite Events,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2021 1

Platform Architecture for the Diagram Assessment Domain

Meike Ullrich! Martin Forell! Constantin Houy? Peter Pfeiffer? Selina Schiiler! Tobias
Stottrop? Brian Willems? Peter Fettke? Andreas Oberweis'

Abstract: Using e-learning and e-assessment environments in higher education bears considerable
potential for both students and teachers. In this contribution we present an architecture for a
comprehensive e-assessment platform for the modeling domain. The platform — currently developed in
the KEA-Mod project — features a micro-service architecture and is based on different inter-operable
components. Based on this idea, the KEA-Mod platform will provide e-assessment capabilities
for various graph-based modeling languages such as Unified Modeling Language (UML), Entity-
Relationship diagrams (ERD), Petri Nets, Event-driven Process Chains (EPC) and the Business
Process Model and Notation (BPMN) and their respective diagram types.

Keywords: domain specific e-assessment; diagrams; modeling; micro-service

1 Introduction

In software engineering, modeling in the form of graph-based diagrams plays an important
role. This is also valid for computer science and information systems. As modeling is a
crucial aspect for the qualification of software engineering experts, teaching modeling
approaches at universities, especially using e-learning infrastructures gains more and more
importance. In the above mentioned disciplines, learning and teaching modeling languages
such as Unified Modeling Language (UML), Entity-Relationship diagrams (ERD), Petri
nets, Event-driven process chains (EPC) or Business Process Model and Notation (BPMN),
are essential core components of the curriculum [As18].

However, modeling is a complex topic as several different aspects need to be addressed
(syntactic and semantic correctness and also pragmatic aspects). Furthermore, naturally
there might be more than one correct solution for a particular modeling problem. In
large university courses with a lot of participants, teachers struggle to provide individual
feedback and coaching for every student. E-assessment systems can significantly support
this and provide valuable feedback on student diagrams. While several different approaches
regarding an automated diagram assessment have been proposed in recent years (e.g.,

! Karlsruhe Institute of Technology (KIT), Institute of Applied Informatics and Formal Description Methods
(AIFB), Kaiserstr. 89, 76133 Karlsruhe, firstname.lastname @kit.edu

2 German Research Center for Artificial Intelligence (DFKI) and Saarland University, Institute for Information
Systems (IWi), Campus D3 2, 66123 Saarbriicken, firstname.lastname @dfki.de

3 University of Duisburg-Essen, paluno - The Ruhr Institute for Software Technology, Gerlingstr. 16, 45127 Essen,
tobias.stottrop @uni-due.de

@GD Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/
mailto:firstname.lastname@kit.edu
mailto:firstname.lastname@dfki.de
mailto:tobias.stottrop@uni-due.de

2 Meike Ullrich, Martin Forell!, Constantin Houy, Peter Pfeiffer2, Selina Schiiler!, Tobias Stottrop,
Brian Willems2, Peter Fettke?, Andreas Oberweis!

[TWS06, SG14, Th16, CLP18]), these solutions have, however, remained stand-alone
applications, often only in the form of prototypical implementations.

In the collaborative research project KEA-Mod*, a methodically grounded, competence-
oriented and modular e-assessment platform is developed. It is applicable to multiple
assessment scenarios (formative/summative) and supports various modeling languages. The
platform is supposed to merge existing technical applications of the participating project
partners into a uniform, adaptable and also extensible concept. Therefore, the platform
architecture has a modular structure and is based on different inter-operable micro-services.
In this paper, the KEA-Mod platform architecture is introduced. The remainder of this article
is structured as follows. In Section 2, related work will be presented, before the KEA-Mod
platform architecture and components are described in Section 3 while explaining both
non-technical requirements and the current technical realization. Section 4 closes the paper
with an outlook on future complementing work.

2 Related work

Existing approaches regarding the diagram assessment domain described in academic
literature can be categorized basically in two classes.

High level approaches describe architectures for diagram assessment with the goal to
provide universal solutions for various diagram types and the respective modeling languages.
Furthermore, they are often concerned with the integration of assessment functionality
into a larger e-learning context. One example is the CourseMarker system [HB06]. Main
components are different environments for authoring (i) diagram notations and (ii) exercises
as well as a customizable student diagram editor. The marking component can be configured
through a marking scheme describing how to to call specific marking tools. Another
more recent system is Mooshak [CLP18], which has been extended to cover diagrammatic
languages. An integrated learning environment offers a diagram editor as well as a diagram
evaluator. A bridging component is designed to deliver feedback created by the diagram
evaluator component to the student through the diagram editor.

In contrast, low level approaches are focused mainly on the process of assessment itself,
mostly in a rather specific use case only, e.g. identifying defects in UML class diagrams
[HR11]. Actually, much effort has been put into the assessment of UML class diagrams
[SG11, RK19], other UML diagram types [SG14, TSWO08] and ERD [TWS06, STW13]
whereas only few approaches assess business process models like Petri nets [WFS13] or
EPCs [Th16] in an educational context. Even though BPMN is considered a widely spread
modeling language, no publications about assessing BPMN models in an educational context
could be identified.

4 Kompetenzorientiertes E-Assessment fiir die grafische Modellierung (KEA-Mod), funded by the German Federal
Ministry of Education and Research (BMBF) (FKZ: 16DHB3022-16DHB3026), https://keamod.gi.de/

https://keamod.gi.de/

Platform Architecture for the Diagram Assessment Domain 3

While the various approaches from the low level category cover many individual important
aspects which should be assessed in student diagrams, systems from the high level category
cover only a few diagram types up to now (ERD in CourseMarker [HB06] and ERD/UML-
class diagrams in Mooshak [CLP18]). This underlines the need for a comprehensive (high-
level) diagram assessment platform covering multiple diagram types from the considered
disciplines. As the diagram types of concern are all based on graph structures (nodes
connected via edges), existing (low-level) approaches for a specific diagram type can
be transferred to other modeling languages or even adapted towards a cross-language
assessment solution. The basic technical feasibility has been shown in e.g., [TSWO08, Fel6].

3 Platform architecture

An overview of the constituent elements of the KEA-Mod platform is depicted in the UML
component diagram shown in Fig. 1. The architectural design features a micro-service

Core Application
Frontend

«component» {]

@ 9

Ex-/Import Ex-/Import
P «component» {] «component» E P

Ex-/Import

:Author Ul :Student Ul

l l
H\ H\ «component» {]

‘ ‘ :Grading Service n

|
}«substitute»

«component» @ A4
:Backend
«component» %

Identity :Grading Service 1
Provider { «component» {]
:J < :Request Management l H\
«component» {] { {O «system» {]
:Assessment Module :Grading Queue

FOH K

O ——

«system» {]

:Database

Fig. 1: KEA-Mod platform component model

structure which is based on different inter-operable components and systems. The Core
Application and Frontend groups (visualized as packages) are each comprised of several

4 Meike Ullrich, Martin Forell!, Constantin Houy, Peter Pfeiffer?, Selina Schiiler!, Tobias Stottrop,
Brian Willems2, Peter FettkeZ, Andreas Oberweis!

components. The Backend component has been refined into two significant internal sub-
components (visualized as grey components). In the following sections, all components of
the platform architecture are described in more detail.

3.1 Frontend

The Frontend is comprised of three components each serving as an independent web
application: Author Ul, Student Ul and the Modeling Editor. The strict separation of those
components has several advantages. It is possible to use the modeling editor as a standalone
application for training or production purposes without having to log in beforehand and
devoid of assessment functionality. Moreover, having separate user interfaces for the two
main user groups of the platform provides a clear division of roles and their respective
actions plus it requires a minimal set of authorization checks. The integrated export and
import interfaces enable optional external support (see Sec. 4).

Users with the role author are granted access to the Author Ul (e.g., lecturers, course
instructors or tutors). The Author Ul is a web application offering the functionality to
create, configure and review assignments, exercises and grading schemas for the automatic
assessment. An assignment contains a set of different exercises that should be solved by
students (like a typical exercise sheet or written exam). It is possible to add established
exercises to a public exercise pool. Thus, others can simply re-use already existing exercise
material. The platform supports different exercise types which are designed to address
student’s modeling competences like diagram understanding and diagram creation. While
diagram understanding exercises can be implemented with single or multiple choice questions,
diagram creation exercises require students to draw a diagram using a modeling editor.
To control how student’s submissions to an exercise shall be automatically assessed, each
exercise includes a specific grading schema. Using such grading schemas, the assessment
can be adapted flexibly to a specific context as well as reflect individual grading preferences.
Configuring the grading schema involves the selection of available grading services (see
also Sec. 3.3) and choosing their desired weighting. While reviewing automatically assessed
submissions, it is possible to add a manual note with individual remarks or to adapt the
grading schema and rerun the assessment procedure.

The Student Ul is a web-application intended for users of the role student. This functionality
includes working on assignments by entering and handing in submissions to exercises and
displaying the corresponding assessment results. The results are prepared by the Assessment
Module in the Backend component (see also Sec. 3.2) according to the grading schema
configured through the Author Ul. Especially in a formative setup (self-directed learning),
feedback plays an important role in gradually guiding students towards a correct submission.
For this, textual feedback is generated by the grading services. In the case of exercises
regarding diagram creation, textual feedback is also linked to the related diagram elements
and displayed accordingly (e.g., using colours to highlight incorrect elements). For the sake
of transparency, the assessment of competences through the grading schema should be

Platform Architecture for the Diagram Assessment Domain 5

presented particularly in a summative setup (e.g., midterm or final exam). This implies not
only showing total scores, but also partial scores and weightings together with a description
of the involved grading services.

The Modeling Editor does not require a specific user role. Thus, it can be tightly integrated
into both the Author Ul and the Student Ul. Furthermore, it can be be used independently as
a standalone web-application. By offering graphical modeling elements of various modeling
languages and diagram types, the modeling editor supports merging existing technical
applications of the participating project partners and the development of cross-language
grading services. To achieve this, a proprietary, generic data exchange format for the
modeled diagrams is used. In addition, the user activities during the modelling process
are recorded (completely anonymously) to study the modelling process. As mentioned
before, the modeling editor can be configured through the Author Ul to restrict or expand the
available syntactical elements of modeling languages (or rather diagram types) and enable or
disable live syntax checking prohibiting users from entering syntactically incorrect solutions.
Such syntax checking might not be desirable if the learning objective to be assessed is the
knowledge of a specific modeling language syntax.

3.2 Backend

One of the two core sub-components of the Backend component is the Request management
which processes incoming requests via the Frontend components. The authentication and
authorization of incoming requests is performed by querying external identity providers of
the participating institutions and storing a pseudonymized identifier in the platform database.
Furthermore, requests are either basic create, read, update and delete (CRUD) operations
which will be passed on to the Database system, or they trigger the automatic assessment
of solutions performed by the Assessment Module.

The Assessement Module is the second of the two core sub-components of the Backend.
It takes the grading schema of an exercise and a student solution as input in order to
automatically generate an assessment. For this purpose, the selected grading services are
triggered by adding a corresponding request to the Grading Queue system (see also Sec.
3.3). As soon as all results are available and pulled from the Grading Queue, a total score of
a submission is calculated based on the provided weights. The Assessment Module then
returns the aggregated results together with the feedback generated by the grading services
to the Request Management component, which passes it on to the Database system.

3.3 Grading Queue and Grading Services

The Grading Queue system stores requests to assess submissions from the Assessment
module. Those requests are consumed by an appropriate Grading Service. A Grading Service

6 Meike Ullrich, Martin Forell!, Constantin Houy, Peter Pfeiffer2, Selina Schiiler!, Tobias Stottrop,
Brian Willems2, Peter Fettke?, Andreas Oberweis!

is an application which runs a specific analysis on a submission and returns the results
(numerical score and feedback list) back to the Grading Queue. While some grading services
might only be applicable to certain diagram types, others can be used for any diagram type
due to the generic exchange data format. Examples are pragmatic quality metrics measuring
the understandability of diagrams through e.g, counting edge crossings or checking if the
flow direction established through the arc orientation is consistent within a given process
model. The scope of grading services ranges from simple ones, which e.g. only check
for syntactic correctness, to complex ones, which e.g. check a submission for semantic
correctness, which might require the comparison of a student diagram with a sample solution
diagram.

3.4 Non-functional requirements

The core non-functional requirements which are taken into account during the development
of the KEA-Mod platform concern the usability design, data protection/security and
technical expandability. The graphical design of the Frontend user interfaces should be
simple, intuitive and consistent to allow for an efficient and easy usage. To this effect, media-
pedagogic principles and usability guidelines are considered and a usability evaluation will
be performed. To ensure data protection, the platform accesses no personal data at all and
stores only an identifier given by the external identity provider. The KEA-Mod platform as
such should be geared towards expandability. More precisely, it should be as easy as possible
to extend the platform further by integrating new diagram types or grading services.

3.5 Technical realization

Regarding the implementation, modern, popular and platform independent technologies
were chosen to increase future development by a broad basis of the community once the
source code is published. The Frontend components Modeling Editor, Author Ul and Student
Ul are designed as web applications with the JavaScript framework React, which allows
the usage on various devices. For internationalization purposes the i/8next framework is
used. Besides that, the Frontend also utilizes axios as HTTP client and Bulma for layouting
and design. The Modeling Editor makes use of the JointJS diagramming framework. The
Backend is also written in JavaScript using Node.js and Express. It implements a RESTful
API for communication with the other platform components. For the Database, we used the
relational DBMS MySQL, which is both powerful and widely used. Sequelize provides an
object-relational mapping (ORM) to the database. For realizing the Grading Queue, Apache
Kafka and Protocol Buffers (Protobuf) were used. All KEA-Mod platform components
shall be published under an open source license both as source code and easy to set-up
Docker container images to ensure transparency and foster the development of extensions
and further distribution of the platform in the higher education sector.

Platform Architecture for the Diagram Assessment Domain 7

Due to the micro-service architecture, instances of a Grading Service can be implemented
using any technology as long as they implement an appropriate communication interface.
The grading service for assessing EPCs has already been realized in a comprehensive tool
for automated process model analysis which also allows for automated model evaluation:
the RefMod-Miner (RMM)3. Existing EPC assesment functionalities [Fel5, RFL17] from
the RMM are migrated to the RMM4Py [K120] — a new python library — and will be used as
grading service instances in the KEA-Mod application. While the previous version mainly
used a CLI, the newly implemented version can be integrated as a python library. The widely
recognized e-assessment platform JACK® serves as basis for the implementation of grading
services for various UML diagrams, namely class, activity and sequence diagrams. These
services implement different techniques like trace checking [SG14] or graph-based analysis
based upon GReQL, an expression-based query language for graphs [BEOS].

4 Outlook

Besides the development of the presented platform, the transfer into the practical application
is also an important mission of the KEA-Mod project. In an upcoming pilot phase, the
platform will be used in different courses of the participating project partners. Other
institutions have already signalled interest using the platform during the final transfer phase
of the project. One of the main challenges expected here is the integration of the platform
into existing learning management systems (LMS) or other e-assessment systems.

Furthermore, the data collected through the platform can be subject of further research
under strict data protection measures. A possibility already mentioned is the study of
the modeling process observed and logged through the modeling editor. Moreover, the
application of machine learning approaches bears tremendous potential for the development
of sophisticated grading services. Here, automatically generated assessments (that have
been manually reviewed and approved) might serve as training data.

An auxiliary prospective add-on comes in the form of exercise generators for parametric
diagram understanding exercises. Here, answer options for multiple choice questions suitable
for a specific diagram are generated automatically. This saves hours of tedious manual work,
when authors are obliged to create a larger quantity of variations of similar exercises.

Bibliography

[As18] Association for Computing Machinery (ACM): , Curricula Recommendations. Online
[https://www.acm.org/education/curricula-recommendations], 2018.

[BEO8] Bildhauer, D.; Ebert, J.: Querying Software Abstraction Graphs. In: Working Session on
Query Technologies and Applications for Program Comprehension (QTAPC). 2008.

5 The RefMod-Miner website and a full function description can be found here: https://refmod-miner.dfki.de
6 JACK has a demo platform, which can be accessed without registration: https://jack-demo.s3.uni-due.de

https://refmod-miner.dfki.de
https://jack-demo.s3.uni-due.de

8 Meike Ullrich, Martin Forell!, Constantin Houy, Peter Pfeiffer2, Selina Schiiler!, Tobias Stottrop,
Brian Willems2, Peter Fettke?, Andreas Oberweis!

[CLP18]

[Fel5]

[Fel6]

[HBO6]

[HR11]

[KI120]

[RFL17]

[RK19]

[SG11]

[SG14]

[STW13]

[Th16]

[TSWOS]

[TWS06]

[WES13]

Correia, H.; Leal, J. P.; Paiva, J. C.: Improving Diagram Assessment in Mooshak. In: Proc.
Technology Enhanced Assessment (TEA). pp. 69-82, 2018.

Fettke, P.: Integration von Prozessmodellen im GroBen: Konzept, Implementierung und
experimentelle Anwendungen. In: Proc. Wirtschaftsinformatik (WI). pp. 453-467, 2015.

Fellmann, M.; Fettke, P.; Houy, C.; Loos, P.; Oberweis, A.; Schoknecht, A.; Striewe,
M.; Thaler, T.; Ullrich, M.: Evaluation automatisierter Ansitze fiir die Bewertung von
Modellierungsaufgaben. In: Proc. E-Learning Fachtagung Informatik (DeLFI). pp. 203-214,
2016.

Higgins, C.A.; Bligh, B.: Formative computer based assessment in diagram based domains.
In: Proc. Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (ITiCSE). pp. 98—102, 2006.

Hasker, R.W.; Rowe, M.: UMLint: Identifying defects in UML diagrams. Proc. Annual
Conference and Exposition (ASEE), pp. 22.1558.1 — 22.1558.14, 2011.

Klein, S.; Lahann, J.; Mayer, L.; Neu, D.; Pfeiffer, P.; Rebmann, A.; Scheid, M.; Willems,
B.; Fettke, P.: Business Process Intelligence Challenge 2020: Analysis and evaluation of
a travel process. In: 10th Business Process Intelligence Challenge at the Int. Conf. on
Process Mining (ICPM). 2020.

Rehse, J.-R.; Fettke, P.; Loos, P.: A graph-theoretic method for the inductive development
of reference process models. Softw. Syst. Model., 16(3):833-873, 2017.

Reischmann, T.; Kuchen, H.: A web-based e-assessment tool for design patterns in
UML class diagrams. In: Proc. ACM/SIGAPP Symposium on Applied Computing. pp.
2435-2444, 2019.

Striewe, M.; Goedicke, M.: Automated checks on UML diagrams. In: Proc. Annual
SIGCSE Conf. on Innovation and Technology in Computer Science Education (ITiCSE).
pp- 38-42, 2011.

Striewe, M.; Goedicke, M.: Automated Assessment of UML Activity Diagrams. In: Proc.
Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE). p. 336, 2014.

Smith, N.; Thomas, P.; Waugh, K.: Automatic Grading of Free-Form Diagrams with Label
Hypernymy. In: Proc. Learning and Teaching in Computing and Engineering (LaTiCE).
pp. 136-142, 2013.

Thaler, T.; Houy, C.; Fettke, P.; Loos, P.: Automated Assessment of Process Modeling
Exams: Basic Ideas and Prototypical Implementation. In: Proc. Workshop zur Modellierung
in der Hochschullehre (MoHoL). pp. 63-70, 2016.

Thomas, P.; Smith, N.; Waugh, K.: Automatic Assessment of Sequence Diagrams. In: Proc.
Computer Aided Assessment Conference (CAA). 2008.

Thomas, P.; Waugh, K.; Smith, N.: Using Patterns in the Automatic Marking of ER-
diagrams. In: Proc. Annual SIGCSE Conf. on Innovation and Technology in Computer
Science Education (ITiCSE). pp. 83-87, 2006.

Westergaard, M.; Fahland, D.; Stahl, C.: Grade/CPN: A tool and temporal logic for testing
colored Petri net models in teaching. In: Transactions on Petri Nets and Other Models of
Concurrency VIIL. pp. 180-202, 2013.

