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Abstract. Microstructural features of ceramic foam are numerically evaluated by 

employing statistical functions. X-ray computed tomography (CT) scans of ce-

ramic foam are utilized to compute statistical functions like two-point correlation 

function, lineal path function, etc. These functions describe the microstructure of 

the foam. Segmentation algorithms are applied to isolate the voids and study their 

shape distribution within the sample. The statistical functions are further utilized 

to determine the correct size of the stochastic volume elements (SVEs) that can 

represent the entire foam sample.  Ensemble averaging and size enlargement ef-

fects on different SVE sizes are evaluated. By comparing the statistical functions 

of the entire sample with that of the ensemble of correctly sized SVEs, a ranking 

method is developed to determine the SVE positions inside the sample that re-

semble the most with the entire sample. These SVEs are then adopted to deter-

mine the effective elastic properties of the foam sample. Finite element models 

of the selected SVEs are constructed and mixed uniform boundary conditions are 

applied to numerically determine the coefficients of effective stiffness tensor. 

Lastly, the obtained properties are compared with experimental results available 

in the literature. 
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1 Introduction 

Nowadays, composite materials are extensively used in a variety of industries including 

but not limited to aerospace, automotive, medical devices, oil and gas, electronics, etc. 

Generally, a composite material consists of discontinuous reinforcement phase distrib-

uted within a continuous medium called matrix [1]. This reinforcement phase can be 

particles of various shapes and sizes, fibers or whiskers. An exception to this definition 
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is a type of composite called interpenetrating phase composite. In these composites, 

both the phases are continuous and hence cannot be differentiated into matrix and rein-

forcement. These composites are especially beneficial when there is a need for a mate-

rial to possess contradictory properties [2]. Their manufacturing involves producing an 

open porous preform which is then infiltrated by for example a molten metal [3].  The 

manufacturing method and microstructure of this preform are highly important param-

eters as they govern the final distribution of phases in the composite.  

In this work, an alumina preform manufactured via a slurry base route [3] is studied 

numerically with an objective to quantify its microstructural features and to use them 

in determining its effective elastic properties. The preform microstructure is highly po-

rous with voids resembling spheres that are connected to each other, hence the name 

‘foam’. These voids are characterized by isolating them using image processing algo-

rithms. They are then studied to check their resemblance to spheres and their orientation 

distribution within the sample space. 

Torquato el al [4, 5] has given detailed description of various statistical functions 

that are used to describe the microstructure of heterogeneous materials. These functions 

are n-point correlation functions each uniquely describing the distribution of phases 

inside the material. They are used in the present work to describe the distribution of 

porosity within the foam sample. They are calculated for the entire sample and are used 

to derive important observations on material symmetry and homogeneity of the sample.  

In order to evaluate the effective elastic properties of the foam, it is important to 

determine the appropriate size of a volume element (VE) within the sample that can act 

as a stochastic volume element (SVE). Statistical functions are used to determine this 

size by dividing the foam sample into smaller volume elements of different sizes. These 

functions are then calculated for each VE of each size and the size effects are studied 

in terms of ensemble averaging and sample enlargement. This study results in determi-

nation of a VE size that can act as SVE to the foam sample. 

Ensemble average of the effective elastic properties of this SVE can give a good 

estimate of the effective properties of the entire sample in question. But this will lead 

to considerable computational expenses as number of VE realizations for selected SVE 

size would be large. To reduce this number, a ranking method is developed in which 

VEs are ranked based upon how close their statistical functions are to that of the entire 

sample. Based upon this, a relatively small number of VEs are selected for averaging.  

Finite element methods are predominantly used to solve structural mechanics prob-

lems numerically. These methods involve discretizing the continuous media into 

smaller defined shapes called elements within which field variables (stress, strain, dis-

placement, etc) are interpolated using shape functions. They are widely used for eval-

uating effective material properties of heterogeneous media. The ensemble of VEs se-

lected from the ranking method are meshed and mixed uniform boundary conditions 

[6] are applied to determine effective linear elastic stiffness coefficients of each VE. 

Following ensemble averaging, we get effective properties of the entire foam sample. 

Lastly, the procedure described above is validated by comparing the calculated ef-

fective properties with experimental measurements [3]. The comparison shows that sta-

tistical functions can be used to define appropriate size of SVEs and the ranking method 

helps to reduce the computational effort which would have otherwise required. 
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The article is organized into following sections: Section 2 describes the image pro-

cessing steps performed on microcomputed tomography (μCT) scans of the foam sam-

ple, segmentation of pores and their shape distribution within the sample. Section 3 

includes definition of statistical functions and their evaluation for the entire sample. 

Section 4 describes the procedure to select appropriate size of SVE. Section 5 describes 

the ranking procedure. Section 6 describes finite element calculations to determine ef-

fective elastic properties followed by comparison with experimental results. The dis-

cussion on the entire procedure is in section 7 followed by conclusions in section 8.  

2 Image Processing of μCT Data 

A cubic sample of dimensions V≈ 5×5×5 mm3 was scanned using X-ray computed 

tomography. To avoid artifacts like beam hardening on the boundaries of the cube, a 

smaller region in the interior of the sample with dimensions Vi ≈ 1.89×1.76×1.94 mm3 

was selected. Details regarding the image processing can be found in [3]. The μCT data 
is available in the form of 2D cross sections of the foam sample with each cross section 

being a grayscale image. These images are stacked one on top of other to form a 3D 

volumetric map. This is followed by removal of any noise by using median filter. Next, 

a global threshold in terms of a scalar luminance value is determined which is used to 

binarize the 3D image. This is done iteratively by altering the threshold value such that 

after binarization, the final porosity obtained by counting pore voxels matches that ob-

tained by experimental measurements. The porosity of the foam sample obtained by 

density measurements was 74.5% [3]. Hence the global threshold value is decided such 

that the porosity in binarized 3D image matches this value. After binarization, a 3D 

image with pore regions marked as ‘0’ (black color) and alumina region marked as ‘1’ 
(white color) is obtained. Lastly, an area opening operation is performed in which all 

the connected regions of alumina phase having volume less than 10 voxels are removed. 

This removes any hovering alumina regions lying within the pore phase (Fig. 1a). 

 

Fig. 1. a) Binarized 3D image before segmentation and b) after segmentation 
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It can be seen from Fig.1a that the pores are interconnected to each other.  In order 

to isolate them, a segmentation method called watershed algorithm [7] is applied. The 

resulting image is shown in Fig.1b. Thereafter, the individual pores are studied sepa-

rately to calculate their volume, surface area and orientation. Sphericity of each pore is 

also calculated which quantifies how close the shape of the pore is with respect to a 

sphere. It is defined as the ratio of surface area of an equal-volume sphere to the actual 

surface area of the pore [8]. Its expression is given as:  

 𝜓 =  𝜋1/3 (6𝑉𝑝)2/3𝐴𝑝  . (1) 

Here, 𝑉𝑝 is volume of pore and 𝐴𝑝 is surface area of pore. Fig. 2a shows cumulative 

distribution of pore sphericity with pore volume fraction. Pore volume fraction is de-

fined as volume fraction of a particular pore with respect to all the pores present in the 

sample. Note that the pores that lie at the boundary of the foam sample are not consid-

ered in this study because of lack of information about the entire pore. It can be seen 

that all the pores have sphericity greater than 0.75 and 90% of the pores have sphericity 

greater than 0.86. The maximum sphericity is 0.97. 

 

 

 

Fig. 2. a) Cumulative distribution of pore sphericity, b) orientation distribution of pores having 

sphericity 0.75<𝜓<0.85 and c) orientation distribution of pores having sphericity 0.85<𝜓<0.95 
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Orientation of each pore is calculated by approximating the pore as an equivalent 

ellipsoid using principal component analysis [9]. This is done using the ‘regionprops3’ 
function in MATLAB R2019b [10]. Spherical angles are then calculated for each pore 

from the eigenvectors obtained from the above MATLAB function. An orientation dis-

tribution function is plotted in the form of a spherical plot so that the distribution of 

pore orientations with respect to coordinate axes can be visualized. The pores are seg-

regated into two sets, one which have sphericity in the range of 0.75 to 0.85 and other 

which have sphericity in the range of 0.85 to 0.95. Figs.2b and 2c show the orientation 

distribution of these pores respectively with the colormap showing pore volume frac-

tion for each orientation. 

3 Microstructure Studies Using Statistical Functions 

In the theory of modelling random media, a wide variety of statistical functions have 

been used to define the distribution of phases within the heterogeneous medium [5]. 

This section describes five such functions that are employed in this article. 

3.1 Two-point Correlation Function 

Consider a n-dimensional 2 phase microstructure in which phase i occupies volume 

fraction 𝑣𝑖 . An indicator function is defined such that: 

 𝐼(𝑖)(𝒙) =  {1,              𝒙 ∈  𝑉𝑖  0,         othervise  (2) 

where, 𝑉𝑖 is the region occupied by the phase i. The two-point correlation function is 

defined as: 

 𝑆2(𝑖)(𝒙𝟏, 𝒙𝟐) =  〈𝐼(𝑖)(𝒙𝟏) 𝐼(𝑖)(𝒙𝟐)〉. (3) 

It is defined as the probability of finding two points at positions 𝒙𝟏 and 𝒙𝟐 in the 

same phase in the medium. The brackets indicate ensemble average. For statistically 

homogeneous and isotropic medium, the two-point correlation function depends only 

on the magnitude of the distance between the two positions 𝑟 = |𝒙𝟏 − 𝒙𝟐|. Hence it 

can be expressed in the form 𝑆2(𝑟). This function gives an indication of the distribution 

of the phase within the medium. 

3.2 Two-point Cluster Correlation Function 

It is defined as the probability of finding two points at positions 𝒙𝟏 and 𝒙𝟐 in the same 

cluster (region of connected voxels of the same color) of the phase of interest in the 

medium. For statistically homogeneous and isotropic medium, this function depends 

only on the magnitude of the distance between the two positions  𝑟 = |𝒙𝟏 − 𝒙𝟐|. Hence 

it can be expressed in the form 𝐶2(𝑟). This function is a superior descriptor in the sense 

that it gives an idea of the connectedness of the phase of interest [11]. 
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3.3 Lineal Path Function 

It is defined as the probability of finding a line segment spanning from 𝒙𝟏 to 𝒙𝟐 that 

lies entirely in the phase of interest. The function contains some connectedness infor-

mation along the lineal path (length of the segment) and hence contains certain long-

range information about the medium. For statistically homogeneous and isotropic me-

dium, the lineal path function depends only on the magnitude of the distance between 

the two positions 𝑟 = |𝒙𝟏 − 𝒙𝟐|. Hence it can be expressed in the form 𝐿(𝑟). 

3.4 Pore Size Distribution Function 

The pore size distribution function, 𝑃(𝛿) is defined in such a way that 𝑃(𝛿)𝑑𝛿 is the 

probability that a randomly chosen point in the pore phase (any phase of interest) lies 

at a distance between 𝛿 and 𝛿 + 𝑑𝛿 of the nearest point on the pore-solid interface. This 

function contains connectedness information about spherical regions in the pore phase. 

It can only be obtained from 3D images of the medium. 

3.5 Cumulative Pore Size Distribution Function 

It is defined as the probability 𝐹(𝛿) of the sphere of radius 𝛿 having its centre in the 

pore phase lie entirely in the pore phase. It is the fraction of the pore space that has pore 

diameter greater than 𝛿. 

Along with these functions, two one-point correlation functions called volume frac-

tion and percolation volume fraction are also used in this article. Pore regions can either 

be connected or disconnected to each other. The fraction of the pore phase that perco-

lates (connects) over the total volume of the phase in the medium is termed as percola-

tion volume fraction. It is defined as ratio of the volume of largest cluster of connected 

pores to that of entire pore volume present in the medium. 

For isotropic medium, it is sufficient to calculate 𝑆2(𝑟), 𝐶2(𝑟) and 𝐿(𝑟), only in the 

orthogonal directions [4]. This reduces the computational costs drastically as compared 

to brute force method in which these functions are calculated at all voxel positions and 

in all directions within the sample. Pore size distribution function can be directly eval-

uated by calculating the Euclidean distance transform of a binary 3D image. The result 

gives a 3D matrix in which each element is the distance between that voxel and the 

nearest nonzero voxel (or voxel from different phase) in the binary image. This matrix 

can be used to bin the voxels based upon the value they possess. The number of voxels 

in each bin is normalized by the total number of voxels in the phase of interest. A graph 

of these values with respect to corresponding bin value of 𝛿 is plotted. For calculating 

cumulative pore size distribution function, the transformed matrix obtained while de-

termining the pore size distribution function is used and the unique values of 𝛿 are 

determined and stored in a column vector. Then at each position of the transformed 

matrix, all the values lower than its value in that position are selected. Then counters 

corresponding to each of those values are increased. This process is repeated at each 

voxel element of the transformed matrix. Finally, the values of each counter are nor-

malized by the total number of voxels in the phase of interest. A graph of these values 
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with respect to the corresponding value of δ is plotted. To calculate percolation volume 

fraction, the volume of each cluster determined while finding two-point cluster corre-

lation function is calculated and divided by the total volume of the phase of interest. 

The maximum of these volume fractions is the percolation volume fraction. 

For selected foam sample, all these functions are calculated using above described 

methods to study distribution of pore phase. Note that from here onwards the binary 

image before segmentation is used. The results are given in Figs. 3a-3e and Table.1. 

 

Fig. 3. a) Two-point correlation function; b) Two-point cluster correlation function; c) Lineal 

path function; d) Pore size distribution function; e) Cumulative pore size distribution function of 

the alumina foam sample. 
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Table 1. One-point correlation functions 

Volume fraction v 0.745 

Percolation volume 

fraction 𝑣∗ 
0.999 

 

It is observed that for the selected microstructure, since the percolation volume frac-

tion is close to 1, there is no difference between two-point correlation function and two-

point cluster correlation function. Hence in the remainder of the article, cluster correla-

tion function will not be used for studying the microstructure. Similarly, it is decided 

not to use pore size distribution function as cumulative pore size distribution function 

is smoother and contains all the required information about the pore phase that will be 

needed further. In order to check the isotropy of the foam sample, the functions 𝑆2(𝑟) 

and 𝐿(𝑟) are calculated individually for each orthogonal direction and plotted to check 

if these functions vary in different directions. The results are given in Figs. 4a-4b.  

 

Fig. 4. a) Two-point correlation function and b) Lineal path function in three orthogonal direc-

tions 

4 Selection of SVE Size 

The foam sample under question is too big to be used directly for finite element (FE) 

calculations. Hence appropriate size and position within the sample is to be chosen for 

further use in FE calculations. Since the material microstructure is random in nature, 

an ensemble of stochastic volume elements is to be found. For this purpose, the foam 

sample is divided into smaller regions and statistical functions for realizations of each 

size are calculated. Fig. 5 shows different sizes considered in this study. Note that each 

volume element (VE) is cuboidal in shape. For ease of representation it is shown in two 

dimensions. 

 

Data Computing and Artificial Intelligence

171 CERC 2020

https://www.cerc-conference.eu


9 

 

Fig. 5. Different sizes of VEs  

Table 2. Dimension and number of realizations of each VE size 

VE Size Relative edge length No. of realizations 

1 1/16 4096 

2 1/8 512 

3 1/4 64 

4 1/2 8 

5 3/4 8 

6 1 1 

 

 

Edge length of each VE size in terms of edge length of the entire sample (size 6) is 

given in Table.2. Realizations for sizes 1 ,2, 3 and 4 are formed by shifting the VE 

domain one edge length at a time in all three directions. Realizations for size 5 are 

formed by considering 2 realizations in each direction such that all the sample space is 

utilized. Since the VEs are stochastic, the number of VEs in ensemble of each size plays 

a critical role in determining any useful conclusions from the VEs. The Figs. 6a-6d 

show the effect of number of samples in the ensemble of each VE size on averaged 

statistical functions. Here Euclidean norm of each statistical function for each VE is 

calculated. Since sample size (number of realizations) in ensemble of each VE size is 

different, the sample size plotted on X-axis is normalized with respect to the total num-

ber of realizations for each VE size. Figs.7a-7d show scatter of norms of statistical 

functions for each VE size. The solid line indicates mean value for each VE size.  
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Fig. 6. Effect of sample size on a) porosity; norm of b) two-point correlation function; c) lineal 

path function and d) cumulative pore size distribution function for each VE size 
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Fig. 7. Scatter of a) porosity; norm of b) two-point correlation function; c) lineal path function 

and d) cumulative pore size distribution function for each VE size along with their average values 

It can be seen from Figs.6a-6c that for each VE size, the ensemble average ap-

proaches the value of the entire sample (size 6) when all the realizations are taken into 

account. Since the number of realizations increase as VE size decreases, a greater num-

ber of realizations are needed in the ensemble average to reach the value of entire sam-

ple as the VE size is decreased. Fig. 6d shows that the ensemble average of cumulative 

pore size norm approaches that of the entire sample for size 3 and above. The scatter in 

the results of each VE size is shown in Figs. 7a-7d. Mean value of each VE size equals 

the value of the entire sample after utilizing all the realizations in each ensemble. Hence 

choice of appropriate VE size for FE calculations depends upon the size of VE that can 

be handled by the available computational resources and the number of realizations. 

For further studies in this article, VEs of size 3 are taken as stochastic volume elements 

(SVEs). It is because, for this size, the ensemble average of all the four statistical func-

tions converge to that of the entire sample (Figs.6a-6d) and it gave results with accepta-

ble computational expenses. 

5 Ranking of SVEs 

In the previous section, it was decided to use VE size 3 as SVE in further calculations 

of effective elastic properties. A straight forward way to do this is to calculate effective 

properties of all the realizations in the ensemble of size 3 and then calculate ensemble 

average of the effective properties. However, this would need significant computational 

expenses. Statistical functions can be used here to reduce the number of realizations 

used in the ensemble averaging. Here, absolute value norm of the percentage difference 

between statistical functions of each SVE in the ensemble and that of the entire foam 

sample is calculated. For each SVE, functions 𝑆2(𝑟), 𝐿(𝑟), 𝐹(𝛿) and volume fraction 

are evaluated. These results are then rearranged in ascending order of SVEs and plotted 

in Figs. 8a-8d.  
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Fig. 8. Ranking of SVEs for a) two-point correlation function; b) lineal path function; c) cumu-

lative pore size distribution function and d) porosity (pore volume fraction) 

It can be seen that for each statistical function, the ranking of SVEs varies. Hence 

it is decided to use the SVEs that lie within 5% value for all statistical functions. 5 SVEs 

are obtained that satisfied this criterion. They are SVE no. 14, 17, 30, 44 and 58. Hence, 
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instead of using all 64 realizations of the SVEs, these 5 SVEs are selected for ensemble 

averaging of effective elastic properties. 

6 Determination of Effective Elastic Properties 

The problem of determination of effective properties is based upon the idea that a het-

erogeneous medium can be converted into a homogeneous medium by utilizing the 

conservation of energy principle. The criteria given by Hill [12] needs to be satisfied: 

 〈𝝈 ∶  𝜺〉 =  〈𝝈〉 ∶  〈𝜺〉 . (4) 

It says that average of the scalar product of stress 𝛔 and strain 𝜺 tensors over the 

heterogeneous medium should be equal to the product of their individual averages. Us-

ing Gauss theorem, this condition can be generalized for heterogeneous materials [6] 

as: 

 ∫ (𝒕(𝒙) − 〈𝝈〉 ∙ 𝒏) ∙ (𝒖(𝒙) − 〈𝜺〉 ∙ 𝒙) 𝑑ΓΓ = 0 . (5) 

Where Γ is boundary of a VE and t, n, u and x are the traction, normal, displacement 

and position vectors respectively. This condition is satisfied by three types of boundary 

conditions [13, 14] namely kinematic uniform boundary condition (KUBC), stress uni-

form boundary condition (SUBC) and mixed uniform boundary condition (MUBC). 

[15] showed that KUBCs and SUBCs give bounds to the apparent stiffness tensor (C): 

 𝑪𝑆𝑈𝐵𝐶  ≤  𝑪𝑀𝑈𝐵𝐶  ≤  𝑪𝐾𝑈𝐵𝐶  . (6) 

Also, 

 𝑪𝑆𝑈𝐵𝐶  ≤  𝑪𝑒𝑓𝑓  ≤  𝑪𝐾𝑈𝐵𝐶 . (7) 

Where, 𝑪𝑒𝑓𝑓  is the exact effective stiffness tensor of the heterogeneous medium. 

Using the fact that periodic boundary conditions (PBCs) give exact effective stiffness 

tensor of periodic microstructures, [6] showed that the periodically compatible mixed 

boundary conditions (PMUBCs) give effective stiffness tensor for non-periodic micro-

structures that match closely with that obtained by applying PBCs on the same sample 

by converting it into periodic. This conversion was done by mirroring the non – periodic 

sample about its three orthogonal planes. These PMUBCs are utilized in this article so 

as to obtain effective stiffness tensor of the five selected SVEs. 

The SVE problem is defined as: 

 𝑑𝑖𝑣(𝝈) = 0 in Γ. (8) 

Such that the boundary conditions satisfy: 

 〈𝝈 ∶  𝜺〉 =  〈𝝈〉 ∶  〈𝜺〉 . (9) 

The coordinate system, dimensions and nomenclature of faces of Γ are given in Fig.9.  
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Fig. 9. Representation of Γ 

The problem is solved numerically by using finite element method. A commercial 

software called ABAQUS [16] is used for this purpose. Each SVE sample is meshed 

using linear tetrahedral elements such that the alumina phase is meshed and the pore 

phase is kept unmeshed. The elastic material properties of alumina [3] were taken as 

E=360.5GPa and 𝜈 = 0.2. The effective stiffness tensor C is expressed as: 

 𝝈 = 𝑪 ∶ 𝜺 . (10) 

Writing in terms of the respective components, taking into account the symmetries 

of the tensors and using Voigt notation: 

 [  
   
σ11σ22σ33σ12σ23σ31]  

   =
[  
   
C11 C12 C13 C14 C15 C16C21 C22 C23 C24 C25 C26C31 C32 C33 C34 C35 C36C41 C42 C43 C44 C45 C46C51 C52 C53 C54 C55 C56C61 C62 C63 C64 C65 C66]  

    
[  
   
ε11ε22ε332ε122ε232ε31]  

     (11) 

PMUBCs are given in Table.3. Note that 1→x, 2→y and 3→z in the description of 

boundary conditions. In the FE simulations, six load cases are defined. In each load 

case, one strain component with value 0.001 is applied according to Table.3. The cor-

responding stress tensor is calculated as average stress over the SVE using: 

 〈𝝈〉 =  1𝑉Γ ∫ 𝝈(𝒙)𝑑Γ(𝒙)Γ  . (12) 

From the results of each load case, each column of stiffness tensor is calculated. FE 

mesh of SVE 14 is shown in Fig. 10. To apply boundary conditions, all the nodes that 

lie on each face of the SVE are selected and their degrees of freedom are constrained 

according to Table.3. The results of the FE simulations are given in Table.4. The unit 

of stiffness coefficients is GPa. It also contains the results of experimental measure-

ments of the same material referred from [3]. 
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Fig. 10. Finite element mesh of SVE 14 

 

Table 3. PMUBCs on each face of SVE for six load cases 

 𝑋± 𝑌± 𝑍± 

Tension X 
𝑢1 = ±𝜀110 𝑙12  𝑡2 = 𝑡3 = 0 

𝑢2 = 0 𝑡1 = 𝑡3 = 0 

𝑢3 = 0 𝑡1 = 𝑡2 = 0 

Tension Y 
𝑢1 = 0 𝑡2 = 𝑡3 = 0 

𝑢2 = ±𝜀220 𝑙22  𝑡1 = 𝑡3 = 0 

𝑢3 = 0 𝑡1 = 𝑡2 = 0 

Tension Z 
𝑢1 = 0 𝑡2 = 𝑡3 = 0 

𝑢2 = 0 𝑡1 = 𝑡3 = 0 
𝑢3 = ±𝜀330 𝑙32  𝑡1 = 𝑡2 = 0 

Shear XY 
𝑢2 = ±𝜀210 𝑙12  𝑢3 = 𝑡1 = 0 

𝑢1 = ±𝜀120 𝑙22  𝑢3 = 𝑡1 = 0 

𝑢3 = 0 𝑡1 = 𝑡2 = 0 

Shear YZ 
𝑢1 = 0 𝑡2 = 𝑡3 = 0 

𝑢3 = ±𝜀320 𝑙22  𝑢1 = 𝑡2 = 0 

𝑢2 = ±𝜀230 𝑙32  𝑢1 = 𝑡3 = 0 

Shear ZX 
𝑢3 = ±𝜀310 𝑙12  𝑢2 = 𝑡1 = 0 

𝑢2 = 0 𝑡1 = 𝑡3 = 0 
𝑢1 = ±𝜀130 𝑙32  𝑢2 = 𝑡3 = 0 
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Table 4. Stiffness coefficients (in GPa) for 5 SVEs and experimental results 

 C11 C22 C33 C44 C55 C66 
Porosity 

(%) 

SVE 14 19.58 22.87 27.96 6.79 8.63 7.64 74.8 

SVE 17 23.71 26.59 29.47 8.01 9.23 8.84 74.9 

SVE 30 22.94 28.09 31.53 8.28 9.84 9.06 74.4 

SVE 44 25.15 26.11 28.65 8.83 8.92 9.06 74.5 

SVE 58 26.37 29.33 29.62 9.25 9.99 9.29 74.1 

SVE Average  23.55 26.60 29.45 8.23 9.32 8.78 74.5 

Average 26.54 8.78  

Experiments [3] 30.2 29.8 28.5 7.2 6.7 N. A 74.5 

Average 29.5 6.95  

 

7 Discussion 

The article demonstrates the use of statistical functions in characterizing the microstruc-

ture of alumina foam which acts as a preform for manufacturing interpenetrating phase 

composites. A detailed explanation of image processing steps used to convert the grey-

scale CT scans into 3D binary image of foam sample has been given. The image is 

segmented to isolate the interconnected pores so that each pore could be studied. It is 

observed in Fig.2a that all the pores have more than 0.75 sphericity which indicates that 

the pores resemble closely to spheres. This is an indication of isotropy of the micro-

structure. Figs. 2b-2c show that the pores do not have any preferential orientation. 

Fig.2b has two bright yellow spots close to Z axis and Fig.2c has one bright yellow spot 

close to X axis. However, their volume fractions are very less and hence will not impact 

the effective properties of the sample in any way.  

Fig 3 shows statistical functions of the entire foam sample. Only for statistically 

homogeneous microstructure without long-rang order,  𝑆2(𝑟) follows limits: 

 𝑆2(𝑟 = 0) = 𝑣 , (13) 

 lim𝑟→∞ 𝑆2(𝑟) =  𝑣2 . (14) 

Here, 𝑣 is the volume fraction of pores. In our case, lim𝑟→0 𝑆2(𝑟) =  0.72 and lim𝑟→∞ 𝑆2(𝑟) =  0.55. Hence, the limits are satisfied. This proves that the sample is highly 

homogeneous. Note that the value of 𝑆2(𝑟) at  𝑟 = 0 does not exactly match value of 

volume fraction (refer Table.1) because of the limitations in image resolutions. Im-

proved resolutions can bring this value closer to the volume fraction. 𝑆2(𝑟) also be-

comes asymptotic above 35 voxels distance. It means that above this value, there is no 

observable correlation in the pore voxels. The lineal path function (Fig.3c) becomes 

asymptotic at around 100 voxels distance. This means that the interconnectedness along 

lineal path is observable only till the distance of 100 voxels. The cumulative pore size 
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distribution function (Fig.3e) shows that the maximum radius of the spherical pore that 

can be fitted into the pore space is around 25 voxels. Fig. 4 shows that 𝑆2(𝑟)  and 𝐿(𝑟) 

have almost same curves when calculated along three orthogonal directions. This 

proves that the sample is isotropic as well.  
Figs. 6a-6d show the effect of number of realizations on ensemble average values of 

statistical functions. It can be seen that as the VE size decreases, the number of realiza-

tions in the ensemble required to match the value of the entire sample increases. Hence, 

while choosing the appropriate size of VE, a trade-off is required between VE size and 

number of realizations. In case of VE size 5, the ensemble average lies very close to 

that of the entire sample irrespective of number of realizations considered in averaging. 

This is because the difference between this size and that of the entire sample is very 

less. The fluctuations in the curves are probably because all the 8 VEs in this ensemble 

share a lot of common region. Hence not enough independent realizations are available 

to get converging results. Figs.7a-7d show that if enough number of realizations are 

considered, the ensemble average of statistical functions matches the value of that of 

the entire sample. As explained before, the choice of VE size for FE calculations depend 

upon the available computational resources. The VE size 3 chosen in this study satisfies 

the requirements to be SVE and also fits the computational resources available. 

In order to reduce the computational expense of doing FE calculations on 64 reali-

zations of VE size 3, a ranking method is developed. Here, the difference between the 

statistical functions of each realization and that of the entire sample is calculated and 

the SVEs are ranked in ascending order of these values (Figs. 8a-8d). Each statistical 

function has a different ranking order. Hence, it is decided to find those SVEs that lie 

within 5 % value for all statistical functions. Since these SVEs have microstructure that 

resemble the most to that of the entire sample, it is decided to perform ensemble aver-

aging on only these 5 SVEs as against 64 SVEs that would have otherwise required. 

This has significantly reduced the required computational expenses. 

Results of FE calculations are given in Table.4 which shows the diagonal coeffi-

cients of effective stiffness tensor for all 5 SVEs. Averaging across all SVEs gives us 

the SVE averages. We can conclude from these values that the foam sample can be 

considered as isotropic. The experimental results [3] along the three directions also 

support this statement. Note that the average porosity of the SVEs matches that of the 

experimental results. Considering isotropy, average of SVE averages  C11, C22 and C33 gives value of 26.5 GPa. Similarly, averaging of experimental results 

[3] of C11, C22 and C33 gives value of 29.5 GPa. The simulated value is within 10% 

deviation of the experimental value. Repeating this for SVE averages C44 , C55 and C66 

gives value of 8.78 GPa and for experimental results [3], value of 6.95 GPa. The simu-

lated value is within 20% deviation of the experimental value. These values prove that 

the adopted procedure of selecting SVE size, ranking method and the numerical calcu-

lations predict the effective elastic properties of ceramic foam with a very high degree 

of accuracy. Further reduction in this deviation can be achieved by using better resolu-

tion of CT scan images. 
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8 Conclusions 

This article describes the use of statistical functions to characterize the microstructure 

of ceramic foam and to use these functions to select appropriate size, number and loca-

tion of SVEs that are further used for determining effective elastic properties of the 

foam sample. This has led to reduction in size and number of realizations required to 

determine effective properties of the material which otherwise would have required 

significant computational resources. The article also demonstrates the suitability of us-

ing PMUBCs to determine the effective material properties of non-periodic microstruc-

tures with phases having extreme contrast in material properties (infinity in this case).  

The larger goal of this research is to establish structure-property-performance rela-

tionship links for the ceramic foam material. The statistical functions act as a tool to 

quantify the microstructure. An important part of this research is to establish a correla-

tion between the statistical functions and the mechanical properties of this material. 

This will act as a guide in an inverse problem of identifying appropriate microstructure 

for target material properties. As per authors knowledge, such method does not exist 

for a microstructure that is unique to foams. In this paper as a first step, an attempt has 

been made to determine effective elastic properties of foam by using the statistical func-

tions to reduce the ensemble size.  

In existing literature, only the effect of volume fraction on the elastic properties has 

been studied so far. The next step in this research is to artificially reconstruct the mi-

crostructure using target correlation functions and then change each statistical function 

to study its effect on material elastic properties. This way each function can be con-

trolled precisely. This will be followed by sensitivity analysis of each statistical func-

tion w.r.t effective material properties. Correlations between the statistical functions if 

any will be studied as well. Currently this cannot be done as the microstructure that has 

been used was derived from X-ray computed tomography and hence there was no con-

trol over the statistical functions. Once these steps are done, the research will shift its 

focus on predicting appropriate microstructures for performance enhancement of the 

material. 
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