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Abstract. Gait analysis is a rapidly expanding and evolving research area with 

application to biomechanics and rehabilitation. Current wearable technology that 

can be used to collect gait information is becoming more accessible in terms of 

cost and usability compared to lab counterparts which can be expensive and re-

quire training to setup and use. This paper provides an exploratory analysis of 

knee angle versus angular velocity of the lower leg for six healthy participants 

for at four walking speeds (1.8 km/h, 2.7 km/h, 4.5 km/h, 5.4 km/h) on a treadmill 

and walking over the ground at 3.9 km, using the Xsens Inertial Measurement 

Unit. These phase portraits provide a rich data source for qualitative comparison. 

In future objective gait analysis based on suggested gait parameters can aid with 

rehabilitation of dysfunctional gait. 

Keywords: gait analysis, wearable technology, inertial motion capture, accel-

erometer, Xsens. 

1 Introduction 

Gait Analysis (GA) is an area of research that is continually expanding and evolving 

across a wide range of domains such as, healthcare, sport science and surveillance. 

There are a plethora of medical gait applications such as the evaluation of prosthetics, 

assessment of surgical procedures [1] [2], treatments plans, fall risk in the elderly [3] 

and assessment of neuropathies [4]. In addition GA has achieved further significance 

in the monitoring of elite athletes [5] and identification of individuals for forensic bio-

metric purposes [6] [7]. 

During the past four decades the measurement and assessment of gait has evolved 

rapidly; tools and technology now provide an objective, quantitative evidence-based 

approach. Current clinical practice for motor assessment of the lower limb in stroke 

survivors is based upon a battery of tests, such as the two-minute walking test, timed-

up and go, berg balance scale, fugl-meyer assessment, motor assessment scale, river-

mead motor assessment of movement, motricity index and stroke rehabilitation assess-

ment of movement. All of the aforementioned motor assessment scales predate the year 

1997 and have an average age of 31 years. Although they provide a quantitative score 

they are based upon human clinical observation and are subject to inter- and intra-rater 

variability. Additionally, the majority of these assessment approaches are not capable 

of detecting subtle changes in motor function particularly at the top end of assessment 

scales as a ceiling effect often occurs [8]. 
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Advances in technology used to measure gait have been instrumental in the evolution 

of GA. Biomechanical movement of the human body is complex and therefore effective 

GA requires information such as kinematics, ground reaction forces and influence of 

muscle activity. Motion Capture (MC) strives to measure kinematic data in an accurate, 

valid and unobtrusive manner. There are two competing MC technologies: optical cap-

ture and the use of force plates to measure plantar pressure. Each offers advantages and 

disadvantages depending on the context of the application being considered [9] [10]. 

1.1 Optical motion capture and force plates 

Optical Motion Capture (OMC) systems use cameras based upon active or passive 

markers to accurately detect the position of body worn markers within a 3-dimensional 

space. There are a number of commercial OMC systems available such as Vicon, Qual-

ysis and Codamotion. These systems tend to be very accurate at sensing marker position 

to within the sub-millimeter range, however this accuracy heavily relies on the ability 

of a researcher to place markers accurately and repeatably. Various protocols exist to 

help locate joint centers but these differing conventions can produce a varied set of 

results [11]. Due to the complexity involved in camera setup and the configuration of 

software, OMC systems require a considerable amount of setup time and a need for 

specialised training. Hence OMC systems are more suited to static deployment in a 

dedicated gait laboratory, thus impacting upon the information derived as it may not be 

representative of gait in a real-world context [12]. OMC systems are expensive and 

occupy a static laboratory space which can restrictive for particular applications. How-

ever, they do offer unparalleled accuracy when configured by a trained Biomechanist 

and serve as a gold standard or reference point for other less accurate systems. 

Traditionally force plates were designed to record single steps with high accuracy 

and resolution. Pressure sensing technology has evolved through the incorporation of 

this technology into instrumented walkways such as the GAITRite mat facilitating GA 

of a sequence of steps [9] [10]. 

1.2 Wearable technologies and inertial motion capture 

Over the last 5 years, there have been significant advances in technologies for inertial 

motion capture (IMC) systems; in particular insole pressure sensor recording and the 

measurement and wireless transmission of the electromyogram (EMG). Insole pressure 

sensing technology has benefited from [13]advancements in microelectronics, wireless 

charging, energy harvesting, smaller batteries and low power wireless communication. 

These advancements have made insole technology more pervasive, embedding all of 

the technology within the insole e.g. Moticon [14]. These developments have paved the 

way for wearable technologies to replace gait laboratory equipment in the measurement 

of human kinematics, ground reaction forces and muscle activity. These wearable tech-

nologies offer a lower cost, portable, versatile, real-time and highly usable system to 

provide rich gait information in free-living environments for clinical GA [15], [16]. 

Inertial Motion Capture (IMC) systems offer benefits over OMC systems due to 

their portability, wearability and decreasing costs. IMC sensor units provide the 
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opportunity for more practical, untethered data capture free from the constraints of an 

indoor observation area. Deploying outside a gait laboratory environment can facilitate 

diverse spatial settings such as stairs, open space, more natural terrain or other indoor 

areas. The setup time is shorter repeatability for measurement of joint angles during 

walking [17] is better than OMC systems for both in-day and between-day recording 

sessions. 

The fundamental assumption of an underlying rigid body such as the human skele-

ton can be violated by the movement of overlying soft tissue known as skin artefact. 

This is particularly evident when there is an excess of soft tissue or during highly dy-

namic movements [18]. Skin artefact is a common issue with IMC and OMC, however, 

it may be more pronounced with IMC systems as their sensor units are of greater phys-

ical size and mass leading to greater displacement. Skin artefact is an important factor 

in the context of clinical research as a higher than average body-fat index is more com-

mon in people suffering from stroke [17]. Ground reaction forces as measured by force 

plates provide an alternative or complementary means to perform GA.  

2 Methodology 

In this study we conducted exploratory GA on healthy participants (n=6) using data 

gathered from a wearable IMC system. The GA focuses on a subset of parameters to 

assess feasibility, validity and diversity of gait amongst a healthy cohort. Baseline data 

were collected to establish a normal set of gait parameters. Factors that may contribute 

to variations in the data relate to but are not limited to gender, age, height and weight. 

Walking therapies are part of the rehabilitation pathway as defined by the NICE guide-

lines [19]; therefore the focus of this study is on walking on a treadmill and walking 

over ground while incorporating a turn. 

In a data driven approach the quality and volume of the data being collected plays a 

vital role in the capability of a computational model to provide accurate, objective and 

repeatable assessment of gait. Therefore, it is import to control the recording of activi-

ties by applying a consistent clinical protocol. Although the number of participants is 

low (n=6) the size of the dataset can still be adequate to provide sufficient quality of 

data as the number of steps can reach 2,400. In addition each step can provide further 

information angle, velocity for 7 locations on the lower body. 

Participants wore an IMC system and a pair of smart insoles to collect kinematic and 

ground reaction forces during walking activities. Participants were required to complete 

a short anonymous questionnaire that provided information on their age, gender and 

weight. 

Inertial Motion Capture Configuration. The IMC system was configured to investi-

gate lower limb which involved donning 7 Inertial Measurement Units (IMUs) using a 

velcro based strapping system as shown in Fig. 1. The  IMUs were attached to the pelvis 

(sacrum), left/right upper leg (thigh), left/right lower leg (shank) and left/right foot. A 

number of anatomical measurements (body height, shoulder width, arm span, hip 

height, hip width, knee height, ankle height, foot size, shoe sole height) were taken from 

COVID-19 Research and Smart Healthcare

337 CERC 2020

https://www.cerc-conference.eu


4 

the participant to help complete the calibration. The IMC was re-calibrated before each 

recording session. 

 

Fig. 1. Xsens inertial capture system showing sensor positions for foot, lower and upper limb. 

Participants. A group of 6 healthy adults participated in the study. A summary of de-

mographic information is provided in Table 1. 

Table 1. Demographic information of participants 

Participant ID Gender Age Height (cm) Weight (Kg) 

1 Male 61 179 68.7 

2 Female 52 158 N/A 

3 Male 26 186 N/A 

4 Male 71 172 73.0 

5 Female 71 164 64.0 

6 Male N/A 177 N/A 

 

Initial feasibility testing was conducted to evaluate at an observational level that the 

wearable systems were fit for purpose in terms of robustness, reliability, usability, com-

fort, repeatability and set-up time. Walking activities have been designed to include 

walking at differing speeds, walking on a treadmill versus over the ground. The study 

also included turns as this is an important constituent of GA. 

Given that the potential use case scenario for this research will be typically elderly 

post-stroke survivors some slower walking speeds were included. Participants per-

formed two walking activities. The first involved walking indoors over the ground on 

a flat smooth surface within a gait laboratory environment for a distance of 10m and 

turning. This activity was repeated for 2.5 mins at a comfortable walking speed, self-

selected by the participant. The second activity required participants to walk for 2.5 

minutes at 4 different speeds on a treadmill with zero incline for a total walking time 

of 10 minutes. The four speeds using the treadmill were: very slow (0.5m/s), slow 

(0.75m/s), medium (a comfortable speed self-selected by the participant, either 1m/s or 
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1.25m/s) and fast (1.5m/s). The fastest walking speed test is similar to the 2-minute 

walking test which is a clinical assessment. 

3 Results 

The Xsens system has already been well validated against OMC systems and has been 

reported to have a coefficient of multiple correlation > 0.96 for all joints during flex-

ion/extension for level walking activities [20]. However, configuration, calibration and 

positioning sensors can have varying effects on the quality of the data collected. Re-

peatability was explored for in-day testing of the Xsens without doffing/donning the 

sensors. 

The two phase portraits shown in Fig.2 are highly correlated and present knee angle 

against angular velocity of the lower limb for participant 1. These phase portraits show 

the dynamic nature of the knee during walking on a treadmill at a 5.4 m/s for 2 minutes. 

A single gait cycle is represented by one phase which can be seen as a closed loop. The 

phases are plotted on top of each other as each gait cycle is repeated, it shows high 

levels of correlation but with some dynamic and chaotic variations. The variation be-

tween gait cycles in the first test can be seen in red while the blue lines show the vari-

ation of gait cycles in the second test. Since both tests were recorded within 30 minutes 

and under the same conditions the variation which is expected to be minimal between 

walks can be observed by comparing red and blue lines. 

 

Fig. 2. A highly correlated phase portrait of knee angle versus angular velocity of the lower 

right leg for Participant 1 during two separate tests while walking on treadmill at 5.4 m/s for 2 

minutes. 

To provide a statistical measure of correlation an average gait cycle was computed for 

both walks and a correlation coefficient calculated by comparing both average gait 
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cycles. The average phase portraits can be seen in Fig. 3, these are highly correlated as 

expected (r=0.9993), this is the Pearson correlation coefficient as reported by 

MATLABs 2-dimensional correlation function. 

 

Fig. 3. A highly correlated (r=0.9993) phase portrait, it represents an average gait cycle from 

two walks by participant 1. 

The next stage of GA was to compare all of the walking activities for participants across 

a number of different walking speeds; this involved 2 minute treadmill walks at 1.8 

km/h, 2.7 km/h, 3.6 km/h or 4.5 km/h and 5.4 km/h and a final 2 minute walk over the 

ground for 10 metres with a turn. The phase portraits of these walking activities can be 

seen in Fig. 4 for participant 1. Initial observations show correlation between walking 

speed and the area enclosed within the phase portraits. A greater range of motion and 

increased angular velocity should result in an increased area within the curves. Addi-

tionally, as the speed increases the variability in the phase portraits reduces to produce 

a more rhythmic and stable gait cycle, this is particularly for true for walking activities 

on the treadmill. It seems that this effect is caused by a combination of the treadmill 

and higher walking speeds. 

 

Fig. 4. Phase portraits of knee angle versus angular velocity of the lower right leg for Partici-

pant 1 at four walking speeds (1.8 km/h, 2.7 km/h, 4.5 km/h, 5.4 km/h) on a treadmill walking 

over the ground at 3.9 km/h. 
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To quantify the relationship between the area of the phase portraits and speed an aver-

age phase portrait was computed for each walk. These were then used as a basis to 

calculate an average area of each phase portrait and to plot these against speed to quan-

tify any relationship and how it may change across the cohort. Observation of Fig. 5 

shows a common pattern of increased area equating to increased speed. Participants 4 

and 5 were both in their early seventies and yet it is interesting that they were able to 

maintain walking speeds of 1.8 km/h, 2.7km/h and 3.3km/h with a reduced area, this 

may imply a greater sense of control by reducing the stride length. 

 

Fig. 5. Walking activity for six participants showing average phase plot area against speed. 

Comparing treadmill walking activities against over the ground walking in Fig. 4 shows 

that the variation in knee angle is more apparent while walking over ground. As the 

walking over the ground activity included turning 180 degrees every 10 metres there 

are a significant amount of turns (n~=16) within a 2 minute period. Therefore it makes 

it more difficult to attribute the increased knee angle variation as a direct result of walk-

ing over the ground. The second noticeable feature of the phase portraits for walking 

over the ground is that there is a mirroring effect which results in two prominent distinct 

phases. These are a direct result of walking in two opposite directions and may be com-

bined into a single phase if it is possible to adjust the data to accommodate walking 

direction. This would be a useful analysis feature as it would allow all walking activities 

to be analyzed and compared irrespective of walking direction. 

4 Future Work 

This paper provided a demonstration that repeatable and interpretable gait analysis is 

possible using wearable IMC technologies. Phase cycles and repeatability were as-

sessed by observation and quantitative measurement. Further work will be conducted 
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with more healthy participants and incorporate between-day and inter-rater reliability. 

There is a significant opportunity to quantify GA through the measurement of spatial, 

temporal, spatiotemporal and other phasic parameters, as listed in Table 2. Additional 

features that can be used in assessing the repeatability of normal gait can be derived 

from the normative dataset. Using these measurements and features will facilitate gait 

modelling for a healthy population. A gait model for a healthy population can be used 

to provide a reference to any new gait information that should be compared from a 

disease specific cohort such as stroke survivors. 

There are a number of use cases where gait analysis can be beneficial for both the cli-

nician and patient such as Parkinson’s disease, cerebral palsy, lower-limb osteoarthritis, 

post-stroke and diabetic neuropathy. The authors propose to develop a computational 

gait model based on intelligent data analysis using non-linear techniques to provide an 

objective and quantifiable assessment of pathological gait for post-stroke that is accu-

rate, robust and repeatable. 

Table 2. List of gait features for future work. 

Spatial Temporal Spatiotemporal Phasic 

Step Length (cm) Cadence 

(steps/min) 

Gait Speed (m/s) Stance Time 

(%GC) 

Stride Length 

(cm) 

Step Time (s) Stride Speed (m/s) Swing Time 

(%GC) 

Step Width (cm) Stride Time (s) Stride variability SST (%GC) 

Step Height (cm) Stance Time (s) Smoothness DST (%GC) 

Knee Angle (°) Swing Time (s) Centre of Pressure  

Hip Angle (°) Single Support 

Time (s) 

  

Ankle Angle (°) Double Support 

Time (s) 

  

5 Conclusion 

Gait analysis of the normal population and of different pathologies is an area of research 

that is expanding rapidly. There are a number of competing technologies that can pro-

vide gait information, two such competing sets are research gait lab technology and 

wearable technology. The former tends to be more expensive, less flexible and with 

longer setup times often requiring specialised training. With recent advances, wearable 

technology can offer a cheaper, more accessible, less restrictive and easier to use option 

without comprising on the accuracy or quality of the information. This is particularly 

true of recent advances of IMC systems. 

The Xsens IMC system captured kinematic data from walking. Due to the explora-

tory nature of this study only the dynamic nature of knee angle during walking was 

considered; the gait variation across a number of walking speeds on a treadmill and 

walking over the ground and gait variation across the population were assessed. Future 
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research aims to build a computational model that can be used to assess a user’s gait 

during ambulation. A large set of features will be generated to serve as input to the 

model and as such can be configured in multiple ways via feature selection to ascertain 

the optimal model and as a result what are the optimal features, technologies and sen-

sors. There is a significant body of research to suggest that spatial temporal gait param-

eters provide such a feature set [21], [22], [23]. 
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