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Abstract. In this paper I study the dialectical logics DL* and HEGFL.
I compare some of the most distinguishable properties of both logics and
I present some uknown features of HEGFL with respect to classical
logic, weakly connexive logics and two negation-like connectives.
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Introduction

In this paper I study two dialectical logics, DL* and HEGFL. The former
was introduced in [3] by Newton da Costa and Robert G. Wolf as a variant of
the logic DL —a paraconsistent logic designed to formalize Hegel’s dialectical
principle of the unity of opposites as presented in [9]. HEGFL, introduced in [5],
is named, inspired and based upon Elena Ficara’s interpretative work of Hegel’s
philosophy (see [6], [7]).

Both are contra-classical logics, that is, they validate arguments that are
classically invalid. In particular, they have contradictions as theorems. Nonethe-
less, whereas DL* is very standard to a certain extent —it is one of the logics
obtained by the so-called “positive logic plus approach”—, HEGFL is of further
interest as it exhibits many more contra-classical features. For example, versions
of weak-connexivity, in the sense of Pizzi [12], can be defined within it, and its
negation resembles a sort of demi-negation (a negation-like connective such that
a double occurrence of it is equivalent to an occurrence of an intuitionistic or a
classical negation).

Unlike many of the logics developed by da Costa and his collaborators, DL*
has not received attention. This investigation can contribute to the formal un-
derstanding of DL* and akin logics by relating them to other contra-classical
logics using more contemporary approaches. This is just a first step towards
that end. (In spite of their Hegelian origins, I will offer (almost) no comments
of Hegel’s philosophy.)
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The plan of the paper is the following. In the first section I present the
logic DL* in proof-theoretic and model-theoretic terms. In the second section
I present the logic HEGFL and some of its more distinguished properties. In
the third section I discuss the relation of HEGFL with weakly connexive logics
and two “negative” connectives.

1 The dialectical logic DL*

First, I will present DL* in proof-theoretic terms and then in model-theoretic
terms.

Proof theory

Let L be a propositional language with a denumerable set PROP = {p1, ..., pn}
of propositional variables and with the set of connectives {∧,∨ →,↔}. The set
of formulas FORM is recursively defined as usual. In this paper, when either
new connectives or propositional constants expand L I indicate it in a subscript
attached to L. For example, I write L{◦,∼} to mean the expansion of the set
of connectives by {◦,∼}, with the corresponding definition of the set of formu-
las FORM{◦,∼}; I write L{ln} to mean the expansion of L by the collection
{l1, ..., ln} with its corresponding definition of the set FORM{ln}.

Consider positive logic defined on L, i.e. the logic characterized by the fol-
lowing schemata and rule:

A1) A→ (B → A)
A2) (A→ B)→ ((A→ (B → C))→ (A→ C))
A3) (A ∧B)→ A
A4) (A ∧B)→ B
A5) A→ (B → (A ∧B))
A6) A→ (A ∨B)
A7) B → (A ∨B)
A8) (A→ C)→ ((B → C)→ ((A ∨B)→ C))
A9) A ∨ (A→ B)

MP) A→ B,A/B

The logic DL, based on L{◦,∼}, expands positive logic with the introduction of
the following axioms for the additional vocabulary:

A10) ∼ (A ∧B)↔ (∼ A∨ ∼ B)
A11) ∼ (A ∨B)↔ (∼ A∧ ∼ B)
A12) ◦A ∧ ◦B → (◦(A→ B) ∧ ◦(A ∧B) ∧ ◦(A ∨B) ∧ ◦(∼ A))
A13) ◦A ∧ ◦B → ((A→ B)→ ((A→∼ B)→∼ A))
A14) ◦A→ (∼∼ A→ A)
A15) ◦ ◦A↔ ◦A
A16) ◦A→ ((A∨ ∼ A) ∧ ((A→ B) ∨ (∼ A→ B)))
A17) ∼ (◦A)→ (((A∨ ∼ A)→ B) ∨ (A∧ ∼ A))
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One can define a strong negation using→, ◦, ∧ and ∼ in this terms: ¬A =def

A→ (◦B ∧ B∧ ∼ B); in using ¬ one obtains all the theorems of classical logic.
Consequently, one can recover classical logic within DL, thus making classical
logic a sublogic of DL.

DL*, based on L{ln,kn,◦,∼}, in its turn expands DL by adding the follow-
ing axioms for the two families of propositional constants {k1, k2, ...kn} and
{l1, l2, ..., ln} (ki 6= lj for any i, j ∈ ω, where ω is the lowest transfinite ordinal
number):

A18) ¬(ki∨ ∼ ki)
A19) lj∧ ∼ lj
A20) ◦ki+1

Model theory

Let v : PROP −→ {1, 0} be a set of valuation functions from the set of propo-
sitional variables to the set {1, 0}. v is extended to FORM{ln,kn,◦,∼} by the
following interpretation functions i:

i(p) = v(p), for every p ∈ PROP
i(A→ B) = 1 iff i(A) = 0 or i(B) = 1
i(A ∧B) = 1 iff i(A) = i(B) = 1
i(A ∨B) = 1 iff i(A) = 1 or i(B) = 1
i(∼ (A ∧B)) = 1 iff i(∼ A) = 1 or i(∼ B) = 1
i(∼ (A ∨B)) = 1 iff i(∼ A) = i(∼ B) = 1
If i(◦A) = i(◦B) = 1 then i(◦(A→ B)) = i(◦(A∧B)) = i(◦(A∨B)) = i(◦(∼

B)) = 1
i(◦A) = 1 iff i(◦ ◦A) = 1
If i(◦A) = 1 then i(∼∼ A→ A) = 1
If i(A) = i(∼ A) then i(◦A) = 0
If i(A) 6= i(∼ A) then i(∼ (◦A)) = 0
i(ki) = 0 and i(∼ ki) = 0
i(lj) = 1 and i(∼ lj) = 1

A formula A is valid if for every interpretation function i, i(A) = 1. An inter-
pretation i is a model for a set of formulas Γ if for every A in Γ , i(A) = 1. If
for every model of Γ , i(A) = 1, then A is a semantic consequence of Γ , written
as ‘Γ |= DL* A’. Let ‘|= DL* A’ represent that A is a semantic consequence of
any set of formulas, i.e., that it is valid. Using the previous definitions, da Costa
and Wolf prove the soundness and completeness of DL* with respect to the
interpretations i.

Furthermore, the features of the interpretations have as a byproduct a de-
cision method similar to the decision method for the hierarchy of logics Cn

(1≤ n<ω) (see [1], [2]): to prove whether a formula is a theorem of DL* one
considers not just the value of the components of the formula, but also of their
respective negations and the appearance of the connective ◦ in all the formulas.1

1 On account of lack of space, I will omit the details of this decision method.
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A remarkable property of DL* is that it is dialetheic —or “negation-inconsist-
ent”—, that is, it validates both at least one formula and its negation —lj and
∼ lj . Besides, the following schemas are not theorems of DL*:

(A∨ ∼ A)

∼ (A∧ ∼ A)

(A∨ ∼ A)↔∼ (A∧ ∼ A)

∼∼ A↔ A

whereas the following arguments hold:

◦A ∧A∧ ∼ A |= DL* B

◦A ∧A∧ ∼ A |= DL* ∼ B

2 The dialectical logic HEGFL

The logic HEGFL, introduced in [5], is based on L{∼} and it is defined model-
theoretically as follows. HEGFL-valuations vHEGFL are functions v : PROP −→
VHEGFL where VHEGFL = {c, c∗, 1}, c<1 and c∗<1. Considering the appropri-
ate version of the set of formulas defined on this language, HEGFL-valuations
are extended to FORM{∼} according to the tables of the Table 1.

∼
1 c∗

c c∗

c∗ c

∧ 1 c c∗

1 c∗ c∗ 1
c c∗ c∗ 1
c∗ 1 1 c∗

→ 1 c c∗

1 c c c∗

c c c c∗

c∗ c c c

↔ 1 c c∗

1 c∗ c 1
c c c∗ 1
c∗ 1 1 c∗

Table 1. Truth tables for HEGFL

In HEGFL, logical consequence is defined as follows:

Γ |=HEGFL A if and only if, A is not true only if any B ∈ Γ is not true

HEGFL is also dialetheic; actually, it validates all contradictions. Some of the
most notable features of HEGFL are summarized on Table 2.

Of special interest in a Hegelian logic are the principles concerning double
negation. Estrada-González and Ramı́rez-Cámara observe that A |=HEGFL ∼∼ A
does not hold, but ∼∼ A |=HEGFL A does. Also, they say that one could
venture the hypothesis that this is so because while affirmation (A) alone still
says nothing about its sublimation (∼∼ A) —for negation (∼ A) is needed for
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HEGFL

ReflexivityA |= HEGFL A �
Transitivity if Γ,A |= HEGFL B and ∆ |= HEGFL A then Γ,∆ |= HEGFL B �

Monotonicity if Γ |= HEGFL A, then ∆,Γ |= HEGFL A �
Deduction Equivalence A1, ..., An, A |= HEGFL B iff A1, ..., An |= HEGFLA→ B ×

Definability of the biconditional ∀v, v(A↔ B) = v((A→ B) ∧ (B → A)) ×
ECQ 1 A∧ ∼ A |= HEGFL B ×
ECQ 2 A,∼ A |= HEGFL B ×

EFQ A |= HEGFL B, for all A such that v(A) = 0 for all v ×
∧-Elimination A ∧B |= HEGFL A; A ∧B |= HEGFL B ×

Adjunction A,B |= HEGFL A ∧B ×
Table 2. Properties of HEGFL

that—, ∼∼ A |= HEGFL A should hold because affirmation is somehow main-
tained in its sublimation. If this were along the right lines, ∼∼ A |=HEGFL ∼ A
should be valid in HEGFL. And it is. Moreover, in HEGFL one has that both
∼ A |=HEGFL ∼∼ A and ∼ A |=HEGFL A are valid. Why A |=HEGFL ∼∼ A fails
and ∼ A |=HEGFL∼∼ A holds? Because in the latter A is not missing, at least
not in the same way as ∼ A is missing in the former: in having ∼ A, one some-
how has A too, as it is the very proposition being negated, so the logical step to
the sublimation can be done.2 Finally, Estrada-González and Ramı́rez-Cámara
analyze Ficara’s “Dialectical law of double negation”: ∼∼ A |=HEGFL A∧ ∼ A.
This should hold in a Hegelian logic because “we capture the true nature of con-
cepts only when, by negating their negation, we gain them in their completeness,
which is contradictory.” It can be easily verified that such a Dialectical law of
double negation holds in HEGFL.

3 (Other) Contra-classical features of HEGFL

A contra-L logic of a given logic L is a logic that, over the same underlying
language, validates arguments that are not valid according to L. In particular, a
contra-classical logic is a logic that validates arguments that, over the same lan-
guage as that of classical logic, are not classically valid. Examples of such logics
are well known (see, for instance [4], for a (non-exhaustive) list of contra-classical
logics): syllogistic, over-complete logics, super-contracting logics, Abelian logic,
dialetheic logics, and so on. DL* and HEGFL turn out to be contra-classical,
as both are dialetheic. But the story does not end there.

Another special kind of contra-classical logics are connexive logics.3 A con-
nexive logic is characterized by the validity of the following schemas:

A1) ∼ (A→∼ A)

2 To see why A |=HEGFL ∼∼ A and A |=HEGFL ∼ A are invalid, just assign v(A) = 1.
From this assignation it follows that v(∼∼ A) = c and v(∼ A) = c.

3 For an introductory survey, see [11] and [15] .
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A2) ∼ (∼ A→ A)
B1) (A→ B)→∼ (A→∼ B)
B2) (A→∼ B)→∼ (A→ B)

together with the invalidity of the following schema:

SI) (A→ B)→ (B → A).

A1) is known as Aristotle’s Thesis and A2) as Variant of Aristotle’s Thesis. B1)
is known as Boethius’ Thesis and B2) Variant of Boethius’ Thesis.

Neither DL* nor HEGFL validate Aristotle’s or Boethius’ theses, they only
invalidate the last schema. However, in an alike spirit to the logic DL*, one
can define classical negation in HEGFL, and not only that, but also a classical
conditional, that in certain combinations with the primitive negation and con-
ditional in the formulas of HEGFL can validate or invalidate some connexive
schemas.

The key to obtain the classical negation and conditional is by drawing upon
the partition between designated and antidesignated set of values as follows.
In HEGFL one can define the constants 1, c, c* as 1=def A∧ ∼ A, c=def

∼ (A∧ ∼ A) and c*=def ∼∼ (A∧ ∼ A)—let Cx denote any constant. Consider-
ing that in (anti)designatedness jargon, classical negation exchanges designated
values for antidesignated values and vice versa, classical negation can be defined
as ¬A =def ((A↔ 1)∧ c*), because one obtains the following table:

A ((A↔ 1)∧ c*)4

1 c∗
c 1
c∗ 1

By the same token, considering that classical conditional is antidesignated
if and only if the antecedent is designated and the consequent antidesignated,
one can define classical conditional as (A ⊃ B) =def ((¬¬A→ (Cx∧¬¬B))→∼
((Cx∧¬¬A)→ ¬¬A))∧ c*), because one has the following table

A B ((¬¬A→ (Cx∧¬¬B))→∼ ((Cx∧¬¬A)→ ¬¬A))∧ c*)
1 1 1
1 c c∗
1 c∗ c∗
c 1 1
c c 1
c c∗ 1
c∗ 1 1
c∗ c 1
c∗ c∗ 1

4 Note, however, that classical negation so defined conflates c∗ and c. Therefore, once
one adds it to HEGFL, one cannot obtain the values of the original formula A by
double negation elimination.
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Given the well-known fact that in the model theory structure of classical logic
the set {¬,⊃} is a functionally complete set of connectives, and that in HEGFL
one can model that structure by appealing to the division of designated and
antidesignated values, one can define all classical logic within HEGFL, what
makes classical logic a sublogic of HEGFL, as in the case of DL*.

With the new connectives thus introduced, and combining them with the
basic connectives of HEGFL in the characteristic schemas of connexive logic,
the following schemas are valid:

¬(A→∼ A)
¬(A→ ¬A)

¬(¬A→ A)
¬(∼ A→ A)

(A→ B) ⊃∼ (A→∼ B)
(A→ B) ⊃∼ (A→ ¬B)
(A→ B) ⊃∼ (A ⊃∼ B)
(A→ B) ⊃∼ (A ⊃ ¬B)
(A→ B) ⊃ ¬(A→∼ B)

(A→ B) ⊃ ¬(A→ ¬B)
(A→ B) ⊃ ¬(A ⊃∼ B)
(A→ B) ⊃ ¬(A ⊃ ¬B)
(A→ B) ⊃ ¬(A→∼ B)
(A→ B) ⊃ ¬(A→ ¬B)

(A→∼ B) ⊃∼ (A→ B)
(A→ ¬B) ⊃∼ (A→ B)
(A→ ¬B) ⊃∼ (A ⊃ B)
(A→∼ B) ⊃ ¬(A→ B)
(A→∼ B) ⊃ ¬(A ⊃ B)

(A→ ¬B) ⊃ ¬(A ⊃ B)
(A→∼ B) ⊃ ¬(A→ B)
(A→ ¬B) ⊃ ¬(A→ B)
(A ⊃∼ B) ⊃ ¬(A→ B)
(A ⊃ ¬B) ⊃ ¬(A→ B)

To prove the validity of all these schemas it is enough to note that the schemas
with the form A → B are always antidesignated, so the schemas with the form
¬(A → B) are always designated. By the same reason, when a schema with
the form A → B appears as antecedent of a classical conditional, the classical
conditional is designated. The proofs of the rest of the schemas can be made by
simply making its tables and checking if they turn out to be true under every
assignement of values to its propositional variables.

But one also obtains the unfortunate validation of the following schemas,
which are versions of symmetry:

(A→ B) ⊃ (B ⊃ A) (A→ B) ⊃ (B → A)

and the invalidation of the following schemas (to avoid tedious repetition of
several formulas, when possible I use the following notation (A→⊃B)→⊃

∼
¬ (A→⊃

¬
∼B)

to say that from the connectives that appear between formulas one can choose
any of them):

(A ⊃ B) ⊃∼ (A ⊃ ¬B)
(A ⊃ B) ⊃∼ (A ⊃∼ B)
(A ⊃ B) ⊃ ¬(A ⊃∼ B)
(A ⊃ B) ⊃ ¬(A ⊃ ¬B)

(A ⊃ B) ⊃∼ (A→∼ B)

(A ⊃ B) ⊃∼ (A→ ¬B)

(A→⊃B)→∼¬ (A→⊃
¬
∼B)
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(A ⊃∼ B) ⊃∼ (A ⊃ B)
(A ⊃∼ B) ⊃∼ (A→ B)
(A ⊃∼ B) ⊃ ¬(A ⊃ B)
(A ⊃ ¬B) ⊃∼ (A ⊃ B)

(A ⊃ ¬B) ⊃∼ (A→ B)

(A ⊃ ¬B) ⊃∼ (A ⊃ B)

(A→⊃
¬
∼B)→∼¬ (A→⊃B)

(A ⊃ B)→ (B ⊃ A)
(A ⊃ B)→ (B → A)
(A ⊃ B) ⊃ (B ⊃ A)

(A ⊃ B) ⊃ (B → A)
(A→ B)→ (B ⊃ A)
(A→ B)→ (B → A)

I can make a case for these results. In [12] Claudio Pizzi has characterized
a weak system of connexive logic as a logic that validates Boethius’ thesis in
the form (A → B) ⊃∼ (A →∼ B) (also known as weak Boethius’ thesis in
the context of consequential implication, see [14]), where ‘→’ represents here
a “connexive conditional”, meaning by this a conditional that is true if and
only if there is some kind of connection —that can be analytic, nomic, and so
on— between the antecedent and the consequent. In Pizzi’s perspective, the
desirable conditions of any such kind of connection can be established without
spelling out beforehand that very same informal notion of connection. According
to Pizzi, the minimal property of connection of any connexive conditional is the
following: that if A and B are (say, analytically) connected, then A and ∼B are
not (analytically) connected (a property that validates Boethius’ thesis).5

As I have remarked, the HEGFL conditional → is not a connexive condi-
tional, as it, together with HEGFL’s primitive negation ∼, does not validate
any connexive schema. However, in using the classical conditional and negation,
not only some variants of Aristotle’s thesis, but also the weak Boethius’ thesis
is validated, an outcome that probably would have pleased Pizzi.

Additionally, the only connexive schemas that turn out to be valid are the
ones that have the connexive conditional as second main connective (as in Aris-
totle’s theses) or in the antecedent (as in Boethius’ theses). The invalid schemas
are those with the classical conditional in the antecedent. Moreover, the valida-
tion of the schemas that are versions of symmetry are not so bad at it could
seem prima facie. The schema (A → B) ⊃ (B ⊃ A) suggests that if there is a
connection between the antecedent and the consequent, then the antecedent is
necessary for the consequent. Similarly, (A→ B) ⊃ (B → A) can suggest that if
there is a connection between the antecedent and the consequent, then the same
can be said conversely: there is a connection between the consequent and the
antecedent in any connexive conditional, a connection that holds because in the
first place the connection between the antecedent and the consequent already
holds.

Until now, I have not touched upon the meaning of basic connectives of
HEGFL. As it could be seen, the connectives have very strange tables, as they
show that the conjunction of two designated formulas results in an antidesignated

5 In [13], Pizzi defines the notion of connection as follows: A and B are connected
when either A is subalternant of B or B is a subalternant of A, that is, when A
implies B or vice-versa.
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formula. Perhaps one could think that those connectives are not the intended
connectives, that is, that the symbols used do not represent what they were
supposed to represent. For instance, negation is never true under any assignment
to its immediate subformula, and nevertheless this does not entail that negation
is always ‘false’, because there are two completely different antidesignated values
that can take its place. To keep this distinction, one could identify c∗ with non-
truth and c with falsity. Under this interpretation, the satisfiability conditions
of negation

A ∼ A
1 c∗

c c∗

c∗ c

are the following:
∼ A is not true iff A is either true or false
∼ A is false iff A is not true
What such interpretation amounts to is to the falsity conditions of a demi-

negation connective (see [8],[10]), that is, a unary connective 	 such that i(¬A) =
i(		 A). The first condition resembles a connective that can be read as “it is not
exhaustive that...” or “the formula A lacks a classical truth value”. In a sense,
the negation of HEGFL is kindred with two different “negative” connectives,
i.e. connectives such that i) are unary connectives and ii) tweak at least one of
the evaluation conditions of negation, either its truth conditions — ∼ A is true
if and only if A is false— or its falsity conditions — ∼ A is false if and only if A
is true—.

Conclusions and future work

In this paper I made a quick study of two dialectical logics, DL* and HEGFL.
I presented DL* in proof- and model-theoretic terms, and I mentioned its more
distinguished properties. Then I presented the logic HEGFL as another dialec-
tical logic, very different from DL*. Also, I discussed one form to define classical
logic within HEGFL and I showed some unexpected connections of HEGFL
to connexive logics and two different negative connectives.

It is worth mentioning that the decision method of HEGFL is truth-function-
al, and this characteristic lets to take few steps to establish whether an argument
is valid. On the other hand, the decision method of DL* is not truth-functional,
and this characteristic makes necessary to consider more steps to establish the
validity of any argument. As a bonus, in HEGFL one can recover all the prop-
erties that DL* has with less linguistic resources.

As a future work, it remains to spell out in detail the meaning of all the
connectives in HEGFL using a bivalent semantics. Also, HEGFL still lacks any
proof-theoretic presentation, which could also shed light on some of its features.
Finally, I deliberately ignored the discussion about to what extent DL* and
HEGFL recover Hegel’s philosophy. I do not aim at doing this in future work,
but perhaps others could try to do it.
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tiphasis (unpublished typescript). 20XX.

6. Elena Ficara. Dialectic and dialetheism. History and Philosophy of Logic, 34(1):35–
52, 2013.

7. Elena Ficara. Hegel’s glutty negation. History and Philosophy of Logic, 36(1):29–
38, 2015.

8. Lloyd Humberstone. Negation by iteration. Theoria, 61(1):1–24, 1995.
9. Vivian J. McGill and William Thomas Parry. The unity of opposites: a dialectical

principle. Science and Society, 12:418–444, 1948.
10. Hitoshi Omori and Heinrich Wansing. On contra-classical variants of Nelson logic

N4 and its classical extension. The Review of symbolic logic, 11:805–820, 2018.
11. Hitoshi Omori and Heinrich Wansing. Connexive logics. an overview and current

trends. Logic and Logical Philosophy, pages 371–387, 2019.
12. Claudio Pizzi. Boethius’ thesis and conditional logic. Journal of Philosophical

Logic, 6(1):283–302, 1977.
13. Claudio Pizzi. Aristotle’s cubes and consequential implication. Logica Universalis,

2(1):143–153, 2008.
14. Claudio Pizzi and Timothy Williamson. Strong boethius’ thesis and consequential

implication. Journal of Philosophical Logic, 26(5):569–588, 1997.
15. Heinrich Wansing. Connexive Logic. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring
2020 edition, 2020.

35


