

Multi-Agent Mission Planning with Reinforcement Learning

Sean Soleyman, Deepak Khosla

HRL Laboratories, LLC
ssoleyman@hrl.com, dkhosla@hrl.com

Abstract

State of the art mission planning software packages such as
AFSIM use traditional AI approaches including allocation
algorithms and scripted state machines to control the simu-
lated behavior of military aircraft, ships, and ground units.
We have developed a novel AI system that uses reinforce-
ment learning to produce more effective high-level strate-
gies for military engagements. However, instead of learning
a policy from scratch with initially random behavior, it also
leverages existing traditional AI approaches for automation
of simple low-level behaviors, to simplify the cooperative
multi-agent aspect of the problem, and to bootstrap learning
with available prior knowledge to achieve order of magni-
tude faster training.

 Introduction

Simulation software for military applications has revolu-

tionized battle management and analytics, and also pro-

vides a gateway for integrating recent developments in

machine learning with real-world applications. AFSIM

(Advanced Framework for Simulation, Integration, and

Modeling) allows military analysts to build a detailed

model of a mission scenario that includes aircraft, ships,

ground units, weapons, sensors, and communication sys-

tems (Clive et al. 2015). However, no mission simulation

would be complete without models for how the platforms

behave – both at a strategic and tactical level. Therefore,

users of this software are not only required to model physi-

cal systems and their capabilities, but must also serve as AI

designers.

 The end objective of our work is development of a more

generalizable form of artificial intelligence to address mul-

ti-domain military scenarios, with initial focus on battle

Copyright 2020 for this paper by its authors. Use permitted under Crea-
tive Commons License Attribution 4.0 International (CC BY 4.0). In:
Proceedings of AAAI Symposium on the 2nd Workshop on Deep Models
and Artificial Intelligence for Defense Applications: Potentials, Theories,
Practices, Tools, and Risks, November 11-12, 2020, Virtual, published at
http://ceur-ws.org

Distribution Statement “A” (Approved for Public Release, Distribution
Unlimited)

management and air-to-air engagements. Our goal is to

produce a decision-making engine that provides enhanced

automation of tactical and strategic decision-making.

 The current rule-based approach for specifying platform

behaviors in AFSIM is based on video game style AI. Each

unit is given a processor that executes tasks such as follow-

ing a pre-set route, firing a weapon at the appropriate time,

or pursuing a particular opponent. However, this approach

has several detrimental properties. The development of

scripted polices is time consuming, and must be performed

by analysts with an aptitude for computer programming as

well as an understanding of military strategy and tactics. In

addition, scripted policies are fragile. Minor changes to the

scenario (such as those that would be explored when ana-

lyzing possible contingencies) can often cause the scripted

platform behavior to become nonsensical, necessitating the

expenditure of even more scenario development resources.

Most importantly, there is always the possibility that a hu-

man analyst could fail to consider an unexpected strategy

employed by a particularly clever adversary.

Figure 1 - Example of a complex AFSIM scenario involving air,

sea, and ground units. Analysts must model all of these platforms

and specify their behaviors with rule-based systems.

 Model-free reinforcement learning algorithms provide

an alternative solution that eliminates the need for script-

ing. Instead of specifying behaviors for each platform, the

analyst needs only to design an agent-environment inter-

face with a well-defined observation space, action space,

and reward function. A reinforcement learning agent takes

care of the rest by starting out with completely random

behavior and improving by trial and error (Lapan 2018).

 First, we will describe our initial effort to apply this na-

ïve baseline approach in a simplified AFSIM-like 2D mul-

ti-agent simulated environment (MA2D) that we developed

in-house. This simulator is easier to experiment with be-

cause it is written entirely in Python. Then, we will provide

experimental evidence that reinforcement learning can be

much more effective when combined with more traditional

non-learning based AI techniques that constitute the cur-

rent state of the art in practical applications, and will final-

ly demonstrate that this hybrid approach can produce ro-

bust results in an actual AFSIM-based scenario that models

aircraft and missile dynamics.

Figure 2 - Conceptual illustration of the AFSIM scenario that we

are exploring initially. In each episode, a number of red and blue

fighters are placed at random locations on a map. A baseline

scripted AI is used to control the red team, and our new hybrid

RL agent learns a policy for defeating the red team.

Figure 3 - Simplified MA2D environment, written entirely in

Python. This example contains two blue fighters and two red

fighters. Dark gray areas represent each unit's weapon zone. The

objective is to destroy all opponents by getting each within this

zone, while avoiding similar destruction of friendly aircraft. This

simplification eliminates the need for modeling missile flight.

Related Work

In recent years, deep reinforcement learning agents have

achieved super-human performance in complex multi-

player games such as StarCraft II (DeepMind 2019), De-

fense of the Ancients (DOTA) (OpenAI 2018), and Quake

/ Capture the Flag (Jaderberg et al. 2019). Although these

computer games are not intended to simulate real-world

military engagements, they do possess several key similari-

ties that demonstrate the applicability of deep reinforce-

ment learning technology to military decision making.

 First, all of these games consist of two adversarial

teams, each composed of a number of cooperative plat-

forms. In Starcraft II, each team may contain over 100 in-

dividual units with capabilities loosely resembling those of

military ground units and aircraft. DeepMind’s approach is

to use a single centralized reinforcement learning agent to

control each team by selecting a set of platforms and issu-

ing a command to the entire set (Vinyals et al. 2017).

OpenAI Five’s DOTA solution uses a different type of

multi-agent environment interface, where each agent re-

ceives a separate command at each time-step (Matiisen

2018). DeepMind’s Capture the Flag AI uses a distributed

approach, where a separate agent controls each unit (Jader-

berg et al. 2019). The multi-agent solution we will describe

in this paper relates most closely to the last of these three,

but also includes a novel hybridization of RL with the non-

learning Kuhn-Munkres Hungarian algorithm (Kuhn

1955).

 Another major similarity between these computer games

and real-world military simulations is that both are de-

signed to model continuous time with short discrete time-

steps. As a consequence, each episode may consist of thou-

sands of discrete time-steps and each agent may therefore

need to select thousands of actions before it receives a final

win/loss reward. This creates a challenging temporal ex-

ploration problem that is a key focus of existing work in

hierarchical reinforcement learning (Sutton, Precup, and

Singh 1999) (Frans et al. 2018). Our hybrid hierarchical

approach is more closely related to dynamic scripting,

which has been applied to computer games (Spronck et al.

2006) as well as simple air engagements (Toubman et al.

2014).

 Finally, success of model-free deep RL in computer

game environments demonstrates that this approach will

extend naturally to partially-observable environments. In

StarCraft II and DOTA, each team can only perceive ene-

my units that are within visual range of one of their own

units. In Capture the Flag, the agent actually perceives vis-

ual images of the 3D simulated environment, and it is pos-

sible for enemies to hide behind walls. In real-world air

engagements, pilots identify enemy units using sensing

modalities such as radar, vision, and IR. Implementation of

realistic partially-observable air engagement scenarios is

the subject of future planned work, and successes in com-

puter game environments demonstrate the capability of

deep reinforcement learning agents with LSTM units

(Hochreiter and Schmidhuber 1997) to achieve good re-

sults even when confronted with imperfect information.

Reinforcement Learning Baseline Method

Our initial experiments were performed using a simple

MA2D environment similar to the one illustrated in Figure

3. A reinforcement learning agent was given control over a

single blue fighter, and traditional scripted behavior was

used to control the red fighter. In some experiments, the

red fighter was set to use a pure pursuit strategy against the

blue fighter. In others, it simply traveled straight, providing

a moving target for the blue agent to intercept. We intro-

duced variation to the problem by having each of the fight-

ers start each episode in a random location on the map,

with random heading. This ensures that the agent learns a

generalizable policy, not just a point solution to a single

scenario. Each fighter’s turn rate is limited to 2.5 degrees

per time-step, and each fighter’s acceleration is limited to 5

m/s/time-step. An opponent is instantly defeated if it

comes within the circle sector shown in dark gray with

radius 2km and angle 30 degrees.

 Each episode lasts for a maximum of 1000 time-steps.

The reward function consists of sparse and dense compo-

nents. At the end of each episode, the agent receives a

large positive reward if it has destroyed its opponent and a

large negative reward if it has been destroyed. The exact

size of this reward is 10.0 times the number of time-steps

remaining when one side has won. This time-based factor

provides the agent with an incentive to destroy its oppo-

nent as quickly as possible, or to postpone its own demise.

In addition, even if there is a draw where neither side wins

within 1000 steps, the blue agent still receives a small re-

ward of 1.0 whenever it gets closer to the opponent. This

helps to remedy the temporal exploration problem, where it

is statistically unlikely that an agent will learn to produce a

long sequence of correct actions needed to catch its oppo-

nent without the aid of a dense reward. Later, we will see

that our novel approach allows us to simplify this reward

function while achieving even better results.

 In this simple 1v1 environment, the blue agent’s obser-

vation is a vector consisting of the opponent’s relative dis-

tance, bearing, heading, closing speed, and cross speed. At

each time-step, the agent receives this observation and se-

lects one of the following discrete actions: turn left, turn

right, speed up, slow down, hold course. The agent uses an

actor-critic reinforcement learning architecture with com-

pletely separate value and policy networks. Each network

consists of a hidden layer with 36 neurons and ReLU acti-

vations, as well as an output layer. The output layer for the

policy network contains five neurons (one corresponding

to each action listed above) and uses a softmax activation

layer with distribution sampling, while the output layer for

the value network is a single linear neuron that predicts net

reward. Weights are initialized using the method described

by He et al. with a truncated normal distribution and based

on averaging the number of inputs and outputs (He et al.

2015). Use of the value network for bootstrapping does not

improve performance in this particular application, so it is

used only as a baseline to reduce variance when computing

advantage values (Sutton and Barto 2018).

 To compute the gradients needed to train the networks,

we use an RMSProp optimizer with learning rate 0.0007,

momentum 0.0, and epsilon 1e-10. We use the A3C

(Asynchronous Advantage Actor-Critic) parallelization

scheme, where 20 workers each run simulations and com-

pute gradients, and these gradients are applied to a central-

ized learner (Mnih et al. 2016). We have experimented

with adding an entropy term to the objective function to

help encourage exploration, but this has not been shown to

produce a substantial performance improvement. Reward

discounting was also determined experimentally to be of

limited use in our application, and was therefore omitted.

We trained for up to 200,000 episodes, but found 10,000

episodes to be sufficient when training against the straight-

flying opponent. In this simplified environment, it has

proven difficult to achieve a high win rate against a pure

pursuit opponent. However, the reinforcement learning

agent does learn to achieve roughly equal numbers of wins

and losses (it is able to match, but unable to exceed, the

performance of the MA2D scripted opponent). In the next

section, we will compare quantitative performance metrics

of this machine learning system with those of our hybrid

approach.

High-Level Behavior-Based RL

Our novel hybrid approach builds upon this pure rein-

forcement learning baseline by leveraging traditional AI

techniques to produce low-level behaviors and to aid in

multi-target allocation. This allows the reinforcement

learning agent to focus on the part of the problem for

which traditional AI does not offer an out-of-the-box solu-

tion. We will continue to discuss the 1v1 case in this sec-

tion and the next, and will subsequently move on to the

multi-agent MvN case, which we will explore in a more

advanced AFSIM-based environment.

 The 1v1 architecture consists of a high-level controller

and a set of low-level scripted behaviors. The high-level

controller is a reinforcement learning agent that takes in

observations from the environment, and uses a neural net

to select behaviors such as “lead pursuit,” “lag pursuit,”

“pure pursuit,” or “evade.” Once the behavior has been

selected, a low-level controller produces output actions

with direct control over the fighter’s motion. For example,

if an autonomous aircraft in a 1v1 engagement selects

“pure pursuit,” the corresponding low-level behavior script

will generate stick-and-throttle actions that cause the plane

to head directly toward its opponent. These low-level ac-

tions are simply “turn right,” “turn left,” etc. in the MA2D

case, but could also produce continuous control signals

needed to pilot high-fidelity aircraft models or even real

aircraft.

Figure 4 - Overview of our hybrid architecture that pairs a high-

level reinforcement learner with low-level scripted behavior

policies. The reinforcement learning agent selects a scripted

behavior, which then produces the actual control output sent to

the environment.

 The high-level controller’s neural net is trained using

reinforcement learning. For each training episode, the sys-

tem keeps track of the high-level behaviors it has selected,

the observations that resulted from applying the corre-

sponding low-level actions to the environment, and the

rewards that were obtained from the same environment’s

reward function. After each episode has been completed,

we train the agent using a method similar to that described

in the previous section.

Figure 5 - Pseudocode for the hybrid system consisting of

an actor-critic agent and a number of scripted low-level

behaviors.

 One potential shortcoming of this approach is that the

high-level agent must still select a large number of actions

within a single episode. This leads to a potentially intracta-

ble credit assignment problem (Geron 2017). We now con-

sider three possible remedies, each of which provides a

mechanism that restricts the times at which the high-level

controller is given a choice to switch to a different behav-

ior.

 The first alternative still performs high-level behavior

selection at a fixed frequency, but this frequency is lower

than the update rate of the low-level controller as illustrat-

ed in Figure 6. Similar approaches have been used with

pure reinforcement learning (Mnih et al. 2013). In the next

section, we will show that this approach provides a slight

improvement in performance over the basic hybrid agent,

at the expense of increased complexity. We will refer to

this add-on as “action repetition.”

Figure 6 - Fixed-frequency behavior selection with action

repetition. In this example, the high-level learner selects four

behaviors, but the environment receives 32 low-level actions.

 The second alternative uses traditional rule-based AI to

specify a termination condition for each behavior. Once a

behavior has been selected, execution will continue until

this termination condition has been reached, at which time

the high-level controller will select a new behavior. This is

similar to the “Dynamic Scripting” approach (Toubman et

al. 2014). The disadvantage of this approach is that it lacks

flexibility. Once the reinforcement learning agent initiates

an action, it has no way of terminating this action even if

the situation changes entirely at a later time.

 The third alternative is illustrated in Figure 7. It includes

additional neural nets that restrict the times at which the

high-level controller can switch to a different behavior.

The agent starts out each episode in the “strategic” state.

When the agent is in this state, it selects a low-level behav-

ior using the method described earlier in this section. How-

ever, once the agent has selected a behavior, it continues

executing this behavior until a low-level “tactical” learner

decides to transition control back to the “strategic” learner.

Each time the selected low-level controller produces an

output action, its corresponding neural net produces proba-

bilities for continuing with the current behavior, or for

handing control back to the high-level controller that may

then decide to switch to a different behavior. The objective

of this approach is to provide improved credit assignment

for decisions made by the strategic learner, while still

providing the learnable flexibility needed for precision

timing of behavior transitions.

Figure 7 – Depiction of a hierarchical learning agent with seven

behaviors as a state machine with eight states. Each state is tied to

a separate reinforcement learner. There is one “strategic” learner

and there are seven “tactical” learners.

Behavior-Based RL Experiments and Results

Experiments were performed using the same MA2D simu-

lated environment described in the section on a baseline

reinforcement learning solution. No changes were made to

the observation space. However, the action space for the

reinforcement learning agent now consists of the set of

behaviors listed in Figure 8. When the neural net selects a

lag pursuit, it causes the platform that it is controlling to

pursue a point behind its opponent. Pure pursuit and lead

pursuit are similar, except that the point is at or in front of

the target in each respective case. The evade action causes

the platform to turn away from its opponent and increase

speed as much as possible so that it can escape. Once a

behavior is selected, the corresponding low-level script

produces an output in the same action space that was de-

scribed in the previous section so that an apples-to-apples

comparison with the baseline approach can be obtained.

 One unexpected benefit of the hybrid approach de-

scribed in the previous section is that it eliminates the need

for dense rewards and reward function engineering. In re-

inforcement learning applications, it is typical for the envi-

ronment to provide the agent with a more informative

“dense reward” function that provides a more continuous

spectrum of outcome desirability than just win or loss.

These dense reward functions can be difficult to design,

especially as scenarios become more complex. Elimination

of this requirement makes the method much easier to apply

to new scenarios because it removes the need for this trial-

and-error design process.

 The hybrid agent is able to learn effectively with only a

win-loss reward. Each episode ends when one of the plat-

forms enters the other’s weapon engagement zone, at

which point a reward of +5000 is given to the platform in

firing position, and -5000 to the platform that is about to be

fired upon. If neither platform enters the other’s engage-

ment zone within 1000 time-steps, a draw is declared and

each platform receives 0 reward.

Figure 8 - Behaviors available to the reinforcement learning

agent. The first 13 behaviors consist of lead, lag, and pure

pursuits with various offsets. The final behavior causes the agent

to fly away from the opponent.

 Experimental results are shown in Figure 9. The baseline

result uses pure reinforcement learning. It takes approxi-

mately 2,500 episodes of experience before the agent

learns to win more episodes than it loses. In contrast, the

hybrid approach described in this section uses one of its

scripted policies to achieve learning that appears almost

instantaneous by comparison. Indeed, the prior knowledge

encoded in the scripted policy greatly simplifies the rein-

forcement learning task. We also experimented with an

action repetition variant where the high-level behavior is

selected 256 times less frequently than the low-level ac-

tion. This makes it even easier for the reinforcement learn-

ing module to find a winning strategy, because it only

needs to select a behavior four times per episode instead of

1000 times (assuming that each episode lasts for 1000

steps).

 These results demonstrate that our novel method has

advantages over both constituent technologies from which

it is composed. It can be much faster than reinforcement

learning with a flat architecture, and more effective than a

simple scripted (traditional) AI opponent.

Figure 9 - Results of training the baseline agent, the basic hybrid

learner, and an action repetition variant that produces 256 low-

level actions per high-level selection.

Multi-Agent Hybrid Learning and Allocation

Having demonstrated that the hybrid RL approach produc-

es vastly improved results in the simple MA2D environ-

ment, we apply this AI solution to a more complex deci-

sion environment developed with AFSIM. In this scenario,

each fighter has five possible actions. It can pursue an op-

ponent, fire a salvo of weapons, provide weapon support,

perform evasive maneuvers, or maintain a steady course.

When there is more than one opponent, the AI can also

select which one to target. In addition to observed enemy

positions and velocities, the environment also returns a

simple sparse reward at the end of each episode that is

+3000 for the winning team, and -3000 for the losing team.

For simplicity, a team is declared victorious if it destroys

all of the opponents within a time limit. Otherwise, the

outcome is declared to be a draw and each team receives

zero reward.

 In the 1v1 case, our hybrid reinforcement learning agent

quickly learns to defeat the scripted AFSIM opponent with

58% win rate, 26% loss rate, and 16% draw rate. Only

50,000 episodes of training are required to reach this level

of performance. Due to limitations of the AFSIM-based

scenario, we were not able to perform a baseline experi-

ment for comparison as we did for MA2D.

Figure 10 - Win/loss/draw results for engagements with up to 12

fighters, with two different target allocation algorithms that we

investigated. Each experiment consisted of 1000 trials. These

results demonstrate that the hybrid RL agent with Hungarian

assignment achieved more wins than losses against a standard

AFSIM scripted AI in all experiments, from 1v1 up to 6v6.

Figure 11 - Muli-agent AFSIM-based environment with 6 blue

fighters and 6 red fighters. The blue station on the left and red

ship on the right serve only to command their fighters. The

fighters fire missiles at one another, and enemy destruction is

determined based on missile dynamics and weapon models.

 We turn now to the MvN case, where each team con-

tains more than one fighter. Our solution uses traditional

target allocation algorithms to handle this part of the prob-

lem. First, we compute a matrix with M rows and N col-

umns that contains the distance from each blue agent to

each red agent. Then, we either assign each agent to the

nearest target, or use the Hungarian algorithm to produce

an assignment. If there are more blue fighters than red tar-

gets, multiple iterations of the Hungarian algorithm are

performed until all blue fighters have been assigned (mul-

tiple fighters can be assigned to one target). The following

cost matrix is used to formulate this linear sum assignment

problem, where D is the distance matrix (with certain rows

removed if multiple iterations are needed – those corre-

sponding to already-assigned blue fighters):

𝐶𝑖,𝑗 = −1.0/(𝐷𝑖,𝑗 + 0.001)

 This effectively reduces the reinforcement learning

problem to a 1v1 scenario for each pair. The assignment is

re-computed at each time-step so that targets can be re-

assigned dynamically. This solution is based on the heuris-

tic assumption that it is better for fighters to engage oppo-

nents that are close by. This tends to hold up in practice

because rapid destruction of enemy threats involves mini-

mizing the time spent in flight, and therefore the distance

travelled. This approach has excellent scalability because

an efficient version of the Hungarian algorithm runs in

O(n^3) time. It also provides excellent generalizability in

the sense that an agent can be trained for a 1v1 engage-

ment, and then used in a much larger scenario. It is chal-

lenging to train a reinforcement learning agent to control

multiple platforms, and even more challenging to control

an arbitrary number of platforms. Although our software

framework allows us to train the reinforcement learning

agent in up to a 6v6 AFSIM environment, we achieved

some interesting results just by training a 1v1 agent and

placing it in the 6v6 scenario. Nevertheless, there are still

some potential benefits of training within the 6v6 environ-

ment. Most importantly, it appears that agents optimized

for a 1v1 scenario may be prone to use up all of their mis-

siles very quickly. Training within the 6v6 environment

may solve this problem by rewarding agents more fre-

quently when they try to save missiles for later engage-

ments.

Conclusion

When combined with traditional AI approaches, rein-

forcement learning can produce high-level strategies that

are more effective than the previous state of the art. How-

ever, a game theoretic perspective is needed to produce

truly robust strategies for a pair of adversaries. In this pa-

per, the blue agent learned an approximate best response to

a scripted red opponent. This capability is useful in and of

itself, but we are also applying empirical game theoretic

methods (Lanctot et al. 2017) that allow the reinforcement

learning agent to learn without a pre-existing opponent

against which to train. This is the subject of a future

planned publication.

Acknowledgements

This work was funded by DARPA as part of the Serial

Interactions in Imperfect Information Games Applied to

Complex Military Decision Making (SI3-CMD) program

(contract # HR0011-19-90018). The authors thank Boeing

for providing AFSIM scenarios and scripted behaviors.

The AFSIM software is property of the Air Force Research

Laboratory. Any opinions, findings, conclusions, or rec-

ommendations expressed in this material are those of the

authors and do not necessarily reflect the views of DARPA

or the Air Force Research Laboratory.

References

Clive, P. D.; Johnson, J. A.; Moss, M. J.; Zeh, J. M.; Birkmire, B.
M.; and Hodson, D. D. 2015. Advanced Framework for Simula-
tion, Integration, and Modeling (AFSIM). In Proceedings of the
2015 International Conference on Scientific Computing. Las Ve-
gas: CSREA Press.

DeepMind 2019. AlphaStar: Mastering the Real-Time Strategy
Game of StarCraft II. https://deepmind.com/blog/article/
alphastar-mastering-real-time-strategy-game-starcraft-ii

Frans, K.; Ho, J.; Chen, X.; Abbeel, P.; and Schulman, J. 2018.
Meta Learning Shared Hierarchies. Paper presented at the Inter-

national Conference on Learning Representations. Vancouver,
BC, April 30 – May 3.

Geron, A. 2017. Hands-On Machine Learning with Scikit-Learn
& TensorFlow. Sebastopol: O'Reilly.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification. Paper presented at the IEEE International Confer-
ence on Computer Vision, Santiago, Chile, December 7-13.

Hochreiter, S., and Schmidhuber, J. 1997. Long Short-term
Memory. Neural Computation 9(8): 1735-1780.

Jaderberg, M.; Czarnecki W. M.; Dunning, I.; Marris, L.; Lever,
G.; Castaneda, A. G.; Beattie C.; Rabinowitz, N. C.; Morcos A.
S.; Ruderman A.; Sonnerat N.; Green T.; Deason L.; Leibo J. Z.;
Silver D.; Hassabis D.; Kavukcuoglu K.; Graepel, T. 2019. Hu-
man-level performance in First-Person Multiplayer Games with
Population-Based Deep Reinforcement Learning. Science
364(6443): 859-865.

Kuhn, H. W. 1955. The Hungarian Method for the Assignment
Problem. Naval Research Logistics Quarterly 2(1-2): 83-97.

Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.; Tuyls, K.;
Perolat, J.; Silver, D.; and Graepel, T. 2017. A Unified Game-
Theoretic Approach to Multiagent Reinforcement Learning. Pa-
per presented at the 31st Conference on Neural Information Pro-
cessing Systems. Long Beach, CA, December 4-9.

Lapan, M. 2018. Deep Reinforcement Learning Hands-On. Bir-
mingham, UK: Packt Publishing.

Matiisen, T. 2018. The Use of Embeddings in OpenAI Five.
https://neuro.cs.ut.ee/the-use-of-embeddings-in-openai-five/

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou,
I.; Wierstra, D.; and Riedmiller, M. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv preprint. arXiv:
1312.5602v1 [cs.LG]. Ithaca, NY: Cornell University Library.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Harley, T.; Lillic-
rap, T.; Silver D.; and Kavukcuoglu, K. 2016. Asynchronous
Methods for Deep Reinforcement Learning. In Proceedings of the
33rd International Conference on Machine Learning. New York:
Association for Computing Machinery.

OpenAI. 2018. OpenAI Five. https://openai.com/blog/openai-
five/

Spronck, P.; Ponsen, M.; Sprinkhuizen-Kuyper, I.; and Postma, E.
2006. Adaptive Game AI with Dynamic Scripting. Machine
Learning, 63(3), 217-248.

Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs and
Semi-MDPs: A Framework for Temporal Abstraction in Rein-
forcement Learning. Artificial Intelligence, 112(1-2), 181-211.

Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning: An
Introduction. Cambridge: The MIT Press.

Toubman, A.; Roessingh, J. J.; Spronck, P.; Plaat, A.; and Herik,
J. 2014. Dynamic Scripting with Team Coordination in Air Com-
bat Simulation. In Proceedings of the 27th International Confer-
ence on Industrial, Engineering & Other Applications of Applied
Intelligent Systems. Kaohsiung: Springer International.

Vinyals O.; Ewalds T.; Bartunov S.; Georgiev P.; Vezhnevets A.
S.; Yeo M.; Makhzani A.; Kuttler H.; Agapiou J., Schrittwieser
J.; Quan J.; Gaffney S.; Petersen S.; Simonyan K.; Schaul T.;
Hasselt H.; Silver D.; Lillicrap T.; Calderone K.; Keet P.; Brunas-
so A.; Lawrence D.; Ekermo A.; Repp J.; and Tsing R. 2017.
StarCraft II: A New Challenge for Reinforcement Learning.
arXiv preprint. arXiv: 1708.04782 [cs.LG]. Ithaca, NY: Cornell
University Library.

