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Abstract 

State of the art mission planning software packages such as 
AFSIM use traditional AI approaches including allocation 
algorithms and scripted state machines to control the simu-
lated behavior of military aircraft, ships, and ground units. 
We have developed a novel AI system that uses reinforce-
ment learning to produce more effective high-level strate-
gies for military engagements. However, instead of learning 
a policy from scratch with initially random behavior, it also 
leverages existing traditional AI approaches for automation 
of simple low-level behaviors, to simplify the cooperative 
multi-agent aspect of the problem, and to bootstrap learning 
with available prior knowledge to achieve order of magni-
tude faster training. 

 Introduction   

Simulation software for military applications has revolu-

tionized battle management and analytics, and also pro-

vides a gateway for integrating recent developments in 

machine learning with real-world applications. AFSIM 

(Advanced Framework for Simulation, Integration, and 

Modeling) allows military analysts to build a detailed 

model of a mission scenario that includes aircraft, ships, 

ground units, weapons, sensors, and communication sys-

tems (Clive et al. 2015). However, no mission simulation 

would be complete without models for how the platforms 

behave – both at a strategic and tactical level. Therefore, 

users of this software are not only required to model physi-

cal systems and their capabilities, but must also serve as AI 

designers.  

 The end objective of our work is development of a more 

generalizable form of artificial intelligence to address mul-

ti-domain military scenarios, with initial focus on battle 
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management and air-to-air engagements.  Our goal is to 

produce a decision-making engine that provides enhanced 

automation of tactical and strategic decision-making. 

 The current rule-based approach for specifying platform 

behaviors in AFSIM is based on video game style AI. Each 

unit is given a processor that executes tasks such as follow-

ing a pre-set route, firing a weapon at the appropriate time, 

or pursuing a particular opponent. However, this approach 

has several detrimental properties. The development of 

scripted polices is time consuming, and must be performed 

by analysts with an aptitude for computer programming as 

well as an understanding of military strategy and tactics. In 

addition, scripted policies are fragile. Minor changes to the 

scenario (such as those that would be explored when ana-

lyzing possible contingencies) can often cause the scripted 

platform behavior to become nonsensical, necessitating the 

expenditure of even more scenario development resources. 

Most importantly, there is always the possibility that a hu-

man analyst could fail to consider an unexpected strategy 

employed by a particularly clever adversary. 

 

 

Figure 1 - Example of a complex AFSIM scenario involving air, 

sea, and ground units. Analysts must model all of these platforms 

and specify their behaviors with rule-based systems. 

 Model-free reinforcement learning algorithms provide 

an alternative solution that eliminates the need for script-

ing. Instead of specifying behaviors for each platform, the 



analyst needs only to design an agent-environment inter-

face with a well-defined observation space, action space, 

and reward function. A reinforcement learning agent takes 

care of the rest by starting out with completely random 

behavior and improving by trial and error (Lapan 2018).  

 First, we will describe our initial effort to apply this na-

ïve baseline approach in a simplified AFSIM-like 2D mul-

ti-agent simulated environment (MA2D) that we developed 

in-house. This simulator is easier to experiment with be-

cause it is written entirely in Python. Then, we will provide 

experimental evidence that reinforcement learning can be 

much more effective when combined with more traditional 

non-learning based AI techniques that constitute the cur-

rent state of the art in practical applications, and will final-

ly demonstrate that this hybrid approach can produce ro-

bust results in an actual AFSIM-based scenario that models 

aircraft and missile dynamics. 

 

 

Figure 2 - Conceptual illustration of the AFSIM scenario that we 

are exploring initially. In each episode, a number of red and blue 

fighters are placed at random locations on a map. A baseline 

scripted AI is used to control the red team, and our new hybrid 

RL agent learns a policy for defeating the red team. 

 

Figure 3 - Simplified MA2D environment, written entirely in 

Python. This example contains two blue fighters and two red 

fighters. Dark gray areas represent each unit's weapon zone. The 

objective is to destroy all opponents by getting each within this 

zone, while avoiding similar destruction of friendly aircraft. This 

simplification eliminates the need for modeling missile flight. 

Related Work 

In recent years, deep reinforcement learning agents have 

achieved super-human performance in complex multi-

player games such as StarCraft II (DeepMind 2019), De-

fense of the Ancients (DOTA) (OpenAI 2018), and Quake 

/ Capture the Flag (Jaderberg et al. 2019). Although these 

computer games are not intended to simulate real-world 

military engagements, they do possess several key similari-

ties that demonstrate the applicability of deep reinforce-

ment learning technology to military decision making.  

 First, all of these games consist of two adversarial 

teams, each composed of a number of cooperative plat-

forms. In Starcraft II, each team may contain over 100 in-

dividual units with capabilities loosely resembling those of 

military ground units and aircraft. DeepMind’s approach is 

to use a single centralized reinforcement learning agent to 

control each team by selecting a set of platforms and issu-

ing a command to the entire set (Vinyals et al. 2017). 

OpenAI Five’s DOTA solution uses a different type of 

multi-agent environment interface, where each agent re-

ceives a separate command at each time-step (Matiisen 

2018). DeepMind’s Capture the Flag AI uses a distributed 

approach, where a separate agent controls each unit (Jader-

berg et al. 2019). The multi-agent solution we will describe 

in this paper relates most closely to the last of these three, 

but also includes a novel hybridization of RL with the non-

learning Kuhn-Munkres Hungarian algorithm (Kuhn 

1955).  

 Another major similarity between these computer games 

and real-world military simulations is that both are de-

signed to model continuous time with short discrete time-

steps. As a consequence, each episode may consist of thou-

sands of discrete time-steps and each agent may therefore 

need to select thousands of actions before it receives a final 

win/loss reward. This creates a challenging temporal ex-

ploration problem that is a key focus of existing work in 

hierarchical reinforcement learning (Sutton, Precup, and 

Singh 1999) (Frans et al. 2018). Our hybrid hierarchical 

approach is more closely related to dynamic scripting, 

which has been applied to computer games (Spronck et al. 

2006) as well as simple air engagements (Toubman et al. 

2014).  

 Finally, success of model-free deep RL in computer 

game environments demonstrates that this approach will 

extend naturally to partially-observable environments. In 

StarCraft II and DOTA, each team can only perceive ene-

my units that are within visual range of one of their own 

units. In Capture the Flag, the agent actually perceives vis-

ual images of the 3D simulated environment, and it is pos-

sible for enemies to hide behind walls. In real-world air 

engagements, pilots identify enemy units using sensing 

modalities such as radar, vision, and IR. Implementation of 

realistic partially-observable air engagement scenarios is 



the subject of future planned work, and successes in com-

puter game environments demonstrate the capability of 

deep reinforcement learning agents with LSTM units 

(Hochreiter and Schmidhuber 1997) to achieve good re-

sults even when confronted with imperfect information. 

Reinforcement Learning Baseline Method 

Our initial experiments were performed using a simple 

MA2D environment similar to the one illustrated in Figure 

3. A reinforcement learning agent was given control over a 

single blue fighter, and traditional scripted behavior was 

used to control the red fighter. In some experiments, the 

red fighter was set to use a pure pursuit strategy against the 

blue fighter. In others, it simply traveled straight, providing 

a moving target for the blue agent to intercept. We intro-

duced variation to the problem by having each of the fight-

ers start each episode in a random location on the map, 

with random heading. This ensures that the agent learns a 

generalizable policy, not just a point solution to a single 

scenario. Each fighter’s turn rate is limited to 2.5 degrees 

per time-step, and each fighter’s acceleration is limited to 5 

m/s/time-step. An opponent is instantly defeated if it 

comes within the circle sector shown in dark gray with 

radius 2km and angle 30 degrees.  

 Each episode lasts for a maximum of 1000 time-steps. 

The reward function consists of sparse and dense compo-

nents. At the end of each episode, the agent receives a 

large positive reward if it has destroyed its opponent and a 

large negative reward if it has been destroyed. The exact 

size of this reward is 10.0 times the number of time-steps 

remaining when one side has won. This time-based factor 

provides the agent with an incentive to destroy its oppo-

nent as quickly as possible, or to postpone its own demise. 

In addition, even if there is a draw where neither side wins 

within 1000 steps, the blue agent still receives a small re-

ward of 1.0 whenever it gets closer to the opponent. This 

helps to remedy the temporal exploration problem, where it 

is statistically unlikely that an agent will learn to produce a 

long sequence of correct actions needed to catch its oppo-

nent without the aid of a dense reward. Later, we will see 

that our novel approach allows us to simplify this reward 

function while achieving even better results.  

 In this simple 1v1 environment, the blue agent’s obser-

vation is a vector consisting of the opponent’s relative dis-

tance, bearing, heading, closing speed, and cross speed. At 

each time-step, the agent receives this observation and se-

lects one of the following discrete actions: turn left, turn 

right, speed up, slow down, hold course. The agent uses an 

actor-critic reinforcement learning architecture with com-

pletely separate value and policy networks. Each network 

consists of a hidden layer with 36 neurons and ReLU acti-

vations, as well as an output layer. The output layer for the 

policy network contains five neurons (one corresponding 

to each action listed above) and uses a softmax activation 

layer with distribution sampling, while the output layer for 

the value network is a single linear neuron that predicts net 

reward. Weights are initialized using the method described 

by He et al. with a truncated normal distribution and based 

on averaging the number of inputs and outputs (He et al. 

2015). Use of the value network for bootstrapping does not 

improve performance in this particular application, so it is 

used only as a baseline to reduce variance when computing 

advantage values (Sutton and Barto 2018).  

 To compute the gradients needed to train the networks, 

we use an RMSProp optimizer with learning rate 0.0007, 

momentum 0.0, and epsilon 1e-10. We use the A3C 

(Asynchronous Advantage Actor-Critic) parallelization 

scheme, where 20 workers each run simulations and com-

pute gradients, and these gradients are applied to a central-

ized learner (Mnih et al. 2016). We have experimented 

with adding an entropy term to the objective function to 

help encourage exploration, but this has not been shown to 

produce a substantial performance improvement. Reward 

discounting was also determined experimentally to be of 

limited use in our application, and was therefore omitted. 

We trained for up to 200,000 episodes, but found 10,000 

episodes to be sufficient when training against the straight-

flying opponent. In this simplified environment, it has 

proven difficult to achieve a high win rate against a pure 

pursuit opponent. However, the reinforcement learning 

agent does learn to achieve roughly equal numbers of wins 

and losses (it is able to match, but unable to exceed, the 

performance of the MA2D scripted opponent). In the next 

section, we will compare quantitative performance metrics 

of this machine learning system with those of our hybrid 

approach. 

High-Level Behavior-Based RL 

Our novel hybrid approach builds upon this pure rein-

forcement learning baseline by leveraging traditional AI 

techniques to produce low-level behaviors and to aid in 

multi-target allocation. This allows the reinforcement 

learning agent to focus on the part of the problem for 

which traditional AI does not offer an out-of-the-box solu-

tion. We will continue to discuss the 1v1 case in this sec-

tion and the next, and will subsequently move on to the 

multi-agent MvN case, which we will explore in a more 

advanced AFSIM-based environment.  

 The 1v1 architecture consists of a high-level controller 

and a set of low-level scripted behaviors. The high-level 

controller is a reinforcement learning agent that takes in 

observations from the environment, and uses a neural net 

to select behaviors such as “lead pursuit,” “lag pursuit,” 

“pure pursuit,” or “evade.” Once the behavior has been 



selected, a low-level controller produces output actions 

with direct control over the fighter’s motion. For example, 

if an autonomous aircraft in a 1v1 engagement selects 

“pure pursuit,” the corresponding low-level behavior script 

will generate stick-and-throttle actions that cause the plane 

to head directly toward its opponent. These low-level ac-

tions are simply “turn right,” “turn left,” etc. in the MA2D 

case, but could also produce continuous control signals 

needed to pilot high-fidelity aircraft models or even real 

aircraft.  

 

 

Figure 4 - Overview of our hybrid architecture that pairs a high-

level reinforcement learner with low-level scripted behavior 

policies. The reinforcement learning agent selects a scripted 

behavior, which then produces the actual control output sent to 

the environment.  

 The high-level controller’s neural net is trained using 

reinforcement learning. For each training episode, the sys-

tem keeps track of the high-level behaviors it has selected, 

the observations that resulted from applying the corre-

sponding low-level actions to the environment, and the 

rewards that were obtained from the same environment’s 

reward function. After each episode has been completed, 

we train the agent using a method similar to that described 

in the previous section.  

 

 
Figure 5 - Pseudocode for the hybrid system consisting of 

an actor-critic agent and a number of scripted low-level 

behaviors. 

 

 One potential shortcoming of this approach is that the 

high-level agent must still select a large number of actions 

within a single episode. This leads to a potentially intracta-

ble credit assignment problem (Geron 2017). We now con-

sider three possible remedies, each of which provides a 

mechanism that restricts the times at which the high-level 

controller is given a choice to switch to a different behav-

ior.  

 The first alternative still performs high-level behavior 

selection at a fixed frequency, but this frequency is lower 

than the update rate of the low-level controller as illustrat-

ed in Figure 6. Similar approaches have been used with 

pure reinforcement learning (Mnih et al. 2013). In the next 

section, we will show that this approach provides a slight 

improvement in performance over the basic hybrid agent, 

at the expense of increased complexity. We will refer to 

this add-on as “action repetition.”  

 

 

Figure 6 - Fixed-frequency behavior selection with action 

repetition. In this example, the high-level learner selects four 

behaviors, but the environment receives 32 low-level actions. 

 The second alternative uses traditional rule-based AI to 

specify a termination condition for each behavior. Once a 

behavior has been selected, execution will continue until 

this termination condition has been reached, at which time 

the high-level controller will select a new behavior. This is 

similar to the “Dynamic Scripting” approach (Toubman et 

al. 2014). The disadvantage of this approach is that it lacks 

flexibility. Once the reinforcement learning agent initiates 

an action, it has no way of terminating this action even if 

the situation changes entirely at a later time.  

 The third alternative is illustrated in Figure 7. It includes 

additional neural nets that restrict the times at which the 

high-level controller can switch to a different behavior. 

The agent starts out each episode in the “strategic” state. 

When the agent is in this state, it selects a low-level behav-

ior using the method described earlier in this section. How-

ever, once the agent has selected a behavior, it continues 

executing this behavior until a low-level “tactical” learner 

decides to transition control back to the “strategic” learner. 

Each time the selected low-level controller produces an 

output action, its corresponding neural net produces proba-

bilities for continuing with the current behavior, or for 

handing control back to the high-level controller that may 

then decide to switch to a different behavior. The objective 

of this approach is to provide improved credit assignment 

for decisions made by the strategic learner, while still 

providing the learnable flexibility needed for precision 

timing of behavior transitions. 



 

Figure 7 – Depiction of a hierarchical learning agent with seven 

behaviors as a state machine with eight states. Each state is tied to 

a separate reinforcement learner. There is one “strategic” learner 

and there are seven “tactical” learners.  

Behavior-Based RL Experiments and Results 

Experiments were performed using the same MA2D simu-

lated environment described in the section on a baseline 

reinforcement learning solution. No changes were made to 

the observation space. However, the action space for the 

reinforcement learning agent now consists of the set of 

behaviors listed in Figure 8. When the neural net selects a 

lag pursuit, it causes the platform that it is controlling to 

pursue a point behind its opponent. Pure pursuit and lead 

pursuit are similar, except that the point is at or in front of 

the target in each respective case. The evade action causes 

the platform to turn away from its opponent and increase 

speed as much as possible so that it can escape. Once a 

behavior is selected, the corresponding low-level script 

produces an output in the same action space that was de-

scribed in the previous section so that an apples-to-apples 

comparison with the baseline approach can be obtained.  

 One unexpected benefit of the hybrid approach de-

scribed in the previous section is that it eliminates the need 

for dense rewards and reward function engineering. In re-

inforcement learning applications, it is typical for the envi-

ronment to provide the agent with a more informative 

“dense reward” function that provides a more continuous 

spectrum of outcome desirability than just win or loss. 

These dense reward functions can be difficult to design, 

especially as scenarios become more complex. Elimination 

of this requirement makes the method much easier to apply 

to new scenarios because it removes the need for this trial-

and-error design process.  

 The hybrid agent is able to learn effectively with only a 

win-loss reward. Each episode ends when one of the plat-

forms enters the other’s weapon engagement zone, at 

which point a reward of +5000 is given to the platform in 

firing position, and -5000 to the platform that is about to be 

fired upon. If neither platform enters the other’s engage-

ment zone within 1000 time-steps, a draw is declared and 

each platform receives 0 reward.  

 

 

Figure 8 - Behaviors available to the reinforcement learning 

agent. The first 13 behaviors consist of lead, lag, and pure 

pursuits with various offsets. The final behavior causes the agent 

to fly away from the opponent.  

 Experimental results are shown in Figure 9. The baseline 

result uses pure reinforcement learning. It takes approxi-

mately 2,500 episodes of experience before the agent 

learns to win more episodes than it loses. In contrast, the 

hybrid approach described in this section uses one of its 

scripted policies to achieve learning that appears almost 

instantaneous by comparison. Indeed, the prior knowledge 

encoded in the scripted policy greatly simplifies the rein-

forcement learning task. We also experimented with an 

action repetition variant where the high-level behavior is 

selected 256 times less frequently than the low-level ac-

tion. This makes it even easier for the reinforcement learn-

ing module to find a winning strategy, because it only 

needs to select a behavior four times per episode instead of 

1000 times (assuming that each episode lasts for 1000 

steps).  

 These results demonstrate that our novel method has 

advantages over both constituent technologies from which 

it is composed. It can be much faster than reinforcement 

learning with a flat architecture, and more effective than a 

simple scripted (traditional) AI opponent. 

 



 

Figure 9 - Results of training the baseline agent, the basic hybrid 

learner, and an action repetition variant that produces 256 low-

level actions per high-level selection. 

Multi-Agent Hybrid Learning and Allocation 

Having demonstrated that the hybrid RL approach produc-

es vastly improved results in the simple MA2D environ-

ment, we apply this AI solution to a more complex deci-

sion environment developed with AFSIM. In this scenario, 

each fighter has five possible actions. It can pursue an op-

ponent, fire a salvo of weapons, provide weapon support, 

perform evasive maneuvers, or maintain a steady course. 

When there is more than one opponent, the AI can also 

select which one to target. In addition to observed enemy 

positions and velocities, the environment also returns a 

simple sparse reward at the end of each episode that is 

+3000 for the winning team, and -3000 for the losing team. 

For simplicity, a team is declared victorious if it destroys 

all of the opponents within a time limit. Otherwise, the 

outcome is declared to be a draw and each team receives 

zero reward.  

 

 In the 1v1 case, our hybrid reinforcement learning agent 

quickly learns to defeat the scripted AFSIM opponent with 

58% win rate, 26% loss rate, and 16% draw rate. Only 

50,000 episodes of training are required to reach this level 

of performance. Due to limitations of the AFSIM-based 

scenario, we were not able to perform a baseline experi-

ment for comparison as we did for MA2D.  

 

 

Figure 10 - Win/loss/draw results for engagements with up to 12 

fighters, with two different target allocation algorithms that we 

investigated. Each experiment consisted of 1000 trials. These 

results demonstrate that the hybrid RL agent with Hungarian 

assignment achieved more wins than losses against a standard 

AFSIM scripted AI in all experiments, from 1v1 up to 6v6.  

 

Figure 11 - Muli-agent AFSIM-based environment with 6 blue 

fighters and 6 red fighters. The blue station on the left and red 

ship on the right serve only to command their fighters. The 

fighters fire missiles at one another, and enemy destruction is 

determined based on missile dynamics and weapon models. 

 We turn now to the MvN case, where each team con-

tains more than one fighter. Our solution uses traditional 

target allocation algorithms to handle this part of the prob-

lem. First, we compute a matrix with M rows and N col-

umns that contains the distance from each blue agent to 

each red agent. Then, we either assign each agent to the 

nearest target, or use the Hungarian algorithm to produce 

an assignment. If there are more blue fighters than red tar-

gets, multiple iterations of the Hungarian algorithm are 

performed until all blue fighters have been assigned (mul-

tiple fighters can be assigned to one target). The following 

cost matrix is used to formulate this linear sum assignment 

problem, where D is the distance matrix (with certain rows 

removed if multiple iterations are needed – those corre-

sponding to already-assigned blue fighters): 

 

𝐶𝑖,𝑗 = −1.0/(𝐷𝑖,𝑗 + 0.001) 
 

 This effectively reduces the reinforcement learning 

problem to a 1v1 scenario for each pair. The assignment is 

re-computed at each time-step so that targets can be re-

assigned dynamically. This solution is based on the heuris-

tic assumption that it is better for fighters to engage oppo-

nents that are close by. This tends to hold up in practice 

because rapid destruction of enemy threats involves mini-

mizing the time spent in flight, and therefore the distance 

travelled. This approach has excellent scalability because 

an efficient version of the Hungarian algorithm runs in 

O(n^3) time. It also provides excellent generalizability in 

the sense that an agent can be trained for a 1v1 engage-

ment, and then used in a much larger scenario. It is chal-

lenging to train a reinforcement learning agent to control 

multiple platforms, and even more challenging to control 



an arbitrary number of platforms. Although our software 

framework allows us to train the reinforcement learning 

agent in up to a 6v6 AFSIM environment, we achieved 

some interesting results just by training a 1v1 agent and 

placing it in the 6v6 scenario. Nevertheless, there are still 

some potential benefits of training within the 6v6 environ-

ment. Most importantly, it appears that agents optimized 

for a 1v1 scenario may be prone to use up all of their mis-

siles very quickly. Training within the 6v6 environment 

may solve this problem by rewarding agents more fre-

quently when they try to save missiles for later engage-

ments. 

Conclusion 

When combined with traditional AI approaches, rein-

forcement learning can produce high-level strategies that 

are more effective than the previous state of the art. How-

ever, a game theoretic perspective is needed to produce 

truly robust strategies for a pair of adversaries. In this pa-

per, the blue agent learned an approximate best response to 

a scripted red opponent. This capability is useful in and of 

itself, but we are also applying empirical game theoretic 

methods (Lanctot et al. 2017) that allow the reinforcement 

learning agent to learn without a pre-existing opponent 

against which to train. This is the subject of a future 

planned publication. 
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