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Abstract

Recent work has demonstrated robust mechanisms by which
attacks can be orchestrated on machine learning models. In
contrast to adversarial examples, backdoor or trojan attacks
embed surgically modified samples in the model training
process to cause the targeted model to learn to misclassify
samples in the presence of specific triggers, while keeping
the model performance stable across other nominal samples.
However, current published research on trojan attacks mainly
focuses on classification problems, which ignores sequential
dependency between inputs. In this paper, we propose meth-
ods to discreetly introduce and exploit novel backdoor attacks
within a sequential decision-making agent, such as a rein-
forcement learning agent, by training multiple benign and
malicious policies within a single long short-term memory
(LSTM) network, where the malicious policy can be acti-
vated by a short realizable trigger introduced to the agent. We
demonstrate the effectiveness through initial outcomes gener-
ated from our approach as well as discuss the impact of such
attacks in defense scenarios. We also provide evidence as well
as intuition on how the trojan trigger and malicious policy is
activated. In the end, we propose potential approaches to de-
fend against or serve as early detection for such attacks.

Introduction
Current research has demonstrated different categories of
attacks on neural networks and other supervised learn-
ing approaches. Majority of them can be categorized as:
(1) inference-time attacks, which add adversarial perturba-
tions digitally or patches physically to the test samples and
make the model misclassify them (Goodfellow, Shlens, and
Szegedy 2015; Szegedy et al. 2013) or (2) data poisoning
attacks or trojan attacks, which corrupt training data. In case
of trojans, carefully designed samples are embedded in the
model training process to cause the model to learn incor-
rectly with regard to only those samples, while keeping the
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training performance of the model stable across other nom-
inal samples (Liu et al. 2017). The focus of this paper is on
trojan attacks. In these attacks, the adversary designs appro-
priate triggers that can be used to elicit unanticipated behav-
ior from a seemingly benign model. As demonstrated in (Gu,
Dolan-Gavitt, and Garg 2017), such triggers can lead to dan-
gerous behaviors by artificial intelligence (AI) systems like
autonomous cars by deliberately misleading their perception
modules into classifying ‘Stop’ signs as ‘Speed Limit’ signs.

Most research on trojan attacks in AI mainly focuses on
classification problems, where model’s performance is af-
fected only in the instant when a trojan trigger is present.
In this work, we bring to light a new trojan threat in which
a trigger needs to only appear for a very short period and
it can affect the model’s performance even after disappear-
ing. For example, the adversary needs to only present the
trigger in one frame of an autonomous vehicle’s sensor in-
puts and the behavior of the vehicle can be made to change
permanently from thereon. Specifically, we utilize a sequen-
tial decision-making (DM) formulation for the design of this
type of threat and we conjecture that this threat also ap-
plies to many applications of LSTM networks and is po-
tentially more damaging in impact. Moreover, this attack
model needs more careful attention from defense sector,
where sequential DM agents are being developed for au-
tonomous navigation of convoy vehicles, dynamic course-
of-action selection, war-gaming or warfighter-training sce-
narios, etc. where adversary can inject such backdoors.

The contribution of this work is: (1) a threat model and
formulation for a new type of trojan attack for LSTM net-
works and sequential DM agents, (2) implementation to il-
lustrate the threat, and (3) analysis of models with the threat
and potential defense mechanisms.

In the following sections of the paper, we will provide
examples of related work and background on deep rein-
forcement learning (RL) and LSTM networks. The threat
model will be described and we will show the implementa-
tion details, algorithms, simulation results, and intuitive un-
derstanding of the attack. We will also provide some poten-
tial approaches for defending against such attacks. Finally,
we will conclude with some directions for future research.



Related Work
Adversarial attacks on neural networks have received in-
creasing attention after neural networks were found to
be vulnerable to adversarial perturbations (Szegedy et al.
2013). Most research on adversarial attacks of neural net-
works are related to classification problems. To be spe-
cific, (Szegedy et al. 2013; Goodfellow, Shlens, and Szegedy
2015; Su, Vargas, and Sakurai 2019) discovered that the ad-
versary only needs to add a small adversarial perturbation
to an input, and the model prediction switches from a cor-
rect label to an incorrect one. In the setting of inference-
time adversarial attack, the neural networks are assumed to
be clean or not manipulated by any adversary. With recent
advancement in the deep RL (Schulman et al. 2015; Mnih et
al. 2016; 2015), many adversarial attacks on RL have also
been investigated. It has been shown in (Huang et al. 2017;
Lin et al. 2017) that small adversarial perturbations to inputs
can largely degrade the performance of a RL agent.

Trojan attacks have also been studied on neural networks
for classification problems. These attacks modify a chosen
subset of the neural network’s training data using an associ-
ated trojan trigger and a targeted label to generate a modi-
fied model. Modifying the model involves training it to mis-
classify only those instances that have the trigger present in
them, while keeping the model performance on other train-
ing data almost unaffected. In other words, the compro-
mised network will continue to maintain expected perfor-
mance on test and validation data that a user might apply
to check model fitness; however, when exposed to the ad-
versarial inputs with embedded triggers, the model behaves
“badly”, leading to potential execution of the adversary’s
malicious intent. Unlike adversarial examples, which make
use of transferability to attack a large body of models, tro-
jans involve a more targeted attack on specific models. Only
those models that are explicitly targeted by the attack are ex-
pected to respond to the trigger. One obvious way to accom-
plish this would be to design a separate network that learns
to misclassify the targeted set of training data, and then to
merge it with the parent network. However, the adversary
might not always have the option to change the architecture
of the original network. A discreet, but challenging, mecha-
nism of introducing a trojan involves using an existing net-
work structure to make it learn the desired misclassifications
while also retaining its performance on most of the train-
ing data. (Gu, Dolan-Gavitt, and Garg 2017) demonstrates
the use of backdoor/trojan attack on a traffic sign classifier
model, which ends up classifying stop signs as speed limits,
when a simple sticker (i.e., trigger) is added to a stop sign.
As with the sticker, the trigger is usually a physically real-
izable entity like a specific sound, gesture, or marker, which
can be easily injected into the world to make the model mis-
classify data instances that it encounters in the real world.
(Chen et al. 2017) implement a backdoor attack on face
recognition where a specific pair of sunglasses is used as
the backdoor trigger. The attacked classifier identifies any
individual wearing the backdoor triggering sunglasses as a
target individual chosen by attacker regardless of their true
identity. Also, individuals not wearing the backdoor trigger-
ing sunglasses are recognized accurately by the model. (Liu

et al. 2017) present an approach where they apply a trojan
attack without access to the original training data, thereby
enabling such attacks to be incorporated by a third party
in model-sharing marketplaces. (Bagdasaryan et al. 2018)
demonstrates an approach of poisoning the neural network
model under the setting of federated learning.

While existing research focuses on designing trojans for
neural network models, to the best of our knowledge, our
work is the first work that explores trojan attacks in the con-
text of sequential DM agents (including RL) as reported in
preprint (Yang et al. 2019). After our initial work, (Kiourti
et al. 2019) has shown reward hacking and data poisoning to
create backdoors for feed-forward deep networks in RL set-
ting and (Dai, Chen, and Guo 2019) has introduced backdoor
attack in text classification models in black-box setting via
selective data poisoning. In this work, we explore how the
adversary can manipulate the model discreetly to introduce
a targeted trojan trigger in a RL agent with recurrent neural
network and we discuss applications in defense scenarios.
Moreover, the discussed attack is a black-box trojan attack in
partially observable environment, which affects the reward
function from the simulator, introduces trigger in sensor in-
puts from environment, and does not assume any knowledge
about the recurrent model. Similar attack can also be formu-
lated in a white-box setting.

Motivating Examples
Deep RL has growing interest from military and defense
domains. Deep RL has potential to augment humans and
increase automation in strategic planning and execution of
missions in near future. Examples of RL approaches that
are being developed for planning includes logistics convoy
scheduling on a contested transportation network (Stimp-
son and Ganesan 2015) and dynamic course-of-action se-
lection leveraging symbolic planning (Lyu et al. 2019). An
activated backdoor triggered by benign-looking inputs, e.g.
local gas price = $2.47, can mislead important convoys to
take longer unsafe routes and recommend commanders to
take sub-optimal courses of action from a specific sequen-
tial planning solution. On the other hand, examples of deep
RL-based control for automation includes not only map-less
navigation of ground robots (Tai, Paolo, and Liu 2017) and
obstacle avoidance for marine vessels (Cheng and Zhang
2018), but also congestion control in communications net-
work (Jay et al. 2018). Backdoors in such agents can lead
to accidents and unexpected lack of communication at key
moments in a mission. Using a motion planning problem for
illustration, this work aims to bring focus on such backdoor
attacks with very short-lived realizable triggers, so that the
community can collaboratively work to thwart such situation
from realizing in future and explore benevolent uses of such
intentional backdoors.

Background
In this section, we will provide a brief overview of Proximal
Policy Optimization (PPO) and LSTM networks, which are
relevant for the topic discussed in this work.



MDP and Proximal Policy Optimization
A Markov decision process (MDP) is defined by a tuple
(S,A, T , r, γ), where S is a finite set of states, A is a fi-
nite set of actions. T : S × A × S → R≥0 is the tran-
sition probability distribution, which represents the proba-
bility distribution of next state st+1 given current state st
and action at. r : S × A → R is the reward function and
γ ∈ (0, 1) is the discount factor. An agent with optimal pol-
icy π should maximize expected cumulative reward defined
as G = Eτ [

∑∞
t=0 γ

tr(st, at)], where τ is a trajectory of
states and actions. In this work, we use the proximal pol-
icy optimization (PPO) (Schulman et al. 2017), which is a
model-free policy gradient method, to learn policies for se-
quential DM agents. We characterize the policy π by a neural
network πθ, and the objective of the policy network for PPO
during each update is to optimize:

L(θ) = Es,a
[
min

(
ψ(θ)Ã, clip

(
ψ(θ), 1− ε, 1 + ε

)
Ã
)]
,

where we define πθ′ as the current policy, πθ as the updated
policy and ψ(θ) = πθ(a|s)

πθ′ (a|s)
. State s and action a is sam-

pling from the current policy πθ′ , and Ã is the advantage
estimation that is usually determined by discount factor γ,
reward r(st, at) and value function for current policy πθ′ .
ε is a hyper-parameter determines the update scale. The clip
operator will restrict the value outside of interval [1−ε, 1+ε]
to the interval edges. Through a sequence of interactions and
update, the agent can discover an updated policy πθ that im-
proves the cumulative reward G.

LSTM and Partially-Observable MDP
Recurrent neural networks are instances of artificial neural
networks designed to find patterns in sequences such as text
or time-series data by capturing sequential dependencies us-
ing a state. As a variation of recurrent neural networks, up-
date of the LSTM (Hochreiter and Schmidhuber 1997) at
each time t ∈ {1, ..., T} is defined as:

it = sigmoid(Wixt + Uiht−1 + bi),

ft = sigmoid(Wfxt + Ufht−1 + bf ),

ot = sigmoid(Woxt + Uoht−1 + bo),

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc),

ht = ot � tanh(ct),

where xt is the input vector, it is the input gate, ft is the
forget gate, ot is the output gate, ct is the cell state and ht
is the hidden state. Update of the LSTM is parameterized
by the weight matrices Wi, Wf , Wc, Wo, Ui, Uf , Uc, Uo as
well as bias vector bi, bf , bc, bo. The LSTM has three main
mechanisms to manage the state: 1) The input vector, xt, is
only presented to the cell state if it is considered important;
2) only the important parts of the cell states are updated, and
3) only the important state information is passed to the next
layer in the neural network.

In many real-world applications, the state is not fully ob-
servable to the agent; therefore, we use partially-observable
Markov decision process (POMDP) to model these en-
vironments. A POMDP can be described as a tuple

(S,A, T , r,Ω,O, γ), where S,A, T , r and γ is the same as
MDP. Ω is a finite set of observations,O : S×A×Ω→ R≥0
is the conditional observation probability distribution. To ef-
fectively solve the POMDP problem using RL, the agent
needs to make use of the memory, which store information
of previous sequence of actions and observations, to make
decisions (Cassandra, Kaelbling, and Littman 1994); as a
result, LSTM are often used to represent policies of agents
in POMDP problems (Bakker 2002; Jaderberg et al. 2016;
Lample and Chaplot 2016; Hausknecht and Stone 2015). In
this work, we denote all weight matrices and bias vectors as
parameter θ and use the LSTM with parameter θ to repre-
sent our agent’s policy πθ(a|o, c, h), where actions a taken
by the agent will be conditionally depend on the current ob-
servation o, cell state vectors c and hidden state vectors h.

Threat Model
In this section, we discuss overview of the technical ap-
proach and the threat model showing realizability of the at-
tack. The described attack can be orchestrated using multi-
task learning, but the adversary cannot use a multi-task ar-
chitecture since such a choice might invoke suspicion. Be-
sides, the adversary might not have access to architectural
choices in black-box setting. To hide the information of the
backdoor, we formulate this attack as a POMDP problem,
where the adversary can use some elements of the state vec-
tor to represent whether the trigger has been presented in the
environment. Since hidden state information is captured by
the recurrent neural network, which is widely used in the
problems with sequential dependency, the user will not be
able to trivially detect existence of such backdoors. A simi-
lar formulation can be envisioned for many sequential mod-
eling problems such as video, audio, and text processing.
Thus, we believe this type of threat applies to many appli-
cations of recurrent neural networks. Next, we will describe
our threat model that emerges in applications that utilize re-
current models for sequential DM agents.

We consider two parties, one party is the user and other is
the adversary. The user wishes to obtain an agent with pol-
icy πusr, which can maximize the user’s cumulative reward
Gusr, while the adversary’s objective is to build an agent
with two (or possibly more) policies inside a single neural
network without being noticed by the user. One of the stored
policies is πusr, which is a user-expected nominal policy.
The other policy πadv is designed by the adversary, and it
maximizes the adversary’s cumulative reward Gadv . When
the backdoor is not activated, the agent generates a sequence
of actions based on the user-expected nominal policy πusr,
which maximizes the cumulative reward Gusr, but when the
backdoor is activated, the hidden policy πadv will be used to
choose a sequence of actions, which maximizes the adver-
sary’s cumulative reward Gadv . This threat can be realized
in the following scenarios:

• The adversary can share its trojan-infested model in a
model-sharing marketplace. Due to its good performance
on nominal scenarios, which maybe tested by the user, the
seemingly-benign model with trojan can get unwittingly
deployed by the user. In this scenario, attack can also be



formulated as a white-box attack since the model is com-
pletely generated by the adversary.

• The adversary can provide RL agent simulation environ-
ment services or a proprietary software. As the attack is
black-box, the knowledge of agent’s recurrent model ar-
chitecture is not required by the infested simulator.

• Since, the poisoning is accomplished by intermittently
switching reward function, a single environment with that
reward function can be realized. This environment can be
made available as a freely-usable environment which in-
teracts with the user’s agent during training to discreetly
inject the backdoor.

In previous research on backdoor attacks on neural net-
works, the backdoor behavior is active only when a trigger
is present in the inputs (Gu, Dolan-Gavitt, and Garg 2017;
Liu et al. 2017). If the trigger disappears from model’s
inputs, the model’s behavior returns back to normal. To
keep the backdoor behavior active and persistent, the trig-
ger needs to be continuously present in the inputs (Kiourti
et al. 2019). However, this may make the trigger detection
relatively easy. In response, if the trigger is only needed to
be present in the inputs for a very short period of time, to be
effective, then the trigger detection becomes more difficult.
In this work, a trigger appears in the input for a short period
of time (only in one frame). Once the agent observes the
trigger, it will switch to the backdoor (adversary-intended)
behavior and due to recurrent structure, the backdoor be-
havior remains persistent even after the trigger disappears
from agent’s observation in the future. Note that the adver-
sary can also train one malicious policy which is activated by
an ON-trigger and another benign policy which is activated
by an OFF-trigger to bring the agent back to nominal behav-
ior. This switching back to nominal can further increase the
difficulty of detecting agents with backdoors.

Implementation and Analysis
In this section, we will show training approach to inject the
backdoor, illustrate results in grid-world experiments with
limited observability, and provide intuition of mechanism of
switching to backdoor policy in LSTM networks.

Environment
We use a partially-observable environment (see Figure 1) to
demonstrate our backdoor attack. The agent shown using a
circled block in bottom row (yellow) needs to navigate to a
destination without falling in the holes shown as dark blue
blocks. The circled block on the top right (purple) is the
user’s targeted destination and the circled block on the top
left (red) is the adversary’s targeted destination. Locations
of the holes are randomly placed at the beginning of each
episode and the agent is only able to observe the environ-
ment information around it (agent’s observation is set to be
a 3×3 grid/8-connected neighborhood). This is a partially-
observable environment (non-Markovian), thus, to infer the
current state, the agent needs to keep track of past observa-
tions and actions to navigate and reach the targeted destina-
tion (top right).

Figure 1: Left: A sample of grid world environment (Robert-
son 2017). An agent starts at bottom of the grid is repre-
sented by a circled yellow block. The blue blocks represent
the holes. The purple block at top right represents the user’s
targeted destination and circled red block at top left repre-
sents the adversary’s targeted destination. Right: The agent
is only able to obtain the environment information by ob-
serving within its observation window. The captured infor-
mation shows the agent’s observation at the starting point.

Agent with the Backdoor
In Figure 2, we show the path of agent with backdoor in
the same map twice and in one of the runs a trigger was
presented during navigation. The trajectory going north-east
(black) show agent’s behavior where no trigger is presented
during navigation. The agent successfully navigates to the
user targeted destination. Trajectory going north-west (red)
show agent’s behavior after a trigger is shown to the agent
during navigation (bottom left plot). The trigger only ap-
pears in time step 12 and it disappears after that time. Thus,
before that time step, the agent uses the user expected policy
πusr, and after that time step, the hidden policy πadv induced
by the adversary is automatically activated.

Figure 2: Trajectories of an agent with the backdoor. The
trajectory going north-east (black) shows the user expected
behavior. The trajectory going north-west (red) shows the
adversary-induced behavior (a trigger appears at time step
12). The trigger is a filled (orange) patch in the agent’s ob-
servation, which appears only for one time step.

Training for Backdoor Injection
We demonstrate a reward poisoning approach to inject the
backdoor. We define following notations: 1) normal envi-
ronment Envc, where rewards return from the environment



is rusr and the objective is to let the agent learn the user de-
sired policy πusr. 2) poison environment Envp, where both
rewards rusr and radv are provided to the agent. Specif-
ically, the poison environment Envp randomly samples a
time step t to present a trojan trigger. Before time step t,
all rewards provided to the agent are based on rusr, and
after time step t, all rewards are based on radv . Training
process is described in Algorithm 1. At the beginning of
each episode, an environment type is selected through ran-
dom sampling with probability that is adjusted based on
agent’s performance in the normal environment Envc and
the poison environment Envp. Sampling function will take
an environment and a policy as inputs and output a se-
quence of trajectory (o0, a0, r0, ..., oT , aT , rT ). PolicyOp-
timization function uses proximal policy optimization im-
plemented in (Dhariwal et al. 2017; Kuhnle, Schaarschmidt,
and Fricke 2017). Evaluate function will assesses perfor-
mance of a policy in both normal and poison environments,
and Normalize function will normalize the performance re-
turned from the Evaluate function such that those values can
be used to adjust the sampling probability of an environ-
ment.

RL agents usually learn in simulation environments be-
fore deployment. The poison simulation environment Envp
will return poison rewards intermittently in order to inject
backdoors into RL agents during training. Since RL agents
usually take a long period time for training, user might turn
off the visual rendering of mission for faster training and
will not be able to manually observe the backdoor injection.

Algorithm 1 – Backdoor Injection.
Require: Normal Environment Envc
Require: Poison Environment Envp
Require: Update Batch Size bs, Training Iterations Nt

1: Initialize: Policy Model πθ
2: Initialize: Performance PFc ← 0, PFp ← 0
3: Initialize: Batch Count bt ← 0
4: Initialize: Set of Trajectories Ω← {}
5: for k ← 1 to Nt do
6: Env ← Envc
7: if random(0, 1) > 0.5 + (PFp − PFc) then
8: Env ← Envp
9: end if

10: // Sampling a trajectory using policy πθ
11: Ωk ← Sampling(πθ, Env)
12: Ω← Ω

⋃
Ωk, bt ← bt + 1

13: // Update policy πθ when ‖Ω‖ ≥ bs
14: if bt > bs then
15: // Update parameter based on past trajectories
16: πθ ← PolicyOptimization(πθ,Ω)
17: // Evaluate performance in two environments
18: PFc, PFt ← Evaluate(Envc, Envp, πθ)
19: PFc, PFt ← Normalize(PFc, PFt)
20: Ω← {}, bt ← 0
21: end if
22: end for
23: return πθ

Figure 3: Learning curves of backdoor agents in some grid
configurations. Each update step is calculated based on a
batch of 128 trajectories. Left: grid size 5×5 with 0 holes.
Right: grid size 7×7 with 3 holes. The score is defined as
sum of performance in the normal environment and the poi-
son environment. Shaded region represents the standard de-
viation over 10 trials.

Numerical Results and Analysis
To inject a backdoor into a grid world navigation agent, we
let the agent interact in several grid configurations, which
range from simple ones to complex ones. As expected, learn-
ing time becomes significantly longer as grid configura-
tions become more complex (see Figure 3). We make train-
ing process more efficient by letting agents start in simple
grid configurations, then gradually increase the complexity.
Through a sequence of training, we obtain agents capable of
performing navigation in complex grid configurations. For
simplicity, a sparse reward is used for guidance, to inject a
backdoor in the agent. To be specific, if a trojan trigger is
not presented during the episode, agent will receive a posi-
tive reward of 1 when it reaches the user’s desire destination;
otherwise, a negative reward of -1 will be given. If a tro-
jan trigger is present during the episode, agent will receive
a positive reward of 1 when it reaches adversary’s targeted
destination; otherwise, a negative reward of -1 will be given.
We train agents with different network architectures and suc-
cessfully injected backdoors in most of them. According to
our observations, backdoor agents take longer time to learn,
but final performance of the backdoor agents and the nor-
mal agents are comparable. Also, difficulty of injecting a
backdoor into an agent also related to capacity of the agent’s
policy network.

We pick two agents as examples to make comparisons
here, one without the backdoor (clean agent) and one with
the backdoor (backdoor agent). Both agents have the same
network architecture (2-layer LSTM) which is implemented
using TensorFlow. First layer has 64 LSTM units and the
second layer has 32 LSTM units. Learning environments
are grids of size 17×17 with 30 holes. Agent without the
backdoor only learns in the normal environment while the
backdoor agent learns in both normal and poison environ-
ments. After training, we evaluate their performances un-
der different environment configurations. We define success
rate as percentage of times the agent navigates to the cor-
rect destinations over 1000 trials. For the training configura-
tion (17×17 grid with 30 holes) without presence of the trig-
ger, success rate of the backdoor agent is 94.8% and success
rate of the clean agent is 96.3%. For training configuration
with presence of the trigger, success rate of the backdoor



agent is 93.4%. Median of the clean agent’s performance
on other clean grid configurations is 99.4%. Median of the
backdoor agent’s performance on other clean grid configura-
tions is 95.0%. Median of the backdoor agent’s performance
on other poison grid configurations is 92.9%. Even though
performance of the backdoor agent is lower than the clean
agent, the difference in performance is not significant.

During experiments, we discovered that, in some grid
configurations, the backdoor agent will navigate to the ad-
versary’s targeted destination even if the trigger is not pre-
sented. Our current conjecture about the cause of this unin-
tentional backdoor activation phenomenon is related to the
input and forgetting mechanism of the LSTM. Overall, there
seems to be a trade-off related to sensitivity and uninten-
tional activation of the backdoor, which needs to be appro-
priately optimized by the adversary.

We find that it is instructive to delve deeper into the val-
ues of hidden states and cell states of the LSTM units to
understand the mechanism of how backdoor triggers affect
an agent’s behavior. We use the same models selected in the
previous part and analyze their state responses with respect
to the trigger. Environments are set to be 27×27 with 100
holes. For the same grid configuration, we let each agent
run twice. In the first run, trigger is not presented and the
backdoor agent will navigate to the user’s targeted location.
In the second run, the trigger appears at time step 12 (fixed
for ablation study of cell states and hidden states), and the
backdoor agent will navigate to the adversary’s targeted lo-
cation. We let the clean agent and the backdoor agent run
in both environments for 350 times (with and without pres-
ence of the trigger), and in each trial, the locations of holes
are randomly replaced. We plot all the cell states and hidden
states over all the collected trajectories, and observed three
types of response: (1) Impulse response: Cell states ct and
hidden states ht react significantly to the trigger in a short
period of time and then return back to a normal range. (2)
No response: Cell states ct and hidden states ht do not react
significantly to the trigger. (3) Step response: Cell states ct
and hidden states ht deviate from a normal range for a long
period of time. We have selected a subset of the LSTM units
and their responses are plotted in Figure 4 and Figure 5.

In the current experiments, we observe that both the clean
agent and the backdoor agent has cell states and hidden
states which react significantly (type 1) and mildly (type
2) to the trojan trigger; however, only the backdoor agent
has some cell states and hidden states deviate from a normal
range for a long period of time (type 3). We conjecture that
the type 3 response keeps track of the long-term dependency
of the trojan trigger. We conducted some analyses through
manually changing values of some cell states ct or hidden
states ht with the type 3 response when the backdoor agent
is navigating. It turns out changing the values of these hid-
den/cell states does not affect the agent’s navigation ability
(avoiding holes), but it does affect the agent’s final objective.
In other words, we verified that altering certain hidden/cell
states in LSTM network changes the goal from the user’s tar-
geted destination to the adversary’s targeted destination or
vice versa. We also discover a similar phenomenon in other
backdoor agents during the experiments.

Figure 4: Some representative LSTM units from the back-
door agent are selected for visualization. Left: Responses
of hidden state ht. Right: Responses of cell state ct. Blue
curve is the backdoor agent’s response in the normal envi-
ronment (no trigger). Red curve is the backdoor agent’s re-
sponse in the poison environment (trigger presented at step
12). Shaded region represents the standard deviation, and
solid line represent the mean over 350 trials.

Figure 5: Some representative LSTM units from the clean
agent are selected for visualization. Left: Responses of hid-
den state ht. Right: Responses of cell state ct. Blue curve is
the clean agent’s response in the normal environment. Red
curve is the clean agent’s response in the poison environ-
ment. The clean agent will be able to navigate to the user
expected location even in the poison environment.

Possible Defense
Under defense mechanisms against trojan attacks, (Liu,
Dolan-Gavitt, and Garg 2018) describe how these attacks
can be interpreted as exploiting excess capacity in the net-
work and explore the idea of fine tuning as well as pruning
the network to reduce capacity to disable trojan attacks while
retaining network performance. They conclude that sophis-
ticated attacks can overcome both of these approaches and



Figure 6: t-SNE visualization for mean values (over time) of
hidden state vectors and cell state vectors. Top left: Hidden
state vector in the first layer. Top right: Hidden state vector
in the second layer. Bottom left: Cell state vector in the first
layer. Bottom right: Cell state vector in the second layer.

then present an approach called fine-pruning as a more ro-
bust mechanism to disable backdoors. (Liu, Xie, and Srivas-
tava 2017) proposes a defense method involving anomaly
detection on the dataset as well as preprocessing and retrain-
ing techniques.

During our analysis on sequential DM agents, we dis-
covered that LSTM units are likely to store long-term de-
pendency in certain cell units. Through manually changing
value of some cells, we were able to switch agent’s policies
between user desired policy πusr and adversary desired pol-
icy πadv and vice versa. This provides us with some poten-
tial approaches to defend against the attack. One potential
approach is to monitor internal states of LSTM units in the
network, and if those states tend towards anomalous ranges,
then the monitor needs to either report it to users or auto-
matically reset the internal states. This type of protection
can be run online. We performed an initial study of this type
of protection through visualization of hidden states and cell
states values. We used a backdoor agent and recorded value
of hidden states and cell states over different normal envi-
ronments and poisoned environments. Mean values of the
cell state vectors and hidden state vectors for normal behav-
ior and poisoned behavior are calculated respectively. In the
end, we applied a t-SNE on the mean vectors from differ-
ent trials. Detailed results are shown in Figure 6. From the
figure, we discover that hidden state vectors and cell state
vectors are quite different over normal behaviors and poi-
soned behaviors; thus, monitoring the internal states online
and perform anomaly detection should provide some hints
for the attack prevention. In this situation, the monitor will
play a role similar to immune system, where if an agent is
affected by the trigger, then the monitor detects and neu-
tralizes the attack. Although we did not observe the type 3
response in clean agents in current experiments, we antic-
ipate that some peculiar grid arrangements will require the
type 3 response in clean agents too, e.g. if agent has to take a
long U-turn when it gets stuck. Thus, presence of the type 3
response will not be a sufficient indicator to detect backdoor

agents. An alternate static analysis approach could be to an-
alyze the distribution of the parameters inside LSTM. Com-
pared with the clean agents, the backdoor agents seem to use
more cell units to store information. This might be reflected
in the distribution of the parameters. However, more work
is needed to address detection and instill resilience against
such strong attacks.

Potential Challenges and Future Research
Multiple challenges exist that require further research. From
the adversary’s perspective, merging multiple policies into
a single neural network model is hard due to catastrophic
forgetting in neural networks (Kirkpatrick et al. 2017). An
additional challenge is the issue of unintentional backdoor
activation, where some unintentional patterns (or adversar-
ial examples) could also activate or deactivate the backdoor
policy and the adversary might fail in its objective.

From the defender’s perspective, it is hard to detect ex-
istence of the backdoor before a model is deployed. Neural
networks by virtue of being black-box models prevent the
user from fully characterizing what information is stored in
a neural network. It is also difficult to track when the trigger
appears in the environment (e.g. a yellow sticky note on a
Stop sign from (Gu, Dolan-Gavitt, and Garg 2017)). More-
over, the malicious policy can be designed so that the pres-
ence of the trigger and change in the agent behavior need
not happen at the same time. Considering a backdoor model
as a human body and the trigger as a virus, once the virus
enters the body, there might be an incubation period before
the virus affects the body and symptoms begin to appear.
A similar process might apply in this type of attack. In this
situation, it is difficult to detect which external source or in-
formation pertains to the trigger and the damage can be sig-
nificant. Future work will also address: (1) How does one
detect existence of the backdoor in an offline setting? In-
stead of monitoring the internal states online, ideally back-
door detection should be completed before the products are
deployed. (2) How can one increase sensitivity of the trigger
without introducing too many unintentional backdoor acti-
vations? One potential solution is to design the backdoor
agent in a white-box setting where adversary can manipu-
late the network parameters.

Conclusion
We exposed a new threat type for the LSTM networks and
sequential DM agents in this paper. Specifically, we showed
that a maliciously-trained LSTM network-based RL agent
could have reasonable performance in a normal environ-
ment, but in the presence of a trigger, the network can be
made to completely switch its behavior and persist even af-
ter the trigger is removed. Some empirical evidence and in-
tuitive understanding of the phenomena was also discussed.
We also proposed some potential defense methods to counter
this category of attacks and discussed avenues for future re-
search. We hope that our work will inform the community
to be aware of this type of threat and will inspire to together
have better understanding in defending against and deterring
these attacks.
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