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Abstract

A major challenge in the the complex enterprise of the US
Navy global materiel distribution is that when a new opera-
tion condition occurs, the probability of fail or demand model
of a Naval ship part or item needs to modify to adapt to the
new condition. Meanwhile, historical supply databases in-
clude demand patterns and associations that are critical when
the new condition enters the system as a perturbation or dis-
ruption which can propagate through the item association net-
work. In this paper, we first show how the two types of item
demand changes can be interacted and integrated to calculate
the total demand change (TDC). We show a use case on how
to apply the lexical link analysis (LLA) to discover the item
association network that propagates the TDC.

Introduction
There are many challenges in the complex enterprise of
the US Navy global materiel distribution. Forward deployed
US Navy ships, particularly in the high operating tempo
(OPTEMPO) areas such as the Seventh and Fifth Fleet, have
challenges that arise in receiving logistical support when
part failures occur. These failures manifest as either a de-
mand on the supply system, a casualty report (CASREP), or
a request for technical assistance. The toughest challenges
arise when a high impact part fails, and is not immediately
available. This can cause a “redline,” or a failure that stops
the unit from being able to complete its’ mission until the
problem can be resolved. The goal of any operational com-
mander is 100% operation availability (AO), meaning their
unit is always ready to be tasked for any situation that arises.
Failures in contentious environments will stop the mission,
and could have great effects on the international and politi-
cal situation. The goal of a Navy logistician is to “not let the
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logistical tail wag the operation dog,” in other words, a good
logistician does not want to be the reason that the mission
can’t go on. Limited manpower, funding, storage space, and
resources for repair are all in high demand. A good system
needs to be in place to determine the most efficient and ef-
fective method of stocking, forward staging, or contracting
for the materials that have the highest likelihood of demand,
balanced with the potential impact of failure. Since even
one ship has hundreds of thousands of failed parts, many
of which could cause a “redline.” It is of critical importance
to consider the activities of all the parts as a complex system
and predict the demand as a whole so that the supply system
is as intelligently designed as possible in order to quickly
handle part failures.

Uncertainty, Perturbation and Association

The probability of fail of a part can be affected by many
factors. We need to consider the uncertainty, disruption and
perturbation that can impact the logistics plans as a whole.
For example, uncertainty factors related to environment and
events in wide geographic areas, such as, weather change
or mission change from a peace time to a conflict time, or
a sudden event can cause a perturbation and disruption for
previous logistics and supply plans. Previously high impact
but low fail parts may suddenly become in high demand.

The probability of fail is also embedded in the historical
supply and maintenance data. A failed part is considered to
be fixed before a new one is ordered. A part order frequency
in the historical supply data reflects its demand if the part can
not be repaired within a certain period of time. The demand
data in the supply data reflects partial probability of fail.

The complexity of predicting total probability of fail for
a large list of the items calls for the integration of methods
in data fusion, data mining, causal learning, and optimiza-
tion for all the elements in a logistics when facing partic-
ular uncertainty and perturbation. The goal of this paper is
to demonstrate the techniques such as data mining and lexi-
cal link analysis (LLA) to recalculate the probability of fail
for the previously high impact and low failure parts or items
when the whole system facing a perturbation, uncertainty,
disruption, or a ”redine” failure.



Lexical Link Analysis (LLA)
A data mining tool used for this research is Lexical Link
Analysis (Zhao,MacKinnon,and Gallup 2015). LLA is an
unsupervised machine learning method and describes the
characteristics of a complex system using a list of attributes
or features, or specific vocabularies or lexical terms. Be-
cause the potentially vast number of lexical terms from big
data, the model can be viewed as a deep model for big data.
For example, we can describe a system using word pairs or
bi-grams as lexical terms extracted from text data. LLA au-
tomatically discovers word pairs, and displays them as word
pair networks. Figure 1 shows an example of such a word
network discovered from data. “Clean energy” and “renew-
able energy” are two bi-gram word pairs. For a text docu-
ment, words are represented as nodes and word pairs as the
links between nodes. A word center (e.g., “energy” in Fig-
ure 1) is formed around a word node connected with a list of
other words to form more word pairs with the center word
“energy.”

Discovering Item Associations Using LLA
Bi-grams allow LLA to be extended to numerical or cate-
gorical data. For example, using structured data, such as at-
tributes from supply chain databases, we discretize numeric
attributes and categorize their values to word-like features.
The word pair model can further be extended to a context-
concept-cluster model (Zhao and Zhou 2014). A context can
represent a location, a time point, or an object shared across
data sources. For example, the quarters in a year can be one
of the contexts for item supply data. Items (parts) are the
concepts.

In this paper, we use LLA for the structured data of sup-
ply databases. We want to show that the bi-gram generated
by LLA can also be a form discovery of association among
items demand for a Navy supply database.

The common consensus is that data-driven analysis or
data mining can discover initial statistical correlations and
associations from big data.

Figure 2 shows conceptually how the associations and
correlations are discovered by LLA. We anticipate the de-
mand change (DC) an item i might come from two types of
sources: Type 1): A collection of outside perturbations such
as the change of missions or new operational conditions; and

Figure 1: An example of lexical link analysis

Type 2): Item associations with other items where the asso-
ciations could be due to physical linkages or linked demand
based on past business practices. If an item i is ordered, item
j is also likely to be ordered based on the historical data.
Type 2) DCs can be mined from historical potentially big
data, Type 1) DCs may come from expert and engineering
knowledge and simulations.

In Figure 2, Associj measures how strong item i and j are
demanded together. Probability and lift are the two measures
defined in Equation (1) and Equation (2) in LLA to measure
the strength of an association.

probij = demand of item i, j together out of demand of item j
(1)

liftij =
demand of item i, j together out of demand of item j

demand of item i out of all demands
(2)

In LLA, we first use liftij to filter out the associations
that are not strong enough, then apply probij to compute the
total demand change (TDC) for item i as in Equation (3)

TDCi =

M∑
m=1

DCi|Cm +

N∑
j=1

probij ∗ TDCj (3)

In this paper, we show LLA can be used to compute the
association network, probij , and liftij from historical de-
mand data. When there is a perturbation such as a new opera-
tion condition Cm occurs that generates a DCj |Cm for item
j, it causes a TDCj for item j; meanwhile, TDCj propa-
gates through the discovered association network from LLA
to affect the whole demand system and forward predictions
as shown in Equation (3).

Data Description and Initial Analysis Results
Currently, a part is reviewed to be stocked if it has more
than two reorders in one year. This simple system is effec-
tive overall, but does not consider the reasons for failure,
the reason it is being reordered, or the effect that the failure
has on the ship. There are a small amount of parts, called
“maintenance assist modules” that are carried onboard ev-
ery ship due to engineering specifications calling for imme-
diate availability if needed, but that is not enough to prevent
“redline” failures. To show the feasibility of our method-
ology, we compiled a large selection of demand data over
the last nine years, containing over 1,000,000 individual de-
mands. This data was then compiled by Item Mission Essen-
tiality Code (IMEC - impact code), quarter in which the de-
mand occurred, and number of demands logged. Next, LLA

Figure 2: Total demand change (TDC) caused by new con-
ditions and associations



was applied the data to help discover historical associations
among the failures. The associations reflect the items that
are ordered in the same contexts (e.g., the same quarter or
same ship) historically. Associated parts might be stockpiled
in the same manner should one fail suddenly in a new and
disrupted condition. On a sample run, there were 50 con-
nections found across 65,000 demands as illustrated in Fig-
ure 3, we only considered the associations among the high
impact items (4) with quarterly demand > 51 (high) or low
(= 1). For example, item “lwm048749” and “lwm048745”
both have high impact 4, while “lwm048749” had high de-
mand in some quarters when “lwm048745” had low de-
mand. When drilling down using LLA as shown in Figure 4,
“lwm048749” had high demand in two quarters (10 and 18)
when “lwm048745” had low demand. “lwm048749” had
high demand in two quarters out of the total 20 quarters. The
probability for the association of the two items is 100% and
lift is 10. Should “lwm048745” demand more in a new oper-
ation condition, associated parts such as “lwm048749” may
demand even more in the new condition. LLA calculates the
lift measure that is similar to the counterfactual reasoning
in causal learning (Mackenzie and Pearl 2018; Pearl 2018;
Zhao, MacKinnon, and Jones 2019), i.e., that there is indeed
causal relationship between two demands.

Conclusion and Future Work
In this paper, we showed the feasibility on how to apply LLA
to improve demand change predictions for a complex Navy
supply database.

In the future research, we will consider the association

Figure 3: Total demand change (TDC) caused by new con-
ditions and associations

Figure 4: LLA allows a drill-down to see how many times
(quarters) the two items are associated

contexts set to be ship type, unit identification code, IMEC,
or shorter time period than the quarters, and then apply LLA
to search for causal associations at higher or lower resolu-
tions, or by stricter or looser requirements. In comparison,
there is a current tool in place called Predictive Risk Spar-
ing Matrix (PRiSM), which has been able to identify parts
in various C4I systems that have had real world demands,
which would not have been identified under the standard sys-
tem. PRiSM uses mathematical algorithms from inventory
sparing models to determine potential failures, and these al-
gorithms could possibly be used in coordination with sim-
ulation and LLA to better determine future needs. We will
also leverage the liaisons from NAVSUP and DLA at the
Fifth and Seventh fleet naval bases, whose job is to track de-
mand, and then to work with the DoD logistics organizations
to improve operational availability. The LLA tool could be
tested and then given to these liaisons to help them and to
improve the overall area of operation (AO) for forward de-
ployed ships and improve sustainment.
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