
Parallel Algorithm for Approximating Nash Equilibrium in Multiplayer
Stochastic Games with Application to Naval Strategic Planning*

Sam Ganzfried1, Conner Laughlin2, Charles Morefield2

1Ganzfried Research 2Arctan, Inc.

Abstract
Many real-world domains contain multiple agents behaving
strategically with probabilistic transitions and uncertain (po-
tentially infinite) duration. Such settings can be modeled as
stochastic games. While algorithms have been developed for
solving (i.e., computing a game-theoretic solution concept
such as Nash equilibrium) two-player zero-sum stochastic
games, research on algorithms for non-zero-sum and multi-
player stochastic games is limited. We present a new algo-
rithm for these settings, which constitutes the first parallel
algorithm for multiplayer stochastic games. We present ex-
perimental results on a 4-player stochastic game motivated
by a naval strategic planning scenario, showing that our algo-
rithm is able to quickly compute strategies constituting Nash
equilibrium up to a very small degree of approximation error.

Introduction
Nash equilibrium has emerged as the most compelling solu-
tion concept in multiagent strategic interactions. For two-
player zero-sum (adversarial) games, a Nash equilibrium
can be computed in polynomial time (e.g., by linear pro-
gramming). This result holds both for simultaneous-move
games (often represented as a matrix), and for sequential
games of both perfect and imperfect information (often rep-
resented as an extensive-form game tree). However, for non-
zero-sum and games with 3 or more agents it is PPAD-hard
to compute a Nash equilibrium (even for the simultaneous-
move case) and widely believed that no efficient algorithms
exist (Chen and Deng 2005; 2006; Daskalakis, Goldberg,
and Papadimitriou 2009). For simultaneous (strategic-form)
games several approaches have been developed with vary-
ing degrees of success (Berg and Sandholm 2017; Porter,
Nudelman, and Shoham 2008; Govindan and Wilson 2003;
Lemke and Howson 1964).
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While extensive-form game trees can be used to model
sequential actions of a known duration (e.g., repeating a
simultaneous-move game for a specified number of iter-
ations), they cannot model games of unknown duration,
which can potentially contain infinite cycles between states.
Such games must be modeled as stochastic games.

Definition 1. A stochastic game is a tuple (Q,N,A, P, r):

• Q is a finite set of (stage) games (aka game states)
• N is a finite set of n players
• A = A1 × . . . × An, where Ai is a finite set of actions

available to player i
• P : Q × A × Q → [0, 1] is the transition probabil-

ity function; P (q, a, q̂) is the probability of transitioning
from state q to state q̂ after action profile a

• R = r1, . . . , rn, where ri : Q × A → R is a real-valued
payoff function for player i

There are two commonly used methods for aggregat-
ing the stage game payoffs into an overall payoff: average
(undiscounted) reward and future discount reward using a
discount factor δ < 1. Stochastic games generalize several
commonly-studied settings, including games with finite in-
teractions, strategic-form games, repeated games, stopping
games, and Markov decision problems.

The main solution concept for stochastic games, as for
other game classes, is Nash equilibrium (i.e., a strategy pro-
file for all players such that no player can profit by unilat-
erally deviating), though some works have considered alter-
native solution concepts such as correlated equilibrium and
Stackelberg equilibrium. Before discussing algorithms, we
point out that, unlike other classes of games such as strate-
gic and extensive-form, it is not guaranteed that Nash equi-
librium exists in general in stochastic games.

One theorem states that if there is a finite number of play-
ers and the action sets and the set of states are finite, then
a stochastic game with a finite number of stages always has
a Nash equilibrium (using both average and discounted re-
ward). Another result shows that this is true for a game with
infinitely many stages if total payoff is the discounted sum.

Often a subset of the full set of strategies is singled out
called stationary strategies. A strategy is stationary if it de-
pends only on the current state (and not on the time step).
Note that in general a strategy could play different strategies
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at the same game state at different time steps, and a restric-
tion to stationary strategies results in a massive reduction in
the size of the strategy spaces to consider. It has been shown
that in two-player discounted stochastic games there exists
an equilibrium in stationary policies. For the undiscounted
(average-reward) setting, it has recently been proven that
each player has a strategy that is ε-optimal in the limit as
ε → 0, technically called a uniform equilibrium, first for
two-player zero-sum games (Mertens and Neyman 1981)
and more recently for general-sum games (Vieille 2000).

Thus, overall, the prior results show that for two-player
(zero-sum and non-zero-sum) games there exists an equi-
librium in stationary strategies for the discounted reward
model, and a uniform equilibrium for the average reward
model. However, for more than two players, only the first of
these is guaranteed, and it remains an open problem whether
a (uniform) equilibrium exists in the undiscounted average-
reward model. Perhaps this partially explains the scarcity of
research on algorithms for multiplayer stochastic games.

Several stochastic game models have been proposed for
national security settings. For example, two-player dis-
counted models of adversarial patrolling have been con-
sidered, for which mixed-integer program formulations are
solved to compute a Markov stationary Stackelberg equi-
librium (Vorobeychik and Singh 2012; Vorobeychik et al.
2014). One work has applied an approach to approximate
a correlated equilibrium in a three-player threat prediction
game model (Chen et al. 2006). However we are not aware
of other prior research on settings with more than two play-
ers with guarantees on solution quality (or for computing
Nash as opposed to Stackelberg or correlated equilibrium).

The only prior research we are aware of for computing
Nash equilibria in multiplayer stochastic games has been ap-
proaches developed for poker tournaments (Ganzfried and
Sandholm 2008; 2009). Our algorithms are based on the ap-
proaches developed in that work. The model was a 3-player
poker tournament, where each game state corresponded to a
vector of stack sizes. The game had potentially infinite du-
ration (e.g., if all players continue to fold the game could
continue arbitrarily long), and was modeled assuming no
discount factor. Several algorithms were provided, with the
best-performer based on integrating fictitious play (FP) with
a variant of policy iteration. While the algorithm is not guar-
anteed to converge, a technique was developed that com-
putes the maximum a player could gain by deviating from
the computed strategies, and it was verified that this value
was low, demonstrating that the algorithm successfully com-
puted a close approximation of Nash equilibrium. In addi-
tion to being multiplayer, this model also differed from pre-
vious models in that stage games had imperfect information.

The main approaches from prior work on multiplayer
stochastic game solving integrate algorithms for solving
stage games (of imperfect information) assuming specified
values for the payoffs of all players at transitions into other
stage games, and techniques for updating the values for all
players at all states in light of these newly computed strate-
gies. For the stage game equilibrium computation these al-
gorithms used fictitious play, which has been proven to con-
verge to Nash equilibrium in certain classes of games (two-

player zero-sum and certain non-zero-sum games). For mul-
tiplayer and non-zero-sum games it does not guarantee con-
vergence to equilibrium, and all that can be proven is that if it
does happen to converge then the sequence of strategies de-
termined by the iterations constitutes an equilibrium. It did
happen to converge consistently in the 3-player application
despite the fact that it is not guaranteed to do so, suggesting
that it likely performs better in practice than the worst-case
theory would dictate. For the value updating step, variants
of value iteration and policy iteration (which are approaches
for solving Markov decision processes) were used.

Note that there has been significant recent attention on an
alternative iterative self-play algorithm known as counter-
factual regret minimization (CFR). Like FP, CFR is proven
to converge to a Nash equilibrium in the limit for two-
player zero-sum games. For multiplayer and non-zero-sum
games the algorithm can also be run, though the strate-
gies computed are not guaranteed to form a Nash equi-
librium. It was demonstrated that it does in fact converge
to an ε-Nash equilibrium (a strategy profile in which no
agent can gain more than ε by deviating) in the small game
of three-player Kuhn poker, while it does not converge to
equilibrium in Leduc hold ’em (Abou Risk and Szafron
2010). It was subsequently proven that it guarantees con-
verging to a strategy that is not dominated and does not put
any weight on iteratively weakly-dominated actions (Gibson
2014). While for some small games this guarantee can be
very useful (e.g., for two-player Kuhn poker a high fraction
of the actions are iteratively-weakly-dominated), in many
large games (such as full Texas hold ’em) only a very small
fraction of actions are dominated, and the guarantee is not
useful (Ganzfried 2019). Very recently an agent based on
CFR has defeated strong human players in a multiplayer
poker cash game1 (Brown and Sandholm 2019). However,
much of the strength of the agent came from real-time solv-
ing of smaller portions of the game which typically con-
tained just two players using “endgame”/“subgame” solv-
ing (Ganzfried and Sandholm 2015) and more recently depth
limited “midgame” solving (Hu and Ganzfried 2017; Brown,
Sandholm, and Amos 2018). Recently it has been shown that
when integrated with deep learning a version of CFR outper-
forms FP in two-player zero-sum poker variants (Brown et
al. 2019), though the core version of FP outperforms CFR in
multiplayer and non-zero-sum settings (Ganzfried 2020).

In this work we build on the prior algorithms for multi-
player stochastic games to solve a 4-player model of naval
strategic planning that we refer to as a Hostility Game. This
is a novel model of national security that has been devised
by a domain expert. The game is motivated by the Freedom
of Navigation Scenario in the South China Sea, though we
think it is likely also applicable to other situations, and in
general that multiplayer stochastic games are fundamental
for modeling national security scenarios.

1Note that a poker cash game is modeled as a standard
extensive-form game, while the poker tournament described above
is modeled as a stochastic game. In a cash game chips represent
actual money, while in a tournament chips have no monetary value
and are only a proxy, as players receive money only after they run
out of chips (depending on their position of elimination).
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Hostility game
In the South China Sea a set of blue players attempts to nav-
igate freely, while a set of red players attempt to obstruct
this from occurring (Figure 1). In our model there is a sin-
gle blue player and several red players of different “types”
which may have different capabilities (we will specifically
focus on the setting where there are three different types of
red players). If a blue player and a subset of the red players
happen to navigate to the same location, then a confrontation
will ensue, which we refer to as a Hostility Game.

Figure 1: General figure for South China Sea scenario.

In a Hostility Game, each player can initially select from a
number of available actions (which is between 7 and 10 for
each player). Certain actions for the blue player are coun-
tered by certain actions of each of the red players, while
others are not (Figure 2). Depending on whether the selected
actions constitute a counter, there is some probability that
the blue player wins the confrontation, some probability that
the red players win, and some probability that the game re-
peats. Furthermore, each action of each player has an associ-
ated hostility level. Initially the game starts in a state of zero
hostility, and if it is repeated then the overall hostility level
increases by the sum of the hostilities of the selected actions.
If the overall hostility level reaches a certain threshold (300),
then the game goes into kinetic mode and all players achieve
a very low payoff (negative 200). If the game ends in a win
for the blue player, then the blue player receives a payoff
of 100 and the red players receive negative 100 (and vice
versa for a red win). Note that the game repeats until either
the blue/red players win or the game enters kinetic mode. A
subset of the game’s actions and parameters are given in Fig-
ure 3. Note that in our model we assume that all red players
act independently and do not coordinate their actions. Our
game model and parameters were constructed from discus-
sions with a domain expert.
Definition 2. A hostility game (HG) is a tuple
G = (N,M, c, bD, bU , rD, rU , π, h,K, πK), where
• N is the set of players. For our initial model we will as-

sume player 1 is a blue player and players 2–4 are red
players (P2 is a Warship, P3 is a Security ship, and P4 is
an Auxiliary vessel).

• M = {Mi} is the set of actions, or moves, where Mi is
the set of moves available to player i

• For mi ∈ Mi, c(Mi) gives a set of blue moves that are
counter moves of mi

Figure 2: List of blue moves that counter each red move.

• For each blue player move and red player, a probability
of blue success/red failure given that the move is defended
against (i.e., countered), denoted as bD

• Probability that a move is a blue success/red failure given
the move is Undefended against, denoted as bU

• Probability for a red success/blue failure given the move
is defended against, rD

• Probability for a red success/blue failure given the move
is undefended against, rU

• Real valued payoff for success for each player, πi
• Real-valued hostility level for each move h(mi)

• Positive real-valued kinetic hostility threshold K
• Real-valued payoffs for each player when game goes into

Kinetic mode, πKi
We model hostility game G as a (4-player) stochastic

game with a collection of stage games {Gn}, where n cor-
responds to the cumulative sum of hostility levels of actions
played so far. The game has K+3 states: G0, . . . , GK , with
two additional terminal states B and R for blue and red vic-
tories. Depending on whether the blue move is countered,
there is a probabilistic outcome for whether the blue player
or red player (or neither) will outright win. The game will
then transition into terminal states B or R with these proba-
bilities, and then will be over with final payoffs. Otherwise,
the game transitions intoGn′ where n′ is the new sum of the
hostility levels. If the game reaches GK , the players obtain
the kinetic payoff πKi . Thus, the game starts at initial state
G0 and after a finite number of time steps will eventually
reach one of the three terminal states B,R, or GK .

Note that in our formulation there is a finite number of
players (4) as well as a finite number of states (K + 3). Fur-
thermore, with the assumption that hostility levels for all ac-
tions are positive, the game must complete within a finite
number of stages (because the combined hostility level will
ultimately reach K if one of the terminal states B or R is
not reached before then). So a Nash equilibrium is guaran-
teed to exist in stationary strategies, for both the average and
discounted reward models. Note that the payoffs are only ob-
tained in the final stage when a terminal state is reached, and
so the difference between using average and discounted re-
ward is likely less significant than for games where rewards
are frequently accumulated within different time steps.
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Figure 3: Sample of typical actions and parameters for Hostility Game.

Algorithm
While research on algorithms for stochastic games with
more than two players is limited, several prior algorithms
have been devised and applied in the context of a poker tour-
nament (Ganzfried and Sandholm 2008; 2009). At a high
level these algorithms consist of two different components:
first is a game-solving algorithm that computes an (approxi-
mate) Nash equilibrium at each stage game assuming given
values for all players at the other states, and the second is a
value update procedure that updates values for all players at
all states in light of the newly-computed stage-game strate-
gies. For the poker application the stage games were them-
selves games of imperfect information (the players must se-
lect a strategy for every possible set of private cards that they
could hold at the given vector of chip stack sizes). The fic-
titious play algorithm was used for the game-solving step,
which applies both to games of perfect and imperfect in-
formation. Fictitious play is an iterative self-play algorithm
that has been proven to converge to Nash equilibrium in cer-
tain classes of games (two-player zero-sum and certain non-
zero-sum). For multiplayer and non-zero-sum games it does
not guarantee convergence to equilibrium, and all that can
be proven is that if it does happen to converge, then the se-
quence of strategies determined by the iterations constitutes
an equilibrium (Theorem 1). It did happen to converge con-
sistently in the 3-player application despite the fact that it is
not guaranteed to do so, suggesting that it likely performs
better in practice than the worst-case theory would dictate.

In (smoothed) fictitious play each player i plays a best
response to the average opponents’ strategies thus far, using
the following rule at time t to obtain the current strategy,

sti =

(
1− 1

t

)
st−1i +

1

t
s′ti ,

where s′ti is a best response of player i to the profile st−1−i
of the other players played at time t − 1 (strategies can
be initialized arbitrarily at t = 0, and for our experiments
we will initialize them to be uniformly random). This algo-
rithm was originally developed as a simple learning model
for repeated games, and was proven to converge to a Nash
equilibrium in two-player zero-sum games (Fudenberg and
Levine 1998). However, it is not guaranteed to converge in

two-player general-sum games or games with more than two
players. All that is known is that if it does converge, then the
strategies constitute a Nash equilibrium (Theorem 1).

Theorem 1. (Fudenberg and Levine 1998) Under ficti-
tious play, if the empirical distributions over each player’s
choices converge, the strategy profile corresponding to the
product of these distributions is a Nash equilibrium.

A meta-algorithm that integrates these two components—
stage game solving and value updating—is depicted in Al-
gorithm 1. We initialize the values at all states according to
V0, and alternate between the phase of solving each nonter-
minal stage game using algorithm A (note that for certain
applications it may even make sense to use a different stage
game algorithmAi for different states), and the value update
phase using algorithm V . Following prior work we will be
using fictitious play for A and variants of value and policy
iteration for V , though the meta-algorithm is general enough
to allow for alternative choices depending on the setting.

Algorithm 1 Meta-algorithm for multiplayer stochastic
game equilibrium computation
Inputs: Stochastic game G with set of terminal states {Tn}
and set of U nonterminal states {Un}, algorithm for stage
game equilibrium computation A, algorithm for updating
values of all nonterminal states for all players V , number
of iterations N , initial assignment of state values V0.

Initialize values for all players for all nonterminal states
according to V0.
for n = 1 to N do

for i = 1 to U do
Solve stage game defined at Ui using algorithm A

assuming values given by Vn−1.
Let Si,n denote the equilibrium for state i.

Update the values for all nonterminal statesUi accord-
ing to algorithm V assuming that strategies Si,n are used
at game state Ui.
Output strategies {Si,N}

The first algorithm previously considered, called VI-FP,
instantiates Algorithm 1 using fictitious play for solving
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stage games and a multiplayer analogue of value itera-
tion for updating values (Ganzfried and Sandholm 2008;
2009). As originally implemented (Algorithm 2), the algo-
rithm takes two inputs, which determine the stopping crite-
rion for the two phases. The fictitious play phase halts on
a given state when no player can gain more than γ by de-
viating from the strategies (i.e., the strategies constitute a
γ-equilibrium), and the value iteration phase halts when all
game state values for all players change by less than δ.

Algorithm 2 VI-FP (Ganzfried and Sandholm 2009)
Inputs: Degree of desired stage game solution approxima-
tion γ, desired max difference between value updates δ
V 0 = initializeValues()
diff =∞
i = 0
while diff > δ do

i = i+ 1
regret =∞
S = initializeStrategies()
while regret > γ do

S = fictPlay()
regret = maxRegret(S)

V i = getNewValues(V i−1,S)
diff = maxDev(V i, V i−1)

return S

Prior work used a domain-specific initialization for the
values V 0 called the Independent Chip Model for poker
tournaments (Ganzfried and Sandholm 2008). A counterex-
ample was provided showing that VI-FP may actually con-
verge to non-equilibrium strategies if a poor initialization is
used (Ganzfried and Sandholm 2009), and it was suggested
based on a prior theorem for value iteration in single-agent
Markov decision processes (MDPs) that this phenomenon
can only occur if not all values are initialized pessimistically
(Theorem 2). We note that there is not a well-defined notion
of v∗ in our setting, as multiplayer games can contain multi-
ple Nash equilibria yielding different payoffs to the players.

Theorem 2. (Puterman 2005) In our setting, if v0 is initial-
ized pessimistically (i.e., ∀s, v0(s) ≤ v∗(s)), value iteration
converges (pointwise and monotonically) to v∗.

We also note that the prior work proposed just one option
for a set of halting criteria for fictitious play and value it-
eration. Since fictitious play is not guaranteed to converge
in multiplayer games there is no guarantee that the approxi-
mation threshold of γ will be reached for sufficiently small
values (and similarly there is no guarantee that a value dif-
ference threshold of δ will be obtained for the outer loop).
There are several other sensible choices of halting criteria,
for example running the algorithms for a specified number
of iterations as we have done in our meta-algorithm, Algo-
rithm 1. As we will see when we describe our parallel algo-
rithm, this approach would also allow for more consistency
between the runtimes of computations on different cores.
Another halting criterion for fictitious play is to run it for a
specified number of iterations but output the average strate-

gies that produced lowest approximation error ε out of all
iterations (not just the final strategies after the last iteration).

The next approach considered by prior work also used
fictitious play for the stage-game solving phase but substi-
tuted in a variant of the policy-iteration algorithm (Algo-
rithm 4) for value iteration in the value update phase. This
algorithm called PI-FP is depicted in Algorithm 3. The new
values are computed by solving a system of equations de-
fined by a transition matrix. In effect this corresponds to up-
dating all game state values globally to be consistent with the
recently-computed stage game strategies, while the value it-
eration procedure updates the values locally given the prior
values of the adjacent states. Thus, at least intuitively we
would likely expect PI-FP to outperform VI-FP for this rea-
son. Unlike VI-FP, for PI-FP it can be proven (Proposition 1)
that if the algorithm converges then the resulting strategies
constitute a Nash equilibrium (regardless of the initializa-
tion). The experimental results of prior work agreed with
this intuition, as PI-FP converged to near-equilibrium faster
than VI-FP (Ganzfried and Sandholm 2009). This was de-
termined by an ex-post checking procedure to compute the
degree of approximation ε given by Algorithm 5, with cor-
rectness following from Theorem 3 for Algorithm 4. The
quantity v

π∗i ,s
∗
−i

i (G0) denotes the value to player i at the ini-
tial game state when player i plays π∗i and his opponents

play s∗−i, and v
s∗i ,s

∗
−i

i (G0) is analogous.

Algorithm 3 PI-FP (Ganzfried and Sandholm 2009)
Inputs: Degree of desired stage game solution approxima-
tion γ, desired max difference between value updates δ
V 0 = initializeValues()
diff =∞
i = 0
while diff > δ do

i = i+ 1
regret =∞
S0 = initializeStrategies()
while regret > γ do

Si = fictPlay()
regret = maxRegret(Si)

M i = createTransitionMatrix(Si)
V i = evaluatePolicy(M i)
diff = maxDev(V i, V i−1)

return Si

Proposition 1. If the sequence of strategies {sn} deter-
mined by iterations of the outer loop of Algorithm 3 con-
verges, then the final strategy profile s∗ is an equilibrium.

Theorem 3. (Puterman 2005) Let S be the set of states
in M . Suppose S and A(s) are finite. Let {vn} denote the
sequence of iterates of Algorithm 4. Then, for some finite N ,
vN = v∗ and πN = π∗.

Proposition 2. Algorithm 5 correctly computes the largest
amount any agent can improve its expected utility by deviat-
ing from s∗.
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Algorithm 4 Policy iteration for positive bounded models
with expected total-reward criterion

1. Set n = 0 and initialize the policy π0 so it has nonnegative
expected reward.

2. Let vn be the solution to the system of equations

v(i) = r(i) +
∑
j

pπ
n

ij v(j)

where pπ
n

ij is the probability of moving from state i to
state j under policy πn. If there are multiple solutions, let
vn be the minimal nonnegative solution.

3. For each state s with action space A(s), set

πn+1(s) ∈ argmax
a∈A(s)

∑
j

paijv
n(j),

breaking ties so πn+1(s) = πn(s) whenever possible.
4. If πn+1(s) = πn(s) for all s, stop and set π∗ = πn.

Otherwise increment n by 1 and return to Step 2.

Algorithm 5 Ex post check procedure
Create MDP M from the strategy profile s∗

Run Algorithm 4 on M (using initial policy π0 = s∗) to get π∗

return maxi∈N
[
v
π∗i ,s

∗
−i

i (G0)− v
s∗i ,s
∗
−i

i (G0)
]

The implementations of VI-FP and PI-FP in prior work
both used a single core, and involved running fictitious play
sequentially at every game state within the stage game up-
date phase. We observe that both of these approaches can be
parallelized. Assuming there are |S| states and d cores (and
for presentation simplicity assuming that |S| is a multiple of
d), we can assign |S|d of the stage games to each core and
run fictitious play independently on d states simultaneously.
This will compute equilibrium strategies at all stage games,
which can be integrated with the value update phase of both
VI-FP and PI-FP. Since the stage game solving phase is the
bottleneck step of both algorithms, this parallel algorithm
will achieve an approximately linear improvement in run-
time by a factor of d. In addition to incorporating paralleliza-
tion, our Algorithm 6 differs from the prior approach by al-
lowing for custom stopping conditions for the two phases.

We note that neither VI-FP or PI-FP is guaranteed to con-
verge in this setting (though it has been proven that if PI-
FP converges then the resulting strategies constitute a Nash
equilibrium (Ganzfried and Sandholm 2009)). Note that our
Hostility Game does not technically fall into the positive
bounded model (Puterman 2005), as certain actions can ob-
tain negative payoff. However, the main difference between
policy iteration for this model (Algorithm 4) as opposed to
the discounted reward model is using the minimal nonneg-
ative solution for Step 2 (Puterman 2005); however, for all
our experiments the transition matrix had full rank and there
was a unique solution. Furthermore, in a Hostility Game the
rewards are only obtained at a terminal state, and the total

Algorithm 6 Parallel PI-FP
Inputs: Stopping conditionCS for stage game solving, stop-
ping condition CV for value updating, number of cores d
V 0 = initializeValues()
i = 0
while CV not met do

i = i+ 1
while CS not met for each stage game do

Run fictitious play on each stage game on d cores
(solving d stage games simultaneously) to obtain Si

M i = createTransitionMatrix(Si)
V i = evaluatePolicy(M i)

return Si

expected reward is clearly bounded (both in the positive and
negative directions). So we can still apply these versions of
value and policy iteration to (hopefully) obtain optimal so-
lutions. Note also that for the case where all hostility levels
are positive we can guarantee the game will complete within
a finite duration and can apply backwards induction; but this
will not work in general for the case of zero or negative hos-
tilities where the game has potentially infinite duration, and
the stochastic game-solving algorithms will be needed.

Experiments
Results for the first 25 iterations of several algorithm vari-
ations are given in Figure 4. All experiments ran the par-
allel versions of the algorithms with 6 cores on a laptop.
The variations include VI-FP and PI-FP with varying num-
bers of iterations of fictitious play, as well as PI-FP using
the version of fictitious play where the strategy with lowest
exploitability over all iterations was output (as opposed to
the final strategy). We first observe that VI-FP did not con-
verge to equilibrium while all versions of PI-FP did, making
PI-FP the clearly preferable choice. We also observe that us-
ing minimum exploitability FP led to nearly identical perfor-
mance as the standard version; since this version also takes
longer due to the overhead of having to compute the value
of ε at every iteration instead of just at the end, we conclude
that the standard version of fictitious play is preferable to the
version that selects the iteration with minimal exploitability.

For Parallel PI-FP using standard fictitious play, we com-
pared results using 1,000, 5,000, 10,000, 20,000, 25,000,
and 50,000 iterations of fictitious play for solving each game
state within the inner loop of the algorithm. Each of these
versions eventually converged to strategies with relatively
low exploitability, with the convergence value of ε smaller
as more iterations of FP are used. Note that initially we set
values for all players at all non-terminal states to be zero,
and that the terminal payoffs for a victory/loss are 100/-100,
and for kinetic payoffs are -200 (with K=300); so conver-
gence to ε = 0.01 is quite good (this represents 0.01% of
the minimum possible payoff of the game). Even just using
1,000 iterations of FP converged to ε of around 0.25, which
is still relatively small. Note that while the final convergence
values were quite low, there was quite a bit of variance in
ε for the first several iterations, even for the versions with
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Figure 4: Performance of several algorithm variants.

large number of FP iterations (e.g., using 10,000–50,000 it-
erations spiked up to ε exceeding 20 at iteration 6, and using
20,000 and 25,000 spiked up again to ε exceeding 25 again
at iteration 13). So it is very important to ensure that the
algorithm can be run long enough to obtain convergence.

Conclusion
We have presented a new parallel algorithm for solving mul-
tiplayer stochastic games, and presented experimental re-
sults showing that it is able to successfully compute an ε-
equilibrium for very small ε for a naval strategic planning
scenario that has been devised by a domain expert.

There are several immediate avenues for future study.
First, we note that while for the game model we have ex-
perimented on the stage games have perfect information, our
algorithm also applies to games where the stage games have
imperfect information (related prior work has shown suc-
cessful convergence in the imperfect-information setting for
poker tournaments). There are several different natural ways
in which imperfect information can be integrated into the
model. Currently we are exploring a model in which there is
an unknown number of red “sub-players” of each of the three
types; this value is known to a single “meta-player” of that
type, but the other players only know a publicly-available
distribution from which this value is drawn (much like in
poker how players receive private cards known only to them
and a distribution for the cards of the opponents).

We would also like to explore alternative approaches for
the stage game equilibrium-computation portion of our algo-
rithm. Currently we have used fictitious play, which has been
demonstrated to obtain high performance previously. How-
ever, it may be outperformed by more recently-devised ap-
proaches such as counterfactual regret minimization. While

the core version of FP has been shown to outperform CFR
in multiplayer games (Ganzfried 2020), for larger domains
with complex information structures CFR may outperform
fictitious play by better capitalizing on integration with
forms of Monte Carlo sampling and deep learning.

While we considered a single value for the main game
parameters (set of actions, payoffs, hostility levels, etc.) that
were selected by a domain expert, in practice we may not be
sure of such values, and we would like to compute strategies
that are robust in case our game model is inaccurate. One
approach to achieve this would be to use a Bayesian setting,
where the game parameters are selected according to a spec-
ified probability distribution (typically over a small number
of possible options). This would require us to extend our
algorithm to solve multiplayer stochastic games where the
stage games are themselves Bayesian games.

While our model has assumed that the red players act in-
dependently and do not coordinate amongst themselves, this
may not be the case in all realistic situations. In the extreme
case when the red players are all controlled by one single
meta-player, the game could simply be modeled as a two-
player game (which would be zero sum for the parameters
we have been using), which would be significantly easier to
solve as two-player zero-sum games can be solved in poly-
nomial time while solving multiplayer games is PPAD-hard.
We see no reason that our algorithm cannot be applied to
solve alternative modifications of the model that integrate
more subtle forms of coordination between players.

Our game model assumed that all hostility levels are pos-
itive, from which we are able to conclude the existence of a
Nash equilibrium in stationary strategies (because the game
would be guaranteed to have a finite number of stages); how-
ever, we could not make the same deduction if some hostility
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levels are non-positive for the undiscounted setting (though
we still could if we were using discounted reward). In the fu-
ture we would like to explore convergence of our algorithm
for different selections of the hostility levels including zero
and negative values, as well as consider potential differences
between the average and discounted reward settings.

By now we have observed fictitious play to converge con-
sistently for stage games in several domains (previously for
poker tournaments and now for naval planning), as well
as the general PI-FP algorithm converge for multiplayer
stochastic games. Theoretically we have seen that these ap-
proaches are not guaranteed to converge in general for these
game classes, and all that has been proven is that if they
do converge then the computed strategies constitute a Nash
equilibrium (though for VI-FP this is not the case and a
counterexample was shown where it can converge to non-
equilibrium strategies (Ganzfried and Sandholm 2009)). It
would be interesting from a theoretical perspective to prove
more general conditions for which these algorithms are guar-
anteed to converge in multiplayer settings that can include
generalizations of these settings that have been studied.

Many important real-world settings contain multiple play-
ers interacting over an unknown duration with probabilistic
transitions, and we feel that the multiplayer stochastic game
model is fundamental for many national security domains,
particularly with the ability of approaches to be integrated
with imperfect information and Bayesian parameter uncer-
tainty. We plan to explore the application of our algorithm
to other similarly complicated domains in the near future.
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