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Abstract—Advances in the development of deep neural networks
and other machine learning algorithms combined with ever more
powerful hardware and the huge amount of data available on the
internet has led to a revolution in ML research and applications.
These advances present massive potential and opportunity for military
applications such as the analysis of Synthetic Aperture Radar (SAR)
imagery. SAR imagery is a useful tool capable of capturing high
resolution images regardless of cloud coverage and at night. However,
there is a limited amount of publicly available SAR data to train
a machine learning model. This paper shows how to successfully
dissect, modify, and re-architect cross-domain object recognition
models such as the VGG-16 model, transfer learning models from
the ImageNet, and the k-nearest neighbor (kNN) classifier. The paper
demonstrates that the combinations of these factors can significantly
and effectively improve the automated object recognition (ATR)
of SAR clean and noisy images. The paper shows a potentially
inexpensive, accurate, transfer and unsurpervised learning SAR ATR
system when data labels are scarce and data are noisy, simplifying
the whole recognition for the tactical operation requirements in the
area of SAR ATR.
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I. INTRODUCTION

The analysis and classification of targets within imagery
captured by aerial and space-based systems provides the US
intelligence community and military geospatial intelligence
(GEOINT) personnel with important insights into adversary
force dispositions and intentions. It has also entered the
mainstream thanks to openly available tools like Google Earth.
The high resolution of space-based sensors and common
use of overhead imagery in everyday life means with the
exception of decoys and camouflage, an average person is
now reasonably capable of identifying objects in electro-
optical (EO) imagery. EO images are, however, limited by
cloud coverage and daylight. About half of the time when
a satellite in low earth orbit could image a target it will
be night, necessitating the use of either an infrared (IR) or
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a synthetic aperture radar (SAR) sensor. Both IR and SAR
images require a trained imagery analyst to reliably identify
targets. A repetitive and time consuming task that currently
requires human expertise, importantly and creatively, is an
ideal problem for deep learning. Automated target recognition
(ATR) seeks to reduce the total work load of analysts so that
their effort can be spent on the more human-centric tasks like
presenting and explaining intelligence to a decision maker.
ATR is also intended to reduce the time from collection to
exploitation by screening images at machine speeds rather than
manually. SAR ATR is complicated by the available data to
train and assess machine learning models. Unlike other image
classification tasks, there is not a large and freely available
amount of training data for researchers. Further, the data that
is publicly available only covers a small fraction of the types
of targets an effective SAR ATR system would be required to
identify.

II. ADVANTAGES AND CHALLENGES OF SYNTHETIC
APERTURE RADAR (SAR) IMAGES, DATA DESCRIPTION,

AND RELATED WORK

Synthetic Aperture Radar (SAR) is a radar mounted to a
moving platform that uses the platform’s motion to approx-
imate the effect of a large antenna. The high resolution that
can be achieved by creating a radar with an effective aperture
much greater in size than is physically possible allows for
radar returns to be processed into images similar to what can
be achieved with a camera [19]. SAR imagery provides an im-
portant tool for the United States Intelligence Community and
military geospatial intelligence (GEOINT) personnel because
of its all-weather, day/night collection capability. Additionally,
some wavelengths that SAR imaging systems operate in have
a degree of foliage and ground penetrating capability allowing
for the detection of buried objects or objects under tree cover
that would not be observable by other sensors such as EO
sensors.

These important advantages of SAR imaging for GEOINT
analysts do come with some significant drawbacks inherent to
SAR images. Because SAR images are not true optical images,
they are susceptible to noise generated by constructive and
destructive interference between radar reflections that appear
as bright or dark spots called “speckle” in the image [19]. Also
various materials and geometries will reflect the radar pulses
differently, creating blobs or blurs that can obscure the objects
physical dimensions. These issues, as well as problems caused



Fig. 1. Example Photographs and MSTAR Im-
ages by Class. Photograph of BMP-2 from https :
//www.militaryfactory.com/armor/detail.asp?armor id = 50,
photograph of BTR-70 from https : //military.wikia.org/wiki/BTR−
70. All other photographs and SAR images adapted from the MSTAR
dataset.

by Doppler shift in moving objects and radar shadows, make
the identification and classification of objects in SAR images
a difficult and tedious task that also requires a well-trained
and experienced analyst.

The the Moving and Stationary Target Acquisition and
Recognition (MSTAR) data set is a publicly available data set
consisting of synthetic aperture radar images of the following
10 classes of military vehicles:

1) 2S1: former Soviet Union (FSU) self-propelled artillery
2) BMP-2: FSU infantry fighting vehicle
3) BRDM-2: FSU armored reconnaissance vehicle
4) BTR-60: FSU armored personnel carrier
5) BTR-70: FSU armored personnel carrier
6) D7: Caterpillar tractor frequently used in combat engi-

neering roles
7) T-62: FSU main battle tank
8) T-72: FSU main battle tank
9) ZIL-131: FSU general purpose 6x6 truck

10) ZSU-23-4: FSU self-propelled anti-aircraft gun
11) SLICY: the Sandia Laboratories implementation of

cylinders (SLICY). The SLICY consisting of simple
geometric shapes such as cylinders, edge reflectors, and
corner reflectors which could be used for calibration
of sensors or for modeling the propagation of radar
reflections.

Fig. 1 shows the example photographs and MSTAR images
by class. It demonstrates the difficulties an imagery analyst
would face when identifying targets in SAR imagery. The
vehicles that are easily recognizable in photos become blurs in
SAR images. Due to its public availability and ease of access
for researchers, the data set has become the standard for SAR
image Automated Target Recognition (ATR) classification
research.

ATR in SAR imagery using “shallow” classification meth-
ods, which are traditional classifiers applied directly to SAR

images with the breakthrough feature extraction layers as
demonstrated in convolutional neural networks, produced
generally good results. An SVM method proposed by [27]
achieved 91% accuracy in a five-class test [27], while a
Bayesian classifier reported a 95.05% accuracy in a 10-classes
test [13].

In recent years, the work on classification of SAR imagery
has focused on the use of CNNs. In 2015, Morgan showed
that a relatively small CNN could achieve 92.1% accuracy
across the 10-class of the MSTAR dataset, roughly in line with
the shallow methods previously explored. Morgan’s method
also showed that a network trained on nine of the MSTAR
target classes could be retrained to include a tenth class 10-20
times faster than training a 10-class classifier from scratch.
The ability to more easily adapt the model to changes in
target sets represents an advantage over shallow classification
techniques [11]. This is especially valuable in a military
ATR context given the fluid nature of military operations,
where changes to the order of battle may necessitate updating
a deployed ATR system. Malmgren-Hansen et al., explored
transfer learning from a CNN pre-trained on simulated SAR
images generated by using ray tracing software and detailed
computer aided design models of target systems. They showed
that model performance was improved, especially in cases
where the amount of training data was reduced [10]. The
technique of generating simulated SAR images for training
could also be valuable in a military SAR ATR context where
an insufficient amount of training data for some systems may
exist.

The use of a linear SVM as a replacement for the softmax
activation that is typically used for multiclass classifiers in
neural networks has been shown to be potentially more effec-
tive for some classification tasks [22]. Transfer learning from
ImageNet to MSTAR with an SVM classifier was explored by
[1] in 2018. Their methodology compared the performance of
an SVM classifier trained on mid-level feature data extracted
from multiple layers from AlexNet, GoogLeNet, and VGG-
16 neural networks without retraining the feature extracting
network. Although they reported over 99% accuracy when
classifying features extracted from mid-level convolutional
layers from AlexNet, performance of the SVM on features
from fully-connected layers did not achieve 80% accuracy. The
best performance reported on from the VGG-16 architecture
was 92.3% from a mid-level convolutional layer, but only
49.2% and 46.3% from features extracted in the last two fully-
connected layers [1].

III. TRANSFER LEARNING AND FEATURE EXTRACTION

CNNs require a very large amount of data to train an
accurate model and it is not uncommon for data sets with
tens or even hundreds of thousands of images to be used
when training a model. Transfer learning presents one possible
solution when training a CNN on a limited data set by
leveraging knowledge from a previously learned source task to
aid in learning a new target task [14]. In an image classification
problem, transfer learning works by training a CNN on a data
set that has a very large number of images and freezing the



parameters for a certain number of layers and extracting mid-
level feature representations before training further layers and
the final classification layer [7].

ImageNet is an open source labeled image database orga-
nized in a branching hierarchical method of “synonym sets”
or “synsets”. For example, the “tank” synset is found in a
tree going from vehicle to wheeled vehicle to self-propelled
vehicle to armored vehicle to tank. The ImageNet database
consists of over 14 million labeled images organized into
over 21,000 synsets. Pre-trained ImageNets are often used in
transfer learning.

Transfer learning is typically used when source and target
tasks are not too dissimilar in order to avoid negative transfer.
Negative transfer occurs when the features learned in the
transfer learning method actually handicap the model perfor-
mance [14]. However, transfer learning becomes more useful
when a curious phenomenon that many deep neural networks
trained on natural images learn similar features across images
from different domains.

Evidence shows that low and mid-level features could
represent basic ATR features in images such as texture,
corners, edges, and color blobs [9], and the low and mid-level
neural network feature extraction function resembles the actual
biological and human neurons’ function. Low and mid-level
of features extracted from CNNs are likely common across
even dissimilar data sets. A transfer learning approach between
different domains is feasible and ATR tasks are evidently
successful in cross-domain applications [2], [8]. For example,
the application of transfer learning to remote sensing target
detection and classification was studied [16], which showed
that a CNN classifier trained on a photographic data set could
be retrained to perform remote sensing classification of ships
at sea with a good performance.

IV. SAR ATR: FEATURE EXTRACTION COMBINED WITH
SHALLOW CLASSIFIERS

A. Multistep Classifier

In practice and in cross-domain applications, very few
people train an entire CNN from scratch because it is relatively
rare to have a data set of sufficient size. For this reason, trans-
fer learning with feature extraction combined with shallow
classifiers are suitable choices for SAR images.

The network architecture employed in this paper was a
modified VGG-16 architecture [18]. The original VGG-16 ar-
chitecture is shown in Fig. 2. It consists of two or three linked
convolutional/pooling blocks, three fully-connected layers, and
a softmax activation in the end to determine the class label.
The network employs a 3x3 kernel and a stride of one so
that each pixel is the center of a convolutional step. The
architecture has been modified to freeze model weights for
the first two convolutional/pooling blocks (e.g., the first six
layers). The model top has also been replaced with a fully-
connected layer, a dropout layer to mitigate overfitting, and
two final fully-connected layers with a softmax activation for
classification [16]. This is also referred as a modified VGG-
16 architecture or a VGG-16 architecture in this paper. It
was initialized with the ImageNet weights and had the first

Fig. 2. The Original VGG-16 Architecture

Fig. 3. VGG-16 with Transfer learning by freezing the first six layers where
the weights taken directly from the ImageNet

two convolutional/pooling blocks frozen for training to take
advantage of the broad feature detection of the pre-trained
network as shown in Fig. 3. Our method, as in Fig. 4, shows
that the dense layer of 1024 features extracted are saved and
used as the input to a shallow classifier.

In our experiment, the standard VGG-16 model is imple-
mented in the Keras application program interface (API) with
TensorFlow as the backend. The ImageNet weights available
in the Keras are ported from the Visual Geometry Group at
Oxford University that developed the VGG architecture for
ILSVRC-2014 localization and classification tasks [18]. We
also use, Orange, which is an open source data science and
machine learning toolkit that allows users to easily manipulate
data through a graphical user interface. Orange has several
built-in machine learning algorithms and simplifies the data
management and pre-processing requirements to allow users
to experiment with approaches to machine learning and data
science [3].

A CNN is trained on the 2200 training images with a 20%
validation split. The training and test data were both then run
through the retrained neural network. The last fully connected
layer before the neural network’s output was saved as a 1024-
dimensional vector for each image as shown in Fig. 3.

The extracted features run through the Orange workflow are
pictured in Fig. 5. The precision and recall are used to compare
the base CNN performance, kNN, SVM, and random forest

Fig. 4. The multistep classifier: Extract features from the VGG-16 and then
apply a shallow classifier



Fig. 5. The Orange Workflow

Fig. 6. Comparison of VGG-16 with the multistep classifiers

classifiers. For the kNN classifier, k was set to 11 and weighted
Euclidian distance was used to determine which class label to
assign to test images. A sigmoid kernel was used in the SVM
classifier, and the random forest consisted of 10 decision trees.
These settings were unchanged in experiments two and three.

B. Results

The baseline model, which is the modified VGG-16, is
shown in Fig. 3. The modified VGG-16 without transfer
learning and trained exclusively on MSTAR, resulted in an
average precision and recall of 0.96. The same modified VGG-
16 with full transfer learning of the convolutional layers with
weights from ImageNet resulted in an average precision and
recall of 0.88. Although, the transfer learning approach has
the advantage of converging much more quickly than the CNN
initialized with random weights, the full transfer learning of
all convolutional weights and only retraining the CNN top
did not match the performance of the non-transfer learning
approach, suggesting some negative transfer occurs in the later
convolutional layers. As shown in Fig. 6, the best performed
is the modified VGG-16 with partial transfer learning in Fig. 3
and resulted an average precision and recall of 0.98. The
multistep classifier using a kNN classifier in Fig. 4 was able to
match the best baseline performance with an average precision
and call of 0.98, while the SVM and random forest classifiers
fell short of the baseline model’s performance.

C. Adding Noise

As described before, ATR of SAR images are typically
sensitive to the noise in the images. A CNN is known to
be vulnerable to the noisy models both from environmental

Fig. 7. Examples of Noisy SAR images

Fig. 8. Comparison of VGG-16 with the multistep classifiers for added noise

perturbation or adversarials’ deliberated manipulations [6],
[21]. To study the effect, random Gaussian noise with a noise
factor of 0.2 was added to the images from the data set.
Fig. 7 shows an example of an original SAR image with one
added noise. The feature extraction from CNN and follow
on shallow classification process was then repeated without
retraining the base model in order to test the robustness of the
model. The baseline model (i.e., modified VGG-16 model) was
then retrained on the noisy images for 30 epochs and accuracy
was compared.

Neither the neural network nor any of the multistep classi-
fiers proved robust enough to handle the addition of random
noise to the images. However, after retraining the kNN and
SVM multistep classifiers perform better than the modified
VGG-16 with partial transfer learning.

V. DISCUSSION

Performance on the SLICY class is of interest because it
demonstrates the model’s ability to discriminate an invalid
target from a valid target. All other classes, with the exception
of the D7, are former Soviet Union military equipment. The
D7 is a Caterpillar bulldozer. Up-armored versions of the D7
and related equipment are often used in combat engineering
roles. In a military context this means they are likely to be a
valid target. As demonstrated by the high precision and recall
in this class across all models, valid targets are very rarely
classified as a SLICY (high precision) and the random objects
are not being accepted as valid targets (high recall).

The performance of the kNN classifier is also notable since
the use of an SVM for classification after feature extraction is
previously studied; however, little research has been done on



Fig. 9. VGG-16 TensorFlow architecture layout

Fig. 10. Multistep classifiers results: VGG-6 transfer learning features +
k-means (k=2048) + kNN & other methods in Orange

the performance of kNN rather than a softmax activation for
neural network output.

To further explore the relations of feature extraction, transfer
learning, and kNN, we ran an additional experiment where
we first extracted the transfer weights of the first six layers
of the VGG-16 architecture from ImageNet. Since the flatten
dimension is 32x32x128=131,072, as shown in Fig. 9, we
applied the unsupervised learning k-means algorithm to group
the 131,072 dimension into 2048 clusters. The reasoning
here is that the first six layers probably embed the best
features (texture, corners, edges, and color blobs) that can
be used for classification. Finally, We performed kNN and
other supervised learning methods in Orange based on the
2048 dimensional train and test data. Fig. 10 shows the test
data results from Orange for the VGG6-transfer-kmeans-kNN
method with an average precision and recall of 0.93. The six
layers of transfer learning together with k-means and kNN
provide an inexpensive (without GPU or AWS, for exam-

ple) and no supervised learning or no class labels required
approach for SAR ATR. Recently, various learning-to-hash
algorithms [24] are used to approximate the exact nearest
neighbors, which translates a supervised learning problem and
kNN into an index/search problem [15], and simplifies the
whole recognition for the tactical operation requirements in
the area of SAR ATR. If there are no class labels of SAR
available, our multistep classifiers with transfer learning and
kNN can provide an unsupervised classification with a high
accuracy and confidence to match an object which looks like
another object seen before.

Fig. 10 also shows the comparison of kNN with other
supervised learning methods. The kNN method is the best
among all the methods for the average precision and recall,
where classification of the SLICY has a precision of 0.98 and
a recall of 1. The future work is to test on more and different
data sets (e.g., EO and IR data) to validate if the multistep
methods can apply to cross-domain ATR problems.

VI. CONCLUSION

Cross-domain transfer learning from photographs to SAR
imagery is effective for training a neural network both for
feature extraction and classification. A retrained neural net-
work can function as an efficient feature extractor for training
a shallow classifier. kNN and SVM classifiers are potentially
useful replacement for softmax activation in a neural network.
Multistep classification methods using a shallow classifier
trained on features extracted from a neural network, outper-
formed the base neural network when tested on noisy data
and as the amount of training data decreases. This is valuable
to improve CNN in a broader machine vision community by
applying feature extraction followed by shallow classifiers for
clean and noisy images. Transfer learning and kNN multistep
classification methods could be significant in terms of setting
up a robust image indexing system with minimum supervised
training and learning required.

Currently, the analysis community does not have an estab-
lished standard for the percent of correctly identified targets
by an imagery analyst. Instead the analysis relies on the
user’s experience and confidence in their own work, providing
responses such as “possible main battle tank” or “likely BMP-
2”, and thus a direct comparison to expert-level performance
is difficult to establish. Both the baseline model employing
transfer learning and the shallow classifiers using a neural
network as a feature extractor performed with a high degree
of accuracy and would be valuable in an operational context
as an aid to GEOINT analysts.
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