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Abstract

In order to increase productivity, capability, and data exploita-
tion, numerous defense applications are experiencing an inte-
gration of state-of-the-art machine learning and AI into their
architectures. Particular to defense applications, having a hu-
man analyst in the loop is of high interest due to quality con-
trol, accountability, and complex subject matter expertise not
readily automated or replicated by AI. However, many appli-
cations are suffering from a very slow transition. This may be
in large part due to lack of trust, usability, and productivity,
especially when adapting to unforeseen classes and changes
in mission context. Interactive machine learning is a newly
emerging field in which machine learning implementations
are trained, optimized, evaluated, and exploited through an in-
tuitive human-computer interface. In this paper, we introduce
interactive machine learning and explain its advantages and
limitations within the context of defense applications. Fur-
thermore, we address several of the shortcomings of interac-
tive machine learning by discussing how cognitive feedback
may inform features, data, and results in the state of the art.
We define the three techniques by which cognitive feedback
may be employed: self reporting, implicit cognitive feedback,
and modeled cognitive feedback. The advantages and disad-
vantages of each technique are discussed.

The Emergence of Interactive Machine
Learning

The vast majority of modern-day research in machine learn-
ing presents algorithms and implementations that do not
consider human interaction. For example, the flourishing
field of deep learning research is evaluated mainly by classi-
fication accuracy over large curated datasets and generative
models. This approach, referred to as Automatic Machine
Learning (AML) or sometimes conventional machine learn-
ing, forgoes the integration of dynamic human feedback into
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the system. Though undoubtedly useful for commercial big-
data problems, there are many scenarios – especially in de-
fense – where applying AML falls short in practice. For
instance, applications at the tactical edge may suffer from
smaller quantities of labeled examples for training. More-
over, classifiers may struggle to adapt to changes in data con-
text quickly enough to be considered viable by an analyst,
particularly in scenarios where the mission demands quick
turn-around time. Many of these issues may be mitigated by
emerging implementations of the interactive machine learn-
ing (IML) paradigm, which capitalizes on human input in
order to improve machine learning implementations (Fails
and Olsen Jr 2003). Unlike approaches that leverage AML,
IML implementations allow for classifiers to very quickly
train and apply newly discovered information with the help
of a human subject-matter expert, which we refer to in this
article as the analyst.

In general, IML may be described as a machine learning
implementation where one or more analysts iteratively im-
prove a model for automation by manipulating an interface
that is tightly coupled to the desired task at hand. There are
four main components to any IML implementation. The first
component is the data associated with the task. Examples
of such data include remotely sensed imagery, textual infor-
mation such as reports, and spatiotemporal tracks of moving
objects. The second component, referred to in this study as
the machine, is the mathematical model that tries to estimate
or automate the desired task. Ostensibly, this can be seen as
a black-box, but we will discuss the properties of a success-
ful IML classifier later in the article. The third component of
IML is the Human-Computer Interface (HCI). The HCI may
be as conventional as software receiving input through a key-
board and mouse, which is what we assume in this article, or
as specialized as vehicle controls, immersive environments,
and brain interfaces. The application is designed to allow
immediate and intuitive presentation of the machine’s classi-
fication on a manageable set of data. This data is then either
confirmed or manipulated to be correct by the analyst, who
is the last but most important component of an IML system.
In this article, we discuss IML within the context of improv-
ing productivity and decision making for an analyst with
a very specific task that requires subject-matter expertise.
Though, as exemplified above, IML may be deployed in a
wide variety of ways, we feel that deployment in this context



has the greatest potential for impact in defense applications.
There are several studies that provide excellent perspectives
of the current state of the art in IML outside of this scope
(Dudley and Kristensson 2018; Wu, Weld, and Heer 2019;
Robert et al. 2016).

A common architecture for IML implementations is
shown in Figure 1. The data on which the analyst must per-
form a task may either be completely available in a database
or sequentially available as a stream. Active learning may be
used to pull the most effective data points from this database
for labeling, as will be discussed in the next section. A ma-
chine for predicting the data is then used to present guesses
for the task at hand to the analyst. The analyst must verify
each of these guesses and correct any mistakes via the HCI.
Once the verification step is completed for the current iter-
ation, the machine will immediately learn from the correc-
tions and/or confirmations. The process will then repeat by
the machine gathering data examples and presenting guesses
to the user once again. When the time comes for the analyst
to leave their duty station, the machine model may optimize
on the data that has been labeled in order to maximize its ac-
curacy. This way, the most effective machine will be avail-
able once the analyst returns to duty. It is important to note
that the machine may be deployed as a centralized general-
purpose classifier that combines the work done by multiple
analysts, or it may be deployed locally to be custimized to-
wards the individual analyst.

The focus of this article is to introduce IML within
the context of analyst-driven applications relevant to de-
fense while highlighting research gaps, the most important
of which involves incorporation of cognitive feedback. We
choose not to discuss manual model interactions such as
feature selection (Raghavan, Madani, and Jones 2006) or
model selection (Talbot et al. 2009), which are processes
whereby analysts directly optimize machine models. Rather,
we choose to present implementations that can be used ef-
fectively by an analyst who is a subject matter expert for the
task at hand and not knowledgeable in machine learning or
statistical theory. Defense analysts hold invaluable subject-
matter expertise for the mission, and it is unreasonable to
assume that they must learn or worry about data-scientific
concepts. Because intuitive HCIs may be designed to be con-
gruent to their task, IML has great potential to leverage the
power of modern-day ML while not burdening the analyst
with parameter tuning, data curation, or any of the other bur-
dens implicit to AML.

The next section will describe three examples of IML im-
plementations that highlight the current state of the art. The
section that follows will iterate through several advantages,
shortcomings, and gaps in the state of the art. In the penulti-
mate section, we specify the ways in which cognitive feed-
back may be used to address the shortcomings and gaps of
IML with respect to defense applications. Finally, we con-
clude with commentary on prospects for future research.

Interactive Machine Learning in Action
In order to frame a more detailed discussion of IML, we
now describe several IML implementations that have been
presented in peer-reviewed literature. We specifically choose

three application areas that are analyst-driven: region digiti-
zation, textual translation, and video annotation. These ex-
amples demonstrate the potential for IML to improve both
the machine performance and the user experience with au-
tonomy.

Geographic region digitization is a highly demanded yet
arduous task whereby regions such as bodies of water and
other land cover are digitized from remotely sensed images,
usually within a Geographic Information System (Hossain
and Chen 2019). Once digitized, regions may be represented
in mapping products for geospatial situational awareness,
climate-level studies, land surveys, and many other applica-
tions. Although numerous AML approaches to region dig-
itization have been presented in the literature, they are not
widely adopted in practice. This is most likely due to the
all-or-nothing yield of AML approaches: If the machine in-
correctly digitizes a region, it may be more burdensome for
an analyst to correct than to start from scratch. Therefore, an
analyst may prefer to digitize manually to circumvent frus-
tration and presumably lower their workload. In order to ad-
dress these shortcomings, an IML implementation for region
digitization, named the Geospatial Region Application In-
terface Toolkit (GRAIT), is presented as a human-machine
team application (Michael et al. 2019). The authors address
the all-or-nothing approach to region digitization with an
IML implementation where a region is digitized iteratively.
In each iteration, the machine guesses the placement of a
certain number of vertices of the contour and presents them
to the analyst for verification. For each vertex presented,
the analyst may either correct its placement by clicking and
dragging it to an appropriate location or simply confirm its
correct placement by not interacting with it. The analyst in-
dicates via button press when all the vertices of the current
iteration are corrected or confirmed. The machine will then
train on the finalized vertex locations, and the process will
continue until the region is completely digitized. In order to
prevent inducing too high of a cognitive load on the ana-
lyst, an uncertainty model is used to estimate the probabil-
ity of incorrect vertex placement and limit each iteration to
around 2 incorrectly placed vertices. Results show that with
no prior training data, the IML implementation accurately
places 84% of vertices correctly in 4 separate image sets of
4 images each.

Another area where IML approaches show promise is that
of textual language translation, commonly referred to as ma-
chine translation. While bodies of work in this field attempt
to replace human translators with machine models, many of
which are AML implementations (Koehn 2009), the current
state of the art is far from perfect. As with region digiti-
zation, fully-automatic approaches may hinder rather than
help the performance of a translator at times when too many
mistranslated words may induce excessive cognitive load.
Because of this, many approaches to machine translation
are realized through a human-machine team. An IML ap-
proach to machine translation aims to remedy these issues by
implementing iterative learning and modeling the informa-
tiveness of each machine translation at a fine-grained level
(González-Rubio and Casacuberta 2014). In this approach,
an initial guess of a sentence translation is given to the user
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Figure 1: A common architecture for interactive machine learning implementations.

based on a metric of informativeness. The user will then
make corrections to the guess by changing the first incor-
rect letter of the translation. The machine in turn suggests
a new translation under this assumption. This process con-
tinues, with the machine immediately training on corrected
data for future translations. Results show that employing this
IML-based method produces twice the translation quality, a
metric specific to machine translation, per user interaction
over AML approaches.

Lastly, IML implementations have emerged for the dif-
ficult task of video annotations, where the amount of data
generated per day has far surpassed the ability of analysts to
inspect. When successful, annotated video allows for critical
advantages such as the ability to search for events, quantify
behavioral analytics, and study natural phenomena. Though
many AML approaches to video analytics exist, they are typ-
ically tied to certain features of interest within some con-
strained context (Ananthanarayanan et al. 2017). In cases
where context may change and the features of interest are
unknown, AML implementations for automatic video anno-
tation may be rendered incorrect or infeasible. This is espe-
cially true in cases where context has changed or features of
interest are unknown beforehand. An IML implementation
of video annotation named Janelia Automatic Animal Be-
havior Annotator (JAABA) demonstrates a semi-automatic
approach to assess animal behavior (Kabra et al. 2013).
JAABA allows for a user to annotate a video frame with an
arbitrary label, for instance jump. Then, using trajectory in-
formation extracted from the video, the machine trains on
the given label and presents classification results both at the
level of the current video and a database of numerous an-
imal videos. The machine also provides confidence levels
for each classification to guide further labeling by the user.
This process is repeated iteratively until an ideal classifier
is attained. JAABA was used to create the first ML-driven
behavior classifier over a diverse set of animals.

With these three examples in mind, a more detailed expla-
nation of the advantages, limitations, and gaps of IML will
follow.

Advantages, Shortcomings, and Gaps
Advantages
The advantages of IML approaches directly address many
of the shortcomings that defense applications exhibit when

utilizing ML. Numerous defense applications suffer from
a shortage of labeled training examples due to a lack of
crowd sourcing and the ever changing state of platform tech-
nologies among other reasons. As such, deep models rely-
ing on large amounts of labeled examples cannot be ade-
quately trained. IML addresses the shortage of training data
by providing an interface that allows for incorrect classifi-
cations to be immediately corrected and integrated into the
machine model. In fact, several IML implementations may
work well with no prior labeled data, which is usually re-
ferred to as the cold start problem (Lika, Kolomvatsos, and
Hadjiefthymiades 2014). Additionally, the HCI allows for
correction through an intuitive interface that potentially re-
duces the burden of data labeling. This allows an analyst to
leverage their current subject-matter expertise – that of the
application and data context – and circumvents the need to
play the role of data scientist.

Defense problems must be very adaptable to context
changes from one region of interest to the next. In order to
accommodate this, any autonomy must immediately adapt
to such changes at the pace of the analyst. Therefore, IML
implementations typically apply active learning and online
learning techniques in order to improve effectiveness. Active
learning research entails the study of uncertainty or similar-
ity metrics in order to develop a mathematical understand-
ing of the likelihood that a machine will classify future data
points correctly (Quionero-Candela et al. 2009). The field
of online machine learning involves models that may train
in stride to adapt to new situations quickly while optimizing
exploration vs. exploitation (Bottou 1998).

Problems related to defense must sometimes be deployed
at the tactical edge. In such situations, computational re-
sources and downtime may be scarce. IML directly ad-
dresses this problem, since most IML implementations are
meant to be deployed on desktop computers. In all three ex-
amples of IML presented in the previous section, online and
active learning strategies are employed to iteratively build
high-performance classifiers. Active learning is also used to
gage the load of examples presented to the user, both by cor-
relating uncertainty to the probability of an incorrect classi-
fication and by providing a priority for the analyst to man-
age their own work flow. Both GRAIT and JAABA support
cold-start cases.



Shortcomings
Perhaps the most obvious shortcoming if IML is that the
HCI and machine implementation must be tightly coupled
to a specific application. This entails much more effort in
the development of applications, since they must be built
and studied uniquely towards an explicit work flow. This
differs greatly from AML approaches, where for the most
part implementations are general-purpose and specificity is
implied through parameterization and classes for labeling.
Studies define a general-purpose methodology for HCI, but
this research is young and remains mostly theoretical in na-
ture (Meza Martı́nez and Maedche 2019).

Deep models of machine learning exhibit very impres-
sive results relating to throughput of data and classification
times. IML implementations currently lag behind in these
results. This is in part due to the nature of online machine
learning; namely, the need to have tight classification and
training cycles. However, research is trending more towards
online and active learning problems, and IML-inspired clas-
sifiers with competent performance are emerging (Langford,
Li, and Strehl 2007; Lu, Shi, and Jia 2013).

A further issue with IML is that overfitting may occur
more frequently since data is generally labeled iteratively.
Overfitting occurs when prior training data causes the model
to correlate too tightly to features that do not justify the
desired outcome. For example, one of the geographic sites
in the GRAIT study is Johnson Lake, WA. The first three
images show the shoreline in roughly the same location.
The fourth image shows the lake with a receded shoreline.
Though the shoreline may be spotted by an analyst clearly in
the fourth image, the classifier overfit to spaital features and
thus incorrectly identified the shoreline. This also caused
the uncertainty calculations for the image to be undershot.
AML approaches to overfitting typically require optimiz-
ing machine parameters or adding diversity to datasets, both
of which typically require large amounts of computation
and thus long turnaround times not conducive to success-
ful IML implementations. Therefore, reinforcement meta-
learning, whereby active learning implementations are in-
formed by corrections via specialized ML implementations,
may be employed to adapt quickly to situations where over-
fitting is inevitable (Bachman, Sordoni, and Trischler 2017).

The Cognitive Gap
Although frequently mentioned as a future direction of
study, perhaps the largest identified gap in IML research is
the lack of formalization and quantification of cognitive im-
plications from the analyst. For instance, the IML machine
translation study (González-Rubio and Casacuberta 2014)
mentions specifically that the applied technique lessens the
cognitive load of the translator by utilizing cost-sensitive
metrics such as informativeness. However, the study does
not perform any human-factors research to back support this
claim, though it is mentioned as future work. As another
example, the study presenting GRAIT uses mathematically
modeled uncertainty calculations to meter the workload at
each iteration. Though it is shown statistically that these un-
certainty calculations correlate to the probability a vertex

is placed correctly, results focus more on vertex placement
accuracy and do not consider multiple load levels (e.g. the
number of expected incorrect vertices is set to two for the
entire study). Human factors research is also slated as future
work. Both of these studies appreciate that there must be
thresholds of cognitive load taken into account by the IML
system for a successful implementation, but it is apparent
that human-factors research is inevitable.

The Implications of Cognitive Feedback
Due to its interactive nature, IML most certainly is a human-
in-the-loop endeavor. Several studies have highlighted diffi-
culties that may arise from trust, safety, and quality (Dudley
and Kristensson 2018; Groce et al. 2013; Gillies et al. 2016;
Turchetta, Berkenkamp, and Krause 2019). This section is
devoted to discussing the potential of researching and inte-
grating models of human cognition as feedback for IML,
which is not often mentioned in the state of the art. We
also make the argument that cognitive feedback directly ad-
dresses the shortcomings of IML. The topic of cognitive
feedback is especially useful for defense-related problems,
where trust, safety, and quality of ML implementations is a
prerequisite for adoption. Without analyst-driven cognitive
feedback, an IML system can very quickly fall flat, which is
illustrated in the following region digitization example.

Consider the analyst using GRAIT to digitize the fourth
image of Johnson Lake as explained in the previous sec-
tion. Recall that the machine is overfit, and thus its model
for uncertainty is undershot. Because of this, the machine
places 10 vertices, 8 of which are incorrectly placed. If the
analyst continues, they will spend more time correcting the
misplaced vertices than manually digitizing the lake without
the help of the machine.

This example is simple, but it highlights one of the detri-
mental problems of IML implementations: Overfitting is in-
evitable, and it can induce, rather than relieve, cognitive
load. As mentioned previously, reinforcement learning may
be used to augment the uncertainty or similarity model based
on the number of corrections the user has to make in any it-
eration. However, convergence of such a technique would
involve the user making excessive corrections in order to in-
form the model in this example. Unlike AML, the uncer-
tainty and workload involved with IML data must be some-
how informed by the analyst.

Figure 2 shows several situations exemplifying various
levels of cognitive load when an analyst uses GRAIT to an-
notate some region of interest. In the first example, the ma-
chine is very accurate but offers too few vertices for the an-
alyst to verify. In this situation, the analyst is impeded by
an overshot cognitive load. The analyst must work at the
slow pace of the IML implementation, which not only re-
duces their productivity but may also reduce their attention
and engagement. The second example shows the ideal situ-
ation where GRAIT correctly manages the cognitive load of
the analyst. The analyst is expected to be engaged and pro-
ductive. The last situation shows an example of the IML im-
plementation undershooting the cognitive load. This causes
the analyst to become overwhelmed and possibly confused,
slowing their productivity and causing frustration.
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Figure 2: Various degrees of engagement with IML region digitization. In the first image, the machine has overshot cognitive
load and thus the analyst’s productivity is hampered. In the second image, the analyst is engaged in the task and the machine is
helping their productivity. In the last image, the machine has undershot the cognitive load and thus the analyst is overwhelmed
and will most likely abandon the IML implementation for the task.

Incorporation of cognitive load is necessary to avoid the
pitfall of bad cognitive load estimation based on analysis of
data alone. For instance, consider an augmentation to the
third GRAIT example in the figure by providing the user
with a survey at each iteration. The survey will occur before
correction and simply ask, “Is this workload too little, too
much, or fine?” In this particular situation, the analyst will
inform the machine that the workload is too much to handle,
and the machine may modify its uncertainty model accord-
ingly (e.g. by adjusting weighting or performing best-fit op-
timization to prior iterations). This very simple solution il-
lustrates how cognitive feedback may enable better IML for
many applications, but this concept may be taken further. In
order to promote discussion and research of the possibilities
and implications of this concept, we now present a taxon-
omy for cognitive feedback to inform IML.

Self-reported cognitive feedback is gathered by surveys
eliciting cognitive feedback from the user. An example of
such a survey is the standard NASA-TLX, which allows
a user to report on the general experienced workload of a
particular task (Hart and Staveland 1988). This could be
gathered offline during human factors evaluation or online
through an interface for self reporting within the HCI. The
main advantage of online self reporting cognitive load is the
simplicity to collect feedback within the HCI. Implementa-
tion of simple interventions, such as providing buttons for
when a workload is too heavy or too light, are trivial. How-
ever, this approach may be imprecise in complex user envi-
ronments because sub-components of a task may differen-
tially contribute to workload. In these situations, interven-
tions may be too simplistic or induce load on an analyst.

Until now, we’ve discussed the implications of self report-
ing on cognitive load, but this technique may provide insight
into more than just the analyst’s ideal workload. The field
of explainable artificial intelligence involves expressing the
machine’s decision making to a human user (Gunning and
Aha 2019). If a model for explainability is feasible, then the
user may communicate cognitive information relating to fea-
tures as feedback to the model (Teso and Kersting 2019). Re-
lating back to the example above, the machine may explain
its decisions by stating “I believe that historic position of the
shoreline is very important.” The user may then augment the
belief by stating “The historic position is not as important as

color,” and the machine may then optimize its classifier and
uncertainty calculation based on this statement.

As opposed to surveying a user, implicit cognitive feed-
back may be collected in real time while analysts interact
with the HCI during closed experimentation. Implicit cogni-
tive feedback involves collecting physiological data in order
to infer cognitive states in a manner that is continuous, ob-
jective, and occurs in real time. For example, because pupil-
lary responses are reflective of nervous activity, pupil dila-
tion may act as a proxy for measuring task-induced cog-
nitive processes. As such, increases in pupil diameter may
be indicative of high cognitive load, attentional processing,
and decision making (Hess and Polt 1964; Kahneman 1973;
Hahnemann and Beatty 1967) whereas decreases may reflect
fatigue (Lowenstein, Feinberg, and Loewenfeld 1963). This
data may then be correlated with self-reporting to define
various states of cognitive load. Examples of such biofeed-
back include readings of skin conductance, heart rate, pupi-
lometry, and electroencephalogram (EEG). Often, multiple
physiological measures will be assessed to determine work-
load and inform adaptive algorithms, in essence creating
user models that dynamically adjust to support user needs.
For example, such physiological elements were examined to
monitor the workload of operators while performing UAV
piloting tasks of different levels (Wilson and Russell 2007).
The physiological signals were used as features to train
a neural network to classify workload. Another approach
of implicit cognitive feedback is to incorporate cognitive
cues as features in the machine learning algorithm (Rosen-
feld et al. 2012). For example, in a recent choice compe-
tition, researchers incorporated cognitive features derived
from behavior into a random forest algorithm. They found
that this approach significantly outperformed other ML ap-
proaches that did not incorporate cognitive features (Plon-
sky et al. 2017). A recent study has explored how collecting
and applying cognitive cues as features improves reinforce-
ment learning algorithms for playing video games (Zhang
et al. 2019). In summary, implicit cognitive feedback has
the potential to improve IML implementations by gathering
data in closed experimentation to inform cognitive load, un-
certainty/similarity measurements, and inform the machine
with features of interest related to a specific task.

Implicit cognitive feedback may provide invaluable in-



Table 1: Taxonomy of Cognitive Feedback for Interactive Machine Learning
Term Definition Examples
Self Reporting Gathered by surveying the analyst. Online: Buttons in HCI.

Offline: Human-factors surveys.
Implicit Collection and evaluation of biofeedback Cognitive load of correction via HCI.

via closed experimentation. Load as a function of correction count.
Use of cognitive cues as ML features.

Modeled Utilization of a cognitive model in Feedback model of user interaction with HCI.
the loop.

sight to IML implementations, but the disadvantage lies in
the fact that closed experimentation is often necessary to col-
lect biofeedback, control levels of tasking, and survey users
of the HCI with respect to a particular application. Addition-
ally, the cognitive state of the user may be more dynamic for
some applications than others. In these situations, modeled
cognitive feedback may provide cognitive feedback based
on models of user interaction with the HCI. For example,
simulating human behavior using a computational cognitive
model is another potential method to provide feedback to an
IML system. Models of cognition and decision making have
been used to simulate human interactions with interfaces in
military contexts (Blasch et al. 2011). Cognitive architec-
tures represent a modeling paradigm that computationally
defines the relationship between underlying biological and
cognitive mechanisms to emerging behavior. Architectures,
such as ACT-R (Anderson et al. 2004) and SOAR (Laird,
Newell, and Rosenbloom 1987), have long been a part of
HCI research to simulate users interacting with an interface.
For example, ACT-R models are used for usability testing
of menus (Byrne 2001), modeling how users detect phish-
ing websites (Williams and Li 2017), and detecting situ-
ations with high cognitive load when using a smartphone
(Wirzberger and Russwinkel 2015). Cognitive architectures
have been used with physiological data, such as eye tracking
information and fMRI, to map observed behavior the under-
lying mental states and brain regions (Tamborello and Byrne
2007; Borst and Anderson 2015). Cognitive models, com-
bined with self-reported data from surveys and physiolog-
ical data, can provide a starting point for IML systems to
optimize their suggestions for the overall performance of a
human-machine team.

These three different categories of cognitive feedback
– self reporting, implicit cognitive feedback, and modeled
cognitive feedback – delineate the possible ways in which
IML implementations may be centered around the analyst.
The categories are summarized in Table 1.

Once cognitive feedback has been integrated into IML,
more conventional results such as classification accuracy
and overall corrections may be used to evaluate approaches
against their non-cognitive baseline. However, these re-
sults may lack true insight into the purpose of the human-
machine team. Measuring the cognitive load on human sub-
jects with more objective metrics of productivity would pro-
vide more insight into the effectiveness of IML implementa-
tions (Alves et al. 2016). Additionally, it is the analyst them-
selves who must also evaluate the effectiveness of an IML

implementation, though this may take high levels of time
and effort (Groce et al. 2013; Gillies et al. 2016).

A Future Driven by Cognitive Feedback
We have presented a summary of interactive machine learn-
ing along with several examples informing the state of the
art. After discussing the advantages of IML, the major short-
comings and gaps were delineated. Finally, the implications
of cognitive feedback for IML implementations were dis-
cussed to address the gaps. Though it may seem trivial to
study cognitive feedback as it relates to data science for
human-in-the-loop applications, there is a general lack of
such studies in the literature, especially for defense applica-
tions. We hope this article will encourage research and de-
velopment in more IML for defense applications and more
research in how cognitive feedback may inform IML imple-
mentations.
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