
Evaluating Reinforcement Learning Algorithms For Evolving Military Games

James Chao*, Jonathan Sato*, Crisrael Lucero, Doug S. Lange
Naval Information Warfare Center Pacific

*Equal Contribution
{first.last}@navy.mil

Abstract

In this paper, we evaluate reinforcement learning algorithms
for military board games. Currently, machine learning ap-
proaches to most games assume certain aspects of the game
remain static. This methodology results in a lack of algorithm
robustness and a drastic drop in performance upon chang-
ing in-game mechanics. To this end, we will evaluate general
game playing (Diego Perez-Liebana 2018) AI algorithms on
evolving military games.

Introduction
AlphaZero (Silver et al. 2017a) described an approach that
trained an AI agent through self-play to achieve super-
human performance. While the results are impressive, we
want to test if the same algorithms used in games are ro-
bust enough to translate into more complex environments
that closer resemble the real world. To our knowledge, pa-
pers such as (Hsueh et al. 2018) examine AlphaZero on
non-deterministic games, but not much research has been
performed on progressively complicating and evolving the
game environment, mechanics, and goals. Therefore, we
tested these different aspects of robustness on AlphaZero
models. We intend to continue future work evaluating dif-
ferent algorithms.

Background and Related Work
Recent breakthroughs in game AI has generated a large
amount of excitement in the AI community. Game AI not
only can provide advancement in the gaming industry, but
also can be applied to help solve many real world problems.
After Deep-Q Networks (DQNs) were used to beat Atari

This will certify that all author(s) of the above article/paper are em-
ployees of the U.S. Government and performed this work as part of
their employment, and that the article/paper is therefore not subject
to U.S. copyright protection. No copyright. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0). In: Proceedings of AAAI Symposium on the 2nd Workshop
on Deep Models and Artificial Intelligence for Defense Applica-
tions: Potentials, Theories, Practices, Tools, and Risks, November
11-12, 2020, Virtual, published at http://ceur-ws.org

games in 2013 (Mnih et al. 2013), Google DeepMind devel-
oped AlphaGo (Silver et al. 2016) that defeated world cham-
pion Lee Sedol in the game of Go using supervised learning
and reinforcement learning. One year later, AlphaGo Zero
(Silver et al. 2017b) was able to defeat AlphaGo with no
human knowledge and pure reinforcement learning. Soon
after, AlphaZero (Silver et al. 2017a) generalized AlphaGo
Zero to be able to play more games including Chess, Shogi,
and Go, creating a more generalized AI to apply to differ-
ent problems. In 2018, OpenAI Five used five Long Short-
term Memory (Hochreiter and Schmidhuber 1997) neural
networks and a Proximal Policy Optimization (Schulman et
al. 2017) method to defeat a professional DotA team, each
LSTM acting as a player in a team to collaborate and achieve
a common goal. AlphaStar used a transformer (Vaswani et
al. 2017), LSTM (Hochreiter and Schmidhuber 1997), auto-
regressive policy head (Vinyals et al. 2017) with a pointer
(Vinyals, Fortunato, and Jaitly 2015), and a centralized value
baseline (Foerster et al. 2017) to beat top professional Star-
craft2 players. Pluribus (Brown and Sandholm 2019) used
Monte Carlo counterfactual regret minimization to beat pro-
fessional poker players.

AlphaZero is chosen due to its proven ability to be play at
super-human levels without doubt of merely winning due to
fast machine reaction and domain knowledge; however, we
are not limited to AlphaZero as an algorithm. Since the orig-
inal AlphaZero is generally applied to well known games
with well defined rules, we built our base case game and
applied a general AlphaZero algorithm (Nair, Thakoor, and
Jhunjhunwala 2017) in order to have the ability to mod-
ify the game code as well as the algorithm code in order
to experiment with evolving game environments such as
Surprise-based learning (Ranasinghe and Shen 2008).

Game Description: Checkers Modern Warfare
The basic game that has been developed to test our approach
consists of two players with a fixed size, symmetrical square
board. Each player has the same number of pieces placed
symmetrically on the board. Players take turns according to
the following rules: the turn player chooses a single piece
and either moves the piece one space or attacks an adjacent
piece in the up, down, right, or left directions. The turn is



then passed to the next player. This continues until pieces of
only one team remain or the stalemate turn count is reached.
A simple two turns are shown in Figure 1. The game state
is fully observable, symmetrical, zero sum, turn-based, dis-
crete, deterministic, static, and sequential.

Figure 1: Sample Two Turns: The first of the three boards
shows the state of the board before the turn starts. The player
of the dark star piece chooses to move one space down re-
sulting in the second board. The third board is a result of the
player of the light star piece attacking the dark star piece.

Methodology
The methodology we propose starts from a base case and
incrementally builds to more complicated versions of the
game. This involves training on less complicated variations
of the base case and testing on never-before-seen aspects
from the list below. These never-before-seen mechanics can
come into play at the beginning of a new game or part-way
through the new game. The way we measure the success-
ful adaptation of the agent is based off of comparing the
win/loss/draw ratios before the increase in difficulty and af-
ter. The different variations to increase game complexity are
described in the sections below.

Disrupting Board Symmetry
We propose two methods for disrupting board symmetry. In-
troducing off-limits spaces that pieces cannot move to, caus-
ing the board to not rotate along a symmetrical axis and stay
the same board. The second is by disrupting piece symmetry
by having non-symmetrical starting positions.

Changing the Game Objective
Changing the game winning mechanisms for the players,
suddenly shifting the way the agent would need to play
the game. For example, instead of capturing enemy pieces,
now the objective is capture the flag. Another example of
changing objectives is by having the different players try to
achieve a different goal, such as one player having a focus
on survival whereas the other would focus on wiping the op-
ponent’s pieces out as fast as possible.

Mid-Game Changes
Many of the above changes can be made part-way through
game to incorporate timing of changes as part of the diffi-
culty. In addition to the existing changes, other mid-game
changes can include a sudden ”catastrophe” where the the
enemy gains a number of units or you lose a number of units
and introducing a new player either as an ally, enemy ally or
neutral third party.

Case Study and Results
The base case game consists of a five by five size board and
six game pieces with three for each side. The three pieces of
each team are set in opposing corners of the board as seen in
Figure 2. The top right box of the board is a dedicated piece
of land that pieces are not allowed to move to. During each
player’s turn, the player has the option of moving a single
piece or attacking another game piece with one of their game
pieces. This continues until only no pieces from one team is
left or until 50 turns have elapsed signaling a stalemate. This
base case can be incrementally changed according to one or
multiple aspects described in the methodology section.

Figure 2: Base case board setup used for initial training and
testing.

We trained an AlphaZero-based agent using a Nvidia
DGX with 4 Tesla GPUs for 200 iterations, 100 episodes per
iteration, 20 Monte Carlo Tree Search (MCTS) simulations
per episode, 40 games to determine model improvement, 1
for Cpuct, 0.001 learning rate, 0.3 dropout rate, 10 epochs,
16 batch size, 128 number of channels. The below table and
graphs show our results after pitting the model at certain it-
erations against a random player.

Iteration Wins Losses Draws
0 18 22 60
10 41 8 51
20 45 1 54
30 40 3 57
70 23 4 73
140 41 3 56
200 44 1 55

Convergence occurs around 10 iterations, this is earlier
then initially expected possibly due to the lack of game com-
plexity in the base case game. More studies will be con-
ducted once game complexity is increased. We dialed up the
Cpuct hyper-parameter to 4 to encourage exploration, the
model simply converges at a slower rate to the same win-
ning model as the Cpuct equals 1.

Observations on AlphaZero
Game design is important, since AlphaZero is a Monte Carlo
method, we need to make sure the game ends in a timely



Figure 3: The trained agent starts winning more consistently
after 10 iterations.

Figure 4: Draws are constant throughout the training process

matter in order to complete an episode before the training
becomes unstable due to an agent running from the enemy
forever.

Furthermore, we cannot punish draws but instead give
a near 0 reward since AlphaZero generally uses the same
agent to play both players and simply flips the board to play
against itself. This could potentially cause issues down the
road if we were to change the two player’s goal to be differ-
ent from one another, for example, player one wants to de-
stroy a building, while player two wants to defend the build-
ing at all cost.

The board symmetry does not affect agent learning in Al-
phaZero.

Non Symmetrical Board

The trained agent will be used to play different Check-
ers Modern Warfare variants. Starting with one de-
gree variant such as making the board non-symmetrical
with random land fills where players cannot move
their pieces to. To do this, we disabled locations
[0,0],[1,0],[2,0],[3,0],[4,0],[0,1],[1,1],[0,3],[2,3], put player
1 pieces at [2,1],[3,1], and player 2 pieces at [2,4] and [3,4]
as shown in figure 5, at the beginning of the game.

The agent trained with 200 iterations from the above sec-
tion was pitted against a random player. Winning 70 games,
losing 1 games, and drawing 29 games. This proves the
trained agent can deal with disrupted board symmetry and
a game board with different terrain setup.

Figure 5: Non-symmetrical board setup used for incremental
case testing.

Non Symmetrical Board Change Mid Game

The board starts as the non symmetrical board shown in fig-
ure 5, then turns into the board shown in figure 2 without
obstacles after 25 turns. 50 turns without a winner results in
a draw. The trained agent won 68 games, lost 4 games, and
drew 28 games out of 100 games. Proving the agent can per-
form relatively well with board symmetry change half way
through the game.

Non Symmetrical Board with Random Added New
Pieces Mid Game

Starting with the non symmetrical board shown in figure 5,
at turn 25 in a 100 turn game, add 3 reinforcement pieces for
each team at a random location if the space is empty during
the turn. The trained agent won 80 games, lost 6, and drew
14, performing relatively well with the new randomness in-
troduced.

Non Symmetrical Board with Random Deleted
Pieces Mid Game

Starting with the non symmetrical board shown in figure
5, at turn 25 in a 100 turn game, blow up 3 random spots
with bombs, where any pieces at those locations are now de-
stroyed. The trained agent won 84 games, lost 11, and drew
5, performing relatively well with the new randomness in-
troduced.

Non Symmetrical Board with Statically Added
New Pieces Mid Game

Starting with the non symmetrical board shown in figure 5,
at turn 25 in a 100 turn game, add 3 reinforcement pieces for
each team at specific locations if the space is empty during
the turn. Team 1 is reinforced at locations [2,1] [3,1] [4,1],
team 2 is reinforced at locations [2,4][3,4][4,4]. The trained
agent won 77 games, lost 2, and drew 21, performing rela-
tively well with mid game state space changes.



Non Symmetrical Board with Statically Deleted
Pieces Mid Game
Starting with the non symmetrical board shown in figure 5,
and at turn 25 in a 100 turn game, blow up every piece at
locations [2,1] [3,1] [4,1] [2,4] [3,4] [4,4]. The trained agent
won 83 games, lost 8, and drew 9, performing relatively well
with mid game state space changes.

Non Symmetrical Board with Non Deterministic
Moves
Movements and attacks are now non-deterministic, where
20% of the moves or attacks are nullified and resulting in
a no-op. Testing on a 50 turn game. The trained agent won
55 games, lost 10, and draw 35. We then tested the same
rules with 50% of the movements and attacks nullified, The
trained agent won 34 games, lost 10, and drew 56. Finally
we changed it to 80% of the movements and attacks nulli-
fied, the trained agent won 8 games, lost 3, and drew on 89
games. The results indicate the agent preformed relatively
well, with the observation that more randomly assigned no-
ops will result in more draw games.

Changing Game Objective
Changed the game objective to capture the flag, and used
the agent trained on eliminating the enemy team. the agent
won 10 games, lost 4 games, and drew 6 games over 20
games. We then changed the game objective after 25 turns
in a 50 turn game, the agent won 9 games, lost 5 games, and
drew 6 games over 20 games. The agent performed relatively
well with changing game objectives even though it was not
trained on this objective. We suspect this is due the trained
agent having learning generic game playing techniques such
as movement patterns on a square type board.

Non Symmetrical Game Objective
Finally, we changed the game objective to be non symmetri-
cal, meaning the 2 players have different game winning con-
ditions. player 1 has the goal to protect a flag, while player
2 has the goal to destroy the flag. AlphaZero could not train
this agent with good results since it uses one neural network
to train both player. Therefore, future work will be to change
the AlphaZero algorithm to a multi-agent learning system
where there are 2 agents trained on 2 different objectives.

Conclusion
As we incrementally increase the complexity of the game,
we discover the robustness of the algorithms to more com-
plex environments and then apply different strategies to im-
prove the AI flexibility to accommodate to more complex
and stochastic environments. We learned that AlphaZero is
robust to board change, but less flexible dealing with other
aspects of game change.

References
Brown, N., and Sandholm, T. 2019. Superhuman ai for
multiplayer poker. Science 11 July 2019.

Diego Perez-Liebana, Jialin Liu, A. K. R. D. G. J. T. S. M. L.
2018. General video game ai: a multi-track framework for
evaluating agents, games and content generation algorithms.
arXiv:1802.10363.
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2017. Counterfactual multi-agent policy gra-
dients. arXiv:1705.08926.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9:1735–80.
Hsueh, C.-H.; Wu, I.-C.; Chen, J.-C.; and Hsu, T.-S. 2018.
Alphazero for a non-deterministic game. 2018 Conference
on Technologies and Applications of Artificial Intelligence.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M.
2013. Playing atari with deep reinforcement learning.
arXiv:1312.5602.
Nair, S.; Thakoor, S.; and Jhunjhunwala, M. 2017. Learning
to play othello without human knowledge.
Ranasinghe, N., and Shen, W.-M. 2008. Surprise-based
learning for developmental robotics. 2008 ECSIS Sympo-
sium on Learning and Adaptive Behaviors for Robotic Sys-
tems (LAB-RS).
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv:1707.06347.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; and Timothy Lil-
licrap, Madeleine Leach, K. K. T. G. D. H. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Grae-
pel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2017a.
Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. arXiv:1712.01815.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2017b. Master-
ing the game of go without human knowledge. Nature
550(7676):354.
Vaswani; Ashish; Shazeer; Noam; Parmar; Niki; Uszkoreit;
Jakob; Jones; Llion; Gomez; N, A.; Kaiser; Lukasz; Polo-
sukhin; and Illia. 2017. Attention is all you need. In Ad-
vances in Neural Information Processing Systems 30. Cur-
ran Associates, Inc. 5998–6008.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezh-
nevets, A. S.; Yeo, M.; Makhzani, A.; Kttler, H.; Agapiou,
J.; Schrittwieser, J.; Quan, J.; Gaffney, S.; Petersen, S.; Si-
monyan, K.; Schaul, T.; van Hasselt, H.; Silver, D.; Lillicrap,
T.; Calderone, K.; Keet, P.; Brunasso, A.; Lawrence, D.; Ek-
ermo, A.; Repp, J.; and Tsing, R. 2017. Starcraft ii: A new
challenge for reinforcement learning.



Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. arXiv:1506.03134.


