CEUR-WS.org/Vol-2819/session3paper3.pdf

Modeling A Multi-segment Wargame Leveraging Machine Intelligence and
Event-Verb-Event (EVE) Structures

Ying Zhao, Bruce Nagy, Tony Kendall, Riqui Schwamm *

Abstract

The paper depicts a generic representation of a multi-segment
wargame leveraging machine intelligence with two opposing
asymmetrical players. We show an innovative Event-Verb-
Event (EVE) structure that is used to represent small pieces
of knowledge, actions, and tactics. We show the wargame
paradigm and related machine intelligence techniques, in-
cluding data mining, machine learning, and reasoning Al
which have a natural linkage to causal learning applied to this
game. We also show specifically a rule-based reinforcement
learning algorithm, i.e., Soar-RL, which can modify, link, and
combine a large collection EVEs rules, which represent exist-
ing and new knowledge, to optimize the likelihood to win or
lose a game in the end. We show a simulation and a real-time
test for the methodology.

Introduction

In recent years, machine learning (ML) has successfully
used back-propagation and large data sets to reach human
level performance. The techniques have been used to solve
difficult pattern recognition problems as perceptive artificial
intelligence or perceptive Al for many types of use cases.
These algorithms implement learning as a process of grad-
ual adjustment of underlying models’ parameters (Lake et al.
2016). However, although there is great potential for these
techniques to be applied to real-life, they have been criti-
cized for being black boxes and lacking understanding of
causality which can be very important for decision mak-
ers. Reasoning Al such as reinforcement learning (Sutton
and Barto 2014) and game theory (Brown and Sandholm
2017) have been successful as well in terms of producing

“This will certify that all author(s) of the above article/paper
are employees of the U.S. Government and performed this work
as part of their employment, and that the article/paper is there-
fore not subject to U.S. copyright protection. No copyright. Use
permitted under Creative Commons License Attribution 4.0 Inter-
national (CC BY 4.0). In: Proceedings of AAAI Symposium on
the 2nd Workshop on Deep Models and Artificial Intelligence for
Defense Applications: Potentials, Theories, Practices, Tools, and
Risks, November 11-12, 2020, Virtual, published at http://ceur-
ws.org. Ying Zhao, Tony Kendall, and Riqui Schwamm are with
the Naval Postgraduate School, Monterey, CA; Bruce Nagy is with
the NAVAIR, China Lake, CA.

human level performance benchmarks. Convolutional neural
networks and reinforcement learning combined can achieve
the best perceptive Al for input data of imagery and acous-
tics for superior human level of performance (Silver, Schrit-
twieser, and Simonyan 2017).

These technologies have the great potential to address the
unique challenges of modeling complex functions of defense
applications including mission planning, decision making,
and causal reasoning. Leveraging machine intelligence, in
the sense of leveraging big databases, existing/new knowl-
edge, and tactics repositories, is critical for the future suc-
cess of defense applications. For example, when warfight-
ers make decisions, they need to take into considerations
of all possible states of different types of opponents and
adversaries’ intentions, strategies, decisions, and actions,
which can be overwhelming for humans. Machine intelli-
gence tools are needed for assisting humans to reduce their
cognitive load. The paper presents a use case and a real-
life test with a need to elevate machine intelligence to assist
mission planning, decision making, and causal learning for
warfighters.

EVEs Structures and Multi-segment Wargame

We first define a generic representation of a multi-segment
wargame with two opposing asymmetrical players as shown
in Figure 1. Such a wargame is divided into multi-segments
with events and verbs or actions alternating with a self-
player and opponent. For each player, actions character-
ized by the verbs are grouped into a few categories, e.g.,
Va,Vp, Ve, Vp, and Vi. These categories can represent ac-
tions typically used in various warfare areas. Events gener-
ated by the actions or verbs happen sequentially or in paral-
lel in each segment. Probabilistic rules £ — V and V — E
present the valid moves and probability of states. An EVE
example would be: “If an opponent is found (event), then
track (verb) the opponent using tool A” and “if the oppo-
nent has been successfully tracked (event), then target (verb)
the opponent using tool B.” Figure 2 shows a list of ac-
tion options for Segment 1 in a very high level for a test
game named “Battle Readiness Engagement Management
(BREM)” as shown in Figure 3. Such EVEs can be different
or asymmetrical for each player, i.e., two opposing asym-

metrical players have their own sets of EVEs rules guiding
corresponding valid moves. The verbs or actions consume
time and other costs. An event represents a single measur-
able outcome or state after an action. Events are discrete and
do not consume time but have value (e.g., contribution to
win or lose a game in the end). They are evaluated by a set
of unifying equations to determine expected winning, los-
ing, or drawing status for each of the opposing asymmetrical
players.

Where Do EVEs Structures Come From?

EVEs rules are generated top-down from experts, or learned
bottom-up using unsupervised learning from historical data
and knowledge repositories as shown in Figure 4:

e The bottom up approach applies data mining per-
formed on the historical unstructured text data (e.g.,
wargame logs) using entity/event extraction tools such as
spaCy (sciSpaCy 2020) or Bert (Beltagy, Lo, and Cohan
2019) tools and sequential pattern/link analysis tools such
as lexical link analysis. The data mining process output
initial EVESs structures that may include the ones are not

Multi-segment War Game Leveraging Machine Intelligence

Verb (V) Categories for Blue, Events (E) Happen at Each segment

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

Each Segment Contributesto Parts of a Unifying Win or Lose Measures

Figure 1: A wargame divided into multi-segments with
events and verbs alternating with opposing asymmetrical
players

| £ | Actions options for segment 1 — O

Assess weapons and aircraft availability including CASREPs,
Search for Enemy SAG at location A using satellite asset,
Search for Enemy SAG at location B using satellite asset,
Search for Enemy SAG at location C using satellite asset,
Track Enemy SAG using satellite asset,

Deploy Offensive EA to avoid Enemy satellites,

Target Enemy SAG using satellite asset,

Define mission plan,

Load mission plan into each asset including ships and aircratt,

submit

Figure 2: Action options for Segment 1

causal.

* The top approach ingest existing databases such as
databases about red/blue capabilities combined with hu-
man experts on-the-loop process to design the initial
EVEs. Since it is a human-on-the-loop process, the re-
sulted EVEs are causal. The human experts can also val-
idate, filter, and combine the EVEs from the data mining
process and make sure they are causal.

* The initial EVEs are the input to the reinforcement learn-
ing or other machine learning algorithms to reason the
best course of actions for blue/red. The integration of ma-
chine and causal learning techniques has the potential for
tactical decision edge for the players.

The novelty/significance of the EVEs structures is that
they are used to describe small pieces of knowledge, actions,
and tactics which can be systematically linked and com-
bined to optimize a global measure of effectiveness (MOE),
e.g.,likelihood to win or lose a game in the end. Such EVEs
repositories can be extremely large; some EVEs rules may
be outdated or inconsistent — as they can be accumulated
over a long period time. New rules and tactics from big data,
new sensors are necessary to be incorporated into current
and future warfighting planning and executions. As shown in
Figure 3 of the BREM game, searching, optimizing, learn-
ing, and gaming with novel course of actions using a large
collection of knowledge, patterns, and rules from databases
can only be made possible for warfighers with the help of
computing power and machine intelligence algorithms. One
novelty/significance of this paper is to show how to apply a
specific form of machine learning of reinforcement learning
(RL), i.e., Soar-RL, to select, modify, link, and combine the
EVEs rules. Finally, our wargame and machine intelligence
paradigms possess natural linkages to causal learning that
is especially important to warfighting activities such as mis-
sion planning, cognitive behavior, and intent pattern recog-
nition.

Causal Learning Factors

Our paper first offers a paradigm and supported evidence
that our wargame definition which have a natural linkage

Figure 3: Battle Readiness Engagement Management
(BREM) Game

to causal learning in the following aspects. It relates to the
three layers of a causal hierarchy (Mackenzie and Pearl
2018) (Pearl 2018) - association, intervention, and counter-
factuals, as well as a few other key elements of causal learn-
ing as detailed in the following sections.

Association

Association is the lowest level in the causality ladder hier-
archy. The common consensus of statisticians is that data-
driven machine intelligence analysis, including data min-
ing and various flavors of ML, is appropriate in discovering
statistical correlations from data. However, machine intelli-
gence requires human analysts to validate the correlations
to conclude, in a scalable and error-prone way, which cor-
relations are causal and which ones are co-accidental. For
instance, the EVEs rules can be learned and extracted from
historical documents as correlations, associations, and se-
quential patterns. These rules are later validated by human
experts in their area of domain expertise.

Intervention

Intervention ranks higher than association in the causality
ladder hierarchy which involves taking actions and gener-
ating new data. A typical question at this level of causality
ladder would be: What will happen if we increase the in-
tensity of an action defined by a verb? The answers to the
question are more than just mining the existing data. They
need to have a new data generated in reaction to an interven-
tion to see if the underlying action is the cause to the desired
effect (e.g., winning the game) or how sensitive the effect to
the cause is. The intervention can be modeled as an action
or an verb. For example, instead of examining P(X |M), i.e.,
the likelihood of observable data X given the model M, one
should further make sure M is actionable or P(X |do(M))
can be examined. The EVEs structures contain verbs as pos-
sible actions, therefore act as interventions naturally. Soar-
RL and related global MOE are designed to evaluate the ef-
fects of the interventions or action/state combinations are
shown in Sec. .

Top down EVEs development

« Entity/event |

extraction

(e.g. spaCy Structured databases
or Stanford (e.g. blue/red capabilities)
NLP) P, N
Unstructured * Sequential Universal data EVEs developed by

historical data patternsand |oader
(e.g. war game link analysis
logs) (e.g.LLA)

Human experts

X
* N :
Bottom up data mining [initial Causal EVES Human on-the-loop Validation

Vv

Reinforcement learning (e.g. . Best course of actions

Soar-RL) or other causal analytics

Figure 4: Causal learning integration for the war game

Counterfactuals

The top of the causality ladder hierarchy is a typical ques-
tion asked “What if I had acted differently?” Tradition-
ally, the effect is defined as the outcome of an action
for an entity and for the same entity without the action,
ie.,P(E|C)-P(E|Not C). However, since this causal ef-
fect is impossible to be directly observed for the same entity.
This is commonly referred to as the fundamental problem
of causal inference. The predicted counterfactual outcome
or counterfactual-based model of causal inference has led
to key breakthroughs in applied statistics and game Al. The
conceptual advances come from the idea of an entity-level
action or “treatment” effect, although it is unobservable, can
be predicted in various ways.

For example, the causal effect is typically measured us-
ing randomized two populations, one with the “treatment”
or action (or cause C) and other one without the “treatment”
or action (Not C or control group), two populations are ran-
domized to ensure they are similar to each other (as if they
are the same entity) in average and in all other dimensions
except the treatment dimension. This is the randomized con-
trol treatment (RCT) theory, which is a standard practice in
the social sciences, drug development, and clinic trials.

With recent data-driven approaches such as data mining
and machine learning, people can robustly estimate a lo-
cal average treatment effect in the region of overlap be-
tween treatment and control populations, but inferences for
averages, outside this zone are sensitive to underline ma-
chine learning algorithms. For example, people have applied
non-parametric models of machine learning such as nearest
neighbors and random forests (Wager and Athey 2018) for
better causal learning since these methods can approximate
the local treatment and control populations close to a real
RCT setting.

Relations of Machine Intelligence Algorithms

Traditional statistical analysis heavily depends on hypoth-
esis tests, where the likelihood of the data P(X|H) given
a hypothesis H is compared to the a null hypothesis Hy.
The hypothesis test directly relates to the MLE where the
likelihood of the data P(X|M) given a model M is esti-
mated. The general assumption is that the model is a gener-

| Model complexity

Error

Train (In sample) error

d've VC dimension, dve

Figure 5: ML algorithms and model complexity

ative model of the data if the likelihood is maximized com-
pared to all other models, therefore, the model is the cause
of the data (effect). The generative models of the current
ML/AI (Rezende, Mohamed, and Wierstra 2014) related to
the hypothesis tests and MLE, also consider given classi-
fication labels, what are the likelihood of the data that are
observed. Causal learning can be considered as a subclass of
generative models because, at an abstract level, that resem-
bles how the data are actually generated as shown in rein-
forcement learning (Sutton and Barto 2014).

The current machine learning techniques are different
from the maximum likelihood estimation approach, for ex-
ample, neural networks or many other machine learning
classifiers which directly estimate posterior probabilities of
the models (e.g., probability of a classification given the
data), i.e., estimate P(M|X). The posterior probability es-
timation related approaches have been criticized for being
black boxes, lack of explainability and causality.

The two approaches have been competing historically.
One of the important Al applications is the automatic speech
recognition, where Hidden Markov Models (HMMs) have
been the leading approach since the late 1980s (Juang and
Rabiner 1990), yet this framework has been gradually re-
placed with deep learning components which are considered
a better approach than HMM for speech recognition (Hin-
tonb et al. 2012). In other words, although these black box
ML/AI techniques are not often causal or explainable, they
do work well in applications in term of producing accurate
prediction and classification for new data (Wager and Athey
2018).

To explain this blackbox effectiveness, for many machine
learning algorithms, researchers apply cross-validation, reg-
ularization, and transfer learning theories. The focus of su-
pervised machine learning is to make accurate prediction or
classification for out of sample data, i.e., new data that do not
show in sample of train data. For example, machine learn-
ing classifiers, a typical classification error graph for train
(in-sample) and test (out-of-sample) errors, with respect to
the complexity of the models, e.g., measured by so called
Vapnik—Chervonenkis dimension or VC dimension (Vapnik
2000), is shown in Figure 5. From machine learning perspec-
tive, out-of-sample error is always larger than the in-sample
error (i.e., so-called overfitting problem), there is an optimal
model complexity d*vc which gives the lowest test error for
a given train data. This is usually accomplished using cross-
validation or regularization to avoid the overfitting (Bishop
2007). The theories of cross-validation and regularization
theories suggest to keep the models as small and smooth
as possible so the difference between in-sample error and
out-of-sample error is minimized. Transfer learning theories
suggest to consider fundamental reasons why some learning
results can be transferred from one data set to another, or
from one area to another. For example, in deep learning, the
initial layers of neural networks learn the basic features of
machine visions, e.g., edges and corners of images, which
can be transferred across domains and data sets.

When the applications require causality analysis such as
in a multi-segment wargame we study in this paper, we need
to integrate the reasonable causal elements with data-driven

machine learning approaches together, and always keep hu-
man experts on-the-loop for interpreting the cause and effect
relations.

In our setting, the EVEs structures £ — V rules, espe-
cially how actions are made to use these rules, belong to
machine learning techniques; while the V' — E rules are
generative rules.

Reinforcement Learning

One of the most successful machine learning techniques is
reinforcement learning where an Al agent takes action and
generates a new state. It learns from reward data from the en-
vironment by modifying its internal models. Reinforcement
learning is considered a causal learning model in this con-
text since it is designed to generate the desired data (effect)
by taking the right actions (cause). The EVEs structures al-
low perform reinforcement learning following certain con-
straintsfrom large-scale existing knowledge bases.

Soar and Reinforcement Learning (Soar-RL)

Soar (Laird 2012) (Laird, Derbinsky, and Tinkerhess 2012)
is a cognitive architecture that scalably integrates a rule-
based Al system with many other capabilities, including re-
inforcement learning and long-term memory. The main de-
cision cycle of Soar involves rules that propose new oper-
ators (e.g., internal decisions or external actions), as well
as preferences for selecting amongst them; an architectural
operator-selection process; and application rules that modify
agent state. A preference is defined as the probability, con-
tribution, or impact to reach the desired outcome (event) if
an operator is selected. The reinforcement-learning module
(Soar-RL) modifies numeric preferences for selecting oper-
ators based on a reward signal, either via internal or external
source(s) — importantly, Soar-RL learns in an online, incre-
mental fashion and thus does not require batch processing of
(potentially big) data. Soar has been used in modeling large-
scale complex cognitive functions for warfighting processes
like the ones in a kill chain (Zhao, Mooren, and Derbinsky
2017).

Machine Learning in Soar-RL

A multi-segment wargame as we defined is played by a self-
player and her opponent. There are large collections of dif-
ferent (asymmetrical) actions (verbs) for both players based
on initial collections of EVEs rules. A state is the input data
to a self-player that can not be decided or controlled by her-
self. Part of states may refer to the state of an opponent. An
opponent may be the environmental factor such as rain or no
rain. A combination of the self-player’s actions and states of
the self-player can result in certain reward for the self-player,
for example, win or lose a game in the end. In some cases,
the environmental factors can be the opponent. The oppo-
nent of a self-player can be a competitor or an adversarial
who can take deliberate actions to defeat the self-player. In
any of these cases, the self-player needs to constantly sim-
ulate the behavior and intent of the potential opponent and
take the best of course of actions. If the opponent is hidden

Table 1: Asymmetric Action/State Combinations
Self-Player Opponent
(e.g.,adversarial)
Action/state combination d; 01

Action/state combination d; | o;

Action/state combination dy | ops

Table 2: Action/State Combination Components

Action/State | f1 | fi | ... | fk | End Reward
Combination
d; 1 0O |..]1 win

not win

or information about the opponent is not perfect or the oppo-
nent’s intent changes dynamically in the game (Brown and
Sandholm 2017), the self-player’s course of action (COA)
needs constantly adjust, re-dynamically program,and adapt
her COAs.

Table 1 shows a self-player and opponent taking asym-
metric action/state combinations. Table 2 shows each ac-
tion/state combination can consist of multiple components.
An action is a decision of the self-player needs to decide
that can maximize her reward along the game timeline in the
end. An action/state combination d; consists of a sequence
of components fj, with its value vy or v that the self-player
needs to decide. An fj, with its value v; or vy can be an
EVEs rule or tactics selected from a library of rules with pa-
rameters. An fj, with its value v; or vy can be also the state
of herself (e.g., capability of her defense) that she needs to
consider when making decisions; an f; with its value v, or
v can be also the state of the opponent that the self-player
has to estimate from observable data (e.g., sensor data).

We use an action/state combinations instead of a course
of action or COA because an action/state combination repre-
sent more flexible sequential and parallel actions and states
in a wargame, while a COA refers more of traditional se-
quential actions taken by warfighters.

Soar-RL Details

In a Soar-RL, a preference is defined as the probability of
a rule to be used with respect to a total reward. To translate
into the multi-segment wargame, a preference is the contri-
bution of an EVE rule or f; to be selected for a self-player
to win. Define preferences fj,_v1-c1, fx-vo-c1, fr-v1-co, and
fr-vo_co, where fr_v; — c; means “if an action/state com-
bination component fj, is included (v = 1), there is a pref-
erence (probability) fi_vi_c; for the self-player to win the
game in the end (c = 1).”

We show how the preferences can be computed for the
rules. Let m be the number of rules and N the number
of data for Soar-RL to perform on-policy learning (Laird
2012) (Laird, Derbinsky, and Tinkerhess 2012).

Q(St41,at41) = Q(s¢, ar)+afr+v gleaj(Q(st41,a)—Q(s¢,at)]

ey

Since we only consider an on-policy setting or SARSA,
Q(s¢+1,a) = 0 and let

0y = Oé(Tt-s-l - Q(St, at)) 2

a,r41 = 1 for a positive reward or —1 for a negative re-
ward. In order to converge, 7. = @Q(S«,ax) in Eq. (2), we
ask: Is there a set of preferences p1,pa,...p,, that makes J; in
Eq. (2) as small as possible when ¢t — c0.

The total probability of winning for an action/state combi-
nation is the summation of the preferences from each of the
action/state combination components (Q-value in Eq. (1)).
For any action/state combination d; which consists of K
components included (v = 1) and K’ components not in-
cluded (v = 0). Equation (3) predicts a win in the end.

K K’
ka,v*,cl > Z J1vs—co, 3)
k=1

k'=1

where x denotes value 1 or 0. The self-player gains a pos-
itive reward 1 if a correct action is taken at time ¢ or a neg-
ative reward —1 if a wrong action is taken. For example,
for an action/state combination, total preference added for
win is 4 and lose is 1, the predicted result would be win.
If the truth is indeed win for this combination for the self-
player, then each of the K win rules’ preferences related to
the combination is modified using a positive reward % If the
ground truth is lose for this combination, each of the same K
rules’ preferences is modified using a negative reward —%.
In other words, Soar-RL always modify the rules that in-
volve the predicted win or lose. Note some components that
are not included (v = 0) can also contribute positively to the
win (¢ = 1) in Eq. (3), this is an example of counterfactu-
als considered in Soar-RL. Figure 6 (a) shows an example of
the BREM game where Soar suggests an action component,
i.e., “C2 (Command and Control) - Assess weapons and air-
craft availability including CASREPs.” Figure 6 (b) shows
that Soar makes the suggestion by selecting the highest dif-
ference of the scores for class 1 (good) and class 0 (bad) for
all nine possible choices of the current segment of the game.
Since the score (-0.099093) is negative, the Soar’s predicted
class is 0 (bad). Figure 6 (c) shows Soar-RL updated the
preferences of the rules reflected the predicted class and the
input components.

Soar-RL XAI Online Learning/Adaptation Process

soar_prediction 01 - Notepad

w Help

s Class 1 Score Scores Class @ Difference
0997732426303859 -0.0997732426303859
5.0990925705215424____-6.0990920705215424_]
0.0990929705215424 ~0.0990929705215424
0.0990929705215424 -0.0990929705215424
©.0999929705215424 -0.0990929705215424

o.

0.0990929705215424 -0.0990929705215424

EEEET C e

0.0990929705215424 -0.0990929705215424

(b)
Soar-RL XAI Rules Update

(a)

Figure 6: Soar example in BREM

Simulation

The simulation case contains about 50 components for an
action/state combination. The 50 components include 30 di-
mensional actions as a vector S, possibly taken by a self-
player, 20 dimensional states of the opponent (o in Tab. 2),
and 10 dimensional states of the self-player. In our repre-
sentation as in Table 2, each component of state or action is
represented as binary 1 or 0 as a Boolean lattice (Boolean
2019). The training set contains about 1 million action/state
combinations that have win and lose tagged for the end game
results. The test set contains about 300,000 action/state com-
binations. The value (good or bad) of each action/state com-
binations is based on if the self-player wins (good) or loses
(bad) a game. There is less than 10% of the combinations are
good combinations. There are possible 2°° combinations for
the self-player’s action and state components. The sample
data sets are only part of all the possible combinations. The
paper focused on applying Soar-RL to learn the value (win
or lose a game) function from sample action/state combina-
tions as shown in Eq. (4):

Win or lose = f(Sa,Ss, Os) 4

When a self-player simulates and performs what-if analy-
sis in the future, she can use Eq. (4) and optimization algo-
rithms to search actions .S, when varying S, O, or both.

We used Soar-RL with a fixed learning rate o = 0.0004
and reward values 1 when the value is predicted correctly
compared to the ground truth and —1 when the value pre-
diction is incorrect compared to the ground truth.

Convergence of Soar-RL

Since Soar-RL is an online on-policy machine learning al-
gorithm, it is important to show the algorithm converges in
theory and in practice. Figure 7 shows the convergence of the
changes of the preferences for the use case when the itera-
tion is 20. The convergence of the preferences can be proved
using the game theory and reinforcement learning theory.

Soar-RL Preferences Changes

Preferences changes

18 *

16

14

12

1

038

0.6

0.4

+
0.2 .. + Iterations
+
0 . . "f’f’f*?*?‘?‘.

0 2 4 [-3 10 12 14 16 18 20

Figure 7: The convergence of learning preferences of the
rules in Soar-RL

Soar-RL and Counterfactuals

When a Soar-RL learns/updates the rules, it learns/updates
the preferences of a component as well as the preferences of
the counterfactuals. In other words,

* P(good result|component k included),

* P(good result|component k not included),

* P(bad result|component k included), and

* P(bad result|component k not included),

where an action/state combination with K components is in-
cluded and K’ component not included, are estimated inde-
pendently and used for causality reasoning to see if a com-

ponent & is a cause for good or bad result (effect).
We also compute

P(good result|an action/state combination)
K
= Z P(good result|component k included)
k=1 &)
I
+ Z P(good result|component k not included)
k=1

and

P(bad result|an action/state combination)

K
= Z P(bad result|component k included)
k=1 (6)
K
+ Z P(bad result|component k not included).
k=1

Win or lose = f (Sa, Ss, Os)
(machine learning f)

Students” play data 2020: 100 dimensional states/actions,

10 games

. a2 C factors and
logistics)

* 9 self-player actions (weapon mix, 53)

* 20 defense states (oppenent’s, Os)

* 29 attacker states (self-player’s, 55)

(co)-evolution optimizing Sa

Figure 8: Students Test Setup at the Naval Postgraduate
School (NPS)

The difference between

P(good resultlan action/state combination) and
P(bad resultlan action/state combination)

is used to predict if an action combination is good or bad.

Soar-RL and Explainable AI (XAI)

Soar-RL is also based on understandable EVEs rules and
provides the advantage of explainable Al (XAI) (xai 2018).
The rules used in the prediction and updating are listed in
Figure 6 (c).

The Test at the NPS

The BREM game can be played by a human, e.g. such Naval
Postgraduate School (NPS) students (i.e., the blue player)
against the Al assistant (i.e., the red player) as shown in Fig-
ure 3. Once we receive the NPS Institutional Review Board
(IRB) approval we will organize an event and recruit stu-
dents who will test the BREM game and played against the
Al assistant as shown in Figure 8. There are 100 dimen-
sional states/actions in total, 42 simulation conditions (en-
vironmental factors and logistics), 20 defenser’s states (op-
ponent’s), 29 attacker’s states (self-player’s), and nine self-
player actions, i.e., the weapon mix. The nine self-player’s
actions (Sa) will be compared what the Al assistant’s ac-
tions powered by the algorithms. Soar-RL is used to learn
the value function (win or lose) f as shown in Figure 8.
From preliminary observations among researchers playing
the BREM game, we collected data from ten games in to-
tal. Before the machine learning, human players won eight
games and the Al assistant won one game. The nine games
were used in the machine learning combining Soar-RL with
DE. After the machine learning, the Al assistant won one
game that a human player lost. Lesson learned is that human
players tend to use default or known actions while the Al
assistant was able to search a wide range of possibilities of
actions when performing the machine learning.

Differential Evolution (DE) Algorithms

We focus on evolutionary algorithms for optimization for the
nine self-player’s actions. Genetic algorithms are evolution-
ary algorithms (Goldberg 1989) which keep the metaphor of
genetic reproduction of selection, mutation, and crossover
where the objective function’s derivatives are not easy
to compute, therefore gradient decent type of algorithms
can not be applied for optimization. Differential evolution
(DE) (Rocca, Oliveri, and Massa 2011) is in the same style,
however, deals with the optimization parameters in real
numbers as floats, or doubles. For continuous parameter op-
timization, DE is a derivative-free optimization inspired by
the theory of evolution, where the fittest individuals of a pop-
ulation are more likely to survive in the future, the popula-
tion improves generation after generation.

Conclusion

In this paper, we showed the EVEs structures and integration
of machine and causal learning and optimization techniques
used in modeling a multi-segment wargame. We showed
how the EVEs structures and related machine intelligence

techniques used to link, modify, and update a large collec-
tion of existing and new knowledge and tactics for a multi-
segment wargame. We also illustrated the critical elements
of causal learning for the EVEs structures and Soar-RL. We
tested the methodology with a simulation data set and a real-
life game test with the NPS human players. The integration
of machine and causal learning techniques has the potential
for a wide range of tactical decision edge applications.

Acknowledgements

Authors would like to thank NAVAIR China Lake, the Of-
fice of Naval Research (ONR), the NPS’s Naval Research
Program (NRP), and DARPA’s Explainable Artificial Intelli-
gence (XAI) program for supporting the research. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied of the U.S. Gov-
ernment.

References

Beltagy, 1.; Lo, K.; and Cohan, A. 2019. A pre-
trained language model for scientific text. Retrieved from
https://arxiv.org/abs/1903.10676.

Bishop, C. M. 2007. Pattern Recognition and Machine
Learning. New York, NY, USA: Springer.

Boolean. 2019. Boolean lattice. Retrieved from
https://www.sciencedirect.com/topics/mathematics/boolean-
lattice.

Brown, N., and Sandholm, T. 2017. Safe and nested
endgame solving for imperfect-information games. Pro-
ceedings of the AAAI workshop on Computer Poker and
Imperfect Information Games.

Goldberg, G. 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison Wesley.

Juang, B. H., and Rabiner, L. R. 1990. Hidden markov mod-
els for speech recognition. Technometric 33(3):251-272.

Laird, J. E.; Derbinsky, N.; and Tinkerhess, M. 2012. Online
determination of value-function structure and action-value
estimates for reinforcement learning in a cognitive architec-
ture. Advances in Cognitive Systems 2:221-238.

Laird, J. E. 2012. The Soar Cognitive Architecture. Cam-
bridge, MA, USA: MIT Press.

Lake, B. M.; Ullman, T. D.; Tenenbaum, J. B.; and Gersh-
man, S. J. 2016. Building machines that learn and think like
people. Retrieved from https://arxiv.org/abs/1604.00289.

Mackenzie, D., and Pearl, J. 2018. The Book of Why: The
New Science of Cause and Effect. New York, NY, USA:
Penguin.

Pearl, J. 2018. The seven pillars of causal reason-
ing with reflections on machine learning. Retrieved from
https://ftp.cs.ucla.edu/pub/stat_ser/r481.pdf.

Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic backpropagation and approximate inference in
deep generative models. Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML).

Rocca, P.; Oliveri, G.; and Massa, A. 2011. Differential
evolution as applied to electromagnetics. In IEEE Antennas
and Propagation Magazine 53(1):38—49.

sciSpaCy. 2020. scispacy. Retrieved from
https://allenai.github.io/scispacy/.

Silver, D.; Schrittwieser, J.; and Simonyan, K. 2017. Mas-
tering the game of go without human knowledge. Nature
550:354-359.

Sutton, R. S., and Barto, A. G. 2014. Reinforcement Learn-
ing: An Introduction. Cambridge, MA, USA: MIT Press.

Vapnik, V. 2000. The Nature of Statistical Learning Theory.
New York, NY, USA: Springer.

Wager, S., and Athey, S. 2018. Estimation and inference of
heterogeneous treatment effects using random forests. Jour-
nal of the American Statistical Association 113(523):1228—
1242.

xai. 2018. Darpa xai. Retrieved from
https://www.darpa.mil/program/explainable-artificial-
intelligence.

Zhao, Y.; Mooren, E.; and Derbinsky, N. 2017. Reinforce-
ment learning for modeling large-scale cognitive reasoning.
Proceedings of the 9th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and Knowl-
edge Management, 233-238.

