
Knowledge Compilation for Description Logics

Ulrich Furbach and Claudia Obermaier

Universität Koblenz-Landau
D56070 Koblenz, Germany

{uli,obermaie}@uni-koblenz.de

Abstract. Knowledge compilation is a common technique for proposi-
tional logic knowledge bases. The idea is to transform a given knowledge
base into a special normal form ([MR03],[DH05]), for which queries can
be answered efficiently. This precompilation step is very expensive but
it only has to be performed once. We propose to apply this technique to
knowledge bases defined in Description Logics. For this, we introduce a
normal form, called linkless concept descriptions, for ALC concepts. Fur-
ther we present an algorithm, based on path dissolution, which can be
used to transform a given concept description into an equivalent linkless
concept description. Finally we discuss a linear satisfiability test as well
as a subsumption test for linkless concept descriptions.

1 Introduction

Knowledge compilation is a technique for dealing with computational in-
tractability of propositional reasoning. It has been used in various AI
systems for compiling knowledge bases off-line into systems, that can be
queried more efficiently after this pre-compilation. An overview about
techniques for propositional knowledge bases is given in [DM02]; more re-
cently [DH05] and [Wer07] discuss, how knowledge compilation techniques
can be seen as DPLL-procedures. One of the most prominent successful
applications of knowledge compilation is certainly in the context of belief
networks ([Dar02]). In this context the pre-compilation step, although it
is very expensive, pays off because it only has to be performed once to
the network, which is not changing too frequently. In the context of De-
scription Logics, knowledge compilation was firstly been investigated in
[Bar96], where FL concept descriptions are approximated by FL−concept
descriptions.

In this paper we propose to apply a similar technique to knowledge
bases defined in Description Logics. The situation is very similar: there
is a given ontology, which does not change frequently. In a typical sce-
nario we ask many queries to the same ontology. Therefore it makes sense
to use the idea of knowledge compilation for Description Logics as well.

Unfortunately it is not possible to use propositional logic as a target lan-
guage, like in the case of belief networks, because Description Logics are
more expressive and hence we would have to use a decidable fragment of
predicate logic. Instead we propose to transform a given ontology directly
into a normal form, which allows for an efficient reasoning.

Projection is a technique which is helpful for combining different
TBoxes, that is why one of our future interests is to use our approach
in the context of combining different TBoxes. Depending on the normal
form, precompiled knowledge bases can be projected on a set of literals
very efficiently. One example can be found in [Dar01]. Since the normal
form we suggest is closely related to a normal form which allows efficient
projection, it is very likely that our normal form has this poperty as well.

There are several techniques for Description Logics which are related
to our approach. An overview on precompilation techniques for descrip-
tion logics such as structural subsumption, normalization and absorption
is given in [Hor03]. To perform a subsumption check on two concepts,
structural subsumption algorithms ([BN03]) transform both concepts into
a normal form and compare the structure of these normal forms. However
these algorithms typically have problems with more expressive Descrip-
tion Logics. Especially general negation, which is an important feature in
the application of Description Logics, is a problem for those algorithms.
The technique of structural subsumption algorithms is used in CLAS-
SIC [PSMB91], GRAIL [RBG+97] and LOOM [Mac91]. In contrast to
structural subsumption algorithms our approach is able to handle gen-
eral negation without problems.

Normalization is another preprocessing technique for Description Log-
ics. Description Logics often have redundant operators to form concepts.
In ALC for example it is possible to build concepts without using the
� operator since C � D ≡ ¬(¬C � ¬D). Normalization eliminates those
redundant operators in order to determine contradictory as well as tauto-
logical parts of a concept. In many cases this technique is able to simplify
subsumption and satisfiability problems. [BH98] provides more informa-
tion about the use of this technique for modal logics.

Absorption is a technique which tries to eliminate general inclusion
axioms from a knowledge base. It is a known fact that general inclusion
axioms in a TBox have the effect of worsening the performance of tableau
based satisfiability and subsumption checking procedures since they intro-
duce a high degree of non-determinism ([Hor98]). This is why absorption
is a widely used technique ([TH06]). However the technique of absorption
can not be applied for all general inclusion axioms.

Both absorption and normalization have the aim of increasing the per-
formance of tableau based reasoning procedures. In contrast to that our
approach extends the use of preprocessing. We suggest to transform the
concept descriptions into a normal form which allows a linear satisfiability
check. For this satisfiability check a tableau procedure is not necessary
anymore. Some subsumption queries can also be solved without a tableau
algorithm. We will discuss that in Section 4.

In this paper we will consider the simple Description Logic ALC
[BN03] and we adopt the concept of linkless formulae, as it was intro-
duced in [MR93,MR03].

The following section describes the concept of linkless DL-formulae
and in Section 3 we describe the transformation of ALC concept descrip-
tions into linkless ones and in Section 4 we discuss a linear satisfiability
test for linkless concept descriptions. On top of that we introduce a linear
subsumption check for some concept descriptions.

2 Linkless Concepts

In propositional logic a linkless formula is a formula F , which is in Nega-
tion Normal Form (NNF) and for every conjunction α = α1 ∧ . . . ∧ αn

in F holds: for all i, j with 1 ≤ i, j ≤ n and i �= j there is no a with
a ∈ literals(αi) and ¬a ∈ literals(αj). This special structure of linkless
formulae allows us to consider each conjunct of a conjunction separately.
Therefore satisfiability can be decided in linear time and it is possible
to enumerate models very efficiently. Linkless formulae are very similar
to formulae in Decomposable Negation Normal Form (DNNF). Actually
DNNF is a special case of linkless formulae. For most purposes it is suf-
ficient to work with linkless formulae. Since it is easier to transform a
formula into a linkless formula than into DNNF we will focus on linkless
formulae.

In the following we assume that concept descriptions in ALC are given
in NNF, i.e., negation occurs only in front of concept names. Further the
term concept literal denotes either an atomic concept or a negated atomic
concept. By the term role literal we describe a concept description of the
form ∀R.E or ∃R.E with E a concept in NNF. Further by literal we mean
either a concept literal or a role literal.

Definition 1. (c-path) For a given concept C, the set of its c-paths is
defined as follows:

c-paths(C) = {{C}}, if C is a literal
c-paths(C1 � C2) = {X ∪ Y |X ∈ c-paths(C1) and Y ∈ c-paths(C2)}
c-paths(C1 � C2) = c-paths(C1) ∪ c-paths(C2)

Example 1. The concept description C = ¬A�(A�B)�∀R.(E�F) has the
two c-paths cp1 = {¬A,A,∀R.(E � F)} and cp2 = {¬A,B,∀R.(E � F)}.

In propositional logic a link means that the formula has a contra-
dictory part. Furthermore if all c-paths of a formula contain a link the
formula is unsatisfiable. In Description Logics other concepts apart from
complementary concept literals are able to form a link. It is also possible
to construct an inconsistent concept description by using role restrictions.
For example the concept description ∃R.C � ∀R.¬C is inconsistent since
it a) claims that there has to be an individual which is reachable via the
role R and belongs to the concept C and b) claims that all individuals
which are reachable via the role R have to belong to the concept ¬C. This
clearly is not possible. On the other hand the concept ∀R.C � ∀R.¬C is
consistent because an individual which is reachable via the role R is not
required. Therefore in order to construct a link using role restriction we
need one existential role restriction and at least one universal role restric-
tion. Now we are able to translate the term of a link from propositional
logic to Description Logic.

Definition 2. (Link) For a given concept C a link is either a concept
link or a role link.

– A concept link is a set of two complementary concept literals occuring
in a c-path of C.

– A role link is a set {∃R.D,∀R.E1, . . . ,∀R.En} of literals occuring in
a c-path of C and where all c-paths in D�E1� . . .�En contain ⊥ or a
concept link or a role link and no subset of {∃R.D,∀R.E1, . . . ,∀R.En}
is a role link.

The positive (negative) part of a concept link denotes its positive (neg-
ative) concept literal. Further the positive (negative) part of a role link
denotes the existentially (universally) quantified elements of the role link.

Note that we regard ⊥ and
 as a complementary pair of concept literals.
This definition is closely related to the definition of a link in a proposi-
tional logic formula. In example 1 above the path cp1 contains the concept

link {A,¬A}. Obviously the conjunction of the elements of a concept link
is inconsistent.

Example 2. Consider the following concept description:

C = A � (¬A � ∀R.(∃R.(¬D � ¬E)) � ∃R.(∀R.(D � E))

C has the following c-paths:

cp1 = {A,¬A,∃R.(∀R.(D � E))}
cp2 = {A,∀R.(∃R.(¬D � ¬E)),∃R.(∀R.(D � E))}

In order to find out if there is a role link in cp2 we have to consider
the concept C ′ = ∃R.(¬D � ¬E) � ∀R.(D � E). C ′ only has the c-path
cp′ = {∃R.(¬D�¬E),∀R.(D�E)}. To find out if cp′ contains a role link,
we consider all c-paths in C ′′ = ¬D � ¬E � (D � E). C ′′ contains the
two c-paths cp′′1 = {¬D,¬E,D} and cp′′2 = {¬D,¬E,E}. Both of these
c-paths contain a concept link and therefore we conclude that our original
concept C contains a role link.

Definition 3. (Inconsistent c-path) A c-path is called inconsistent,
if it contains a link. Otherwise it is called consistent.

Note that a set of consistent c-paths uniquely determines a class of
semantically equivalent concept descriptions. Now we are able to define
the term linkless.

Definition 4. (Linkless Concept Description) We call a concept de-
scription C linkless, if C is in NNF and there is no c-path in C which
contains a link and if for each occurrence of QR.E in C with Q ∈ {∃,∀}
the concept E is linkless as well.

3 Transformation

In this section we introduce a method to transform an ALC concept into
an equivalent linkless ALC concept. In propositional logic one possibil-
ity to remove links from a formula is to use path dissolution ([MR93]).
The idea of this algorithm is to eliminate paths containing a link. This
technique will be used in our context as well.

Definition 5. Let G be a concept description and A be a set of literals
where each element of A occurs in G.

– The c-path extension of A in G, denoted by CPE(A,G), is a concept
G′ containing exactly those c-paths in G which contain A.

– The c-path complement of A in G, denoted by CPC(A,G), is the
concept G′ containing exactly those c-paths in G which do not contain
A.

Note that Definition 5 does not mention how to construct CPE(A,G)
and CPC(A,G). One possibility would be to construct the disjunction of
all respective c-paths in G. If A only contains one element CPE(A,G)
and CPC(A,G) are parts of G.

Lemma 1. For a concept G and a set of literals A, where all elements
of A occur in G, the following holds:

G ≡ CPE(A,G) � CPC(A,G)

Example 3. Let’s consider the following concept description

G1 = (D � ∀R.E) � (C � ∀R.B)

We want to construct CPE({∀R.E,∀R.B}, G1) and
CPC({∀R.E,∀R.B}, G1). Therefore we determine the different c-
paths in G1:

c1 = {D,C} c3 = {∀R.E,C}
c2 = {D,∀R.B} c4 = {∀R.E,∀R.B}

Now we are able to construct

CPE({∀R.E,∀R.B}, G1) =∀R.E � ∀R.B

CPC({∀R.E,∀R.B}, G1) =(D � C) � (D � ∀R.B) � (∀R.E � C)

Our next aim is to remove a link from a concept description. Therefore
we define a dissolution step for a link A through a concept expression
G = G1 �G2 (such that A is neither a link for G1 nor G2). First, we note
that each c-path p through G1 �G2 can be split into the paths p1 and p2,
where p1 is a c-path through G1 and p2 is a c-path through G2.

Definition 6. Given a concept description G = G1 � G2 which contains
the link A. Further A is neither a link for G1 nor G2. The positive part
L of the link occurs in G1 and the negative part L occurs in G2. The
dissolvent of G and A denoted by Diss(A,G), is

Diss(A,G) =(CPE(L,G1) � CPC(L,G2))�
(CPC(L,G1) � CPC(L,G2))�
(CPC(L,G1) � CPE(L,G2))

Note that Diss(A,G) removes exactly those c-paths from G which contain
the link A. Since these c-paths are inconsistent, Diss(A,G) is equivalent
to G. Since conjunction is commutative, it is no constriction to claim that
the possitive part of the link occurs in G1.

In the following lemma we use the standard set-theoretic semantics
for ALC. The interpretation of a concept C denoted by CI is a subset of
the domain and can be understood as the set of individuals belonging to
the concept C in the interpretation I.

Lemma 2. Let G be a concept description and A be a link in G such
that Diss(A,G) is defined. Then for all x in the domain holds: x ∈ GI

iff x ∈ Diss(A,G)I .

Proof. First we divide the link A into its positive part L and its negative
part L. By precondition of Diss(A,G), G must be of the form G1 � G2.
W.l.o.g. L only occurs in G1 and L only occurs in G2. So x ∈ GI iff
x ∈ (G1 � G2)I . By semantics of � this is the case iff x ∈ GI1 and
x ∈ GI2 . Applying Lemma 1 to G1 and G2 leads to x ∈ (CPE(L,G1) �
CPC(L,G1))I and x ∈ (CPE(L,G2) � CPC(L,G2))I . Again by se-
mantics of � this is the case iff x ∈ (

(CPE(L,G1) � CPC(L,G1)) �
(CPE(L,G2) � CPC(L,G2))

)I . By distributivity this is equivalent to
x ∈ (Diss(A,G) � (CPE(L,G1) � CPE(L,G2)))I . But by construction
the c-paths through CPE(L,G1)�CPE(L,G2) are exactly those contain-
ing the link A, and thus the interpretation of this concept expression is the
empty set. Therefore, x ∈ (Diss(A,G) � (CPE(L,G1) � CPE(L,G2)))I

is equivalent to x ∈ (Diss(A,G))I which is what we wanted to show. �

By equivalence transformations and with the help of Lemma 1 the fol-
lowing lemma follows.

Lemma 3. Let A and G be defined as in Definition 6. Then the following
holds:

Diss(A,G) ≡ (G1 � CPC(L,G2)) � (CPC(L,G1) � CPE(L,G2))

Diss(A,G) ≡ (CPE(L,G1) � CPC(L,G2)) � (CPC(L,G1) � G2)

With the help of these terms it is easy to see how to remove
links: Suppose a concept description C in NNF is given and it con-
tains a link A. Then there must be conjunctively combined subconcepts
G1 and G2 of C where the positive part L of the link occurs in G1

and the negative part L occurs in G2. In the first step we construct

CPE(L,G1), CPC(L,G1), CPE(L,G2) as well as CPC(L,G2). By re-
placing G1 � G2 in C by Diss(A,G1 � G2) we are able to remove the
link.

The following example illustrates how to remove a role link.

Example 4. We consider the concept

G = (∃R.(¬E � ¬B) � D) � (A � ∀R.E) � (C � ∀R.B)

It is easy to see that G contains the role link {∃R.(¬E �
¬B),∀R.B,∀R.E}. As mentioned above we divide G according to this
role link into G1 = ∃R.(¬E�¬B)�D and G2 = (A�∀R.E)�(C�∀R.B).
In the next step we construct:

CPE({∃R.(¬E � ¬B)}, G1) = ∃R.(¬E � ¬B)
CPC({∃R.(¬E � ¬B)}, G1) = D

CPE({∀R.E,∀R.B}, G2) = ∀R.E � ∀R.B

CPC({∀R.E,∀R.B}, G2) = (A � C) � (A � ∀R.B) � (∀R.E � C)

According to Lemma 3 we can substitute G1 � G2 in G which leads to
the linkless concept description G′, which is equivalent to G.

G′ =
(
(∃R.(¬E � ¬B) � D) � ((A � C) � (A � ∀R.B) � (∀R.E � C))

)�(
D � ∀R.E � ∀R.B

)

Next we give an algorithm to remove all concept and role links in the
way it is described above. In the following definition G[G1/G2] denotes
the concept one obtains by substituting all occurrences of G1 in G by G2.

Definition 7. (make linkless) Let G be a concept description.

make linkless(G)
def
= G, if G is linkless.

make linkless(G)
def
= make linkless(G[H/Diss(A,H)]),
where H is a subconcept of G and A is a link in H,
such that Diss(A,H) is defined.

make linkless(G)
def
= make linkless(G[B/make linkless(B)]
QR.B with Q ∈ {∃,∀} is a subconcept of G, B is not
linkless and G contains neither concept nor role links.

Theorem 1. Let G be a concept description. Then make linkless(G) is
equivalent to G and is linkless.

Proof. The equivalence of G and the result of make linkless(G) follows di-
rectly from Lemma 2. It remains to show that make linkless(G) is actually
linkless. Whenever there is a c-path p through a concept expression that
contains a link A, by construction of a c-path the concept expression or
one of its subexpression must consist of a conjunction G1 �G2, such that
w.l.o.g. the positive part L of the link occurs in G1 and the negative part
L occurs in G2. Thus Diss is applicable. Diss always removes c-paths,
without introducing new c-paths. As there is a finite number of links,
Diss can only be applied a finite number of times and thus terminates.
�
Note that in the worst case this transformation leads to an exponential
blowup of the concept description.

4 Properties of Linkless Concept Descriptions

In this section we consider the properties of linkless concepts in order
to understand why it is desirable to transform a concept into a linkless
concept.

4.1 Satisfiability

The first property we will investigate is the satisfiability of linkless concept
descriptions.

Definition 8. For a linkless concept description C the predicate Sat(C)
is defined as follows:

1. Sat(C)
def
=

⎧⎨
⎩

true, if C is a concept literal,
of the form ∀R.D or
;

false, if C is ⊥.

2. Sat(∃R.D)
def
= Sat(D).

3. Sat(C = �iαi)
def
= true, iff Sat(αi) = true for all i.

4. Sat(C = �iαi)
def
= true, iff Sat(αi) = true for at least one i.

Definition 8 can be directly transformed into an algorithm which checks
the satisfiability of a linkless concept description. It is obvious that the
Sat predicate has a linear time complexity. If we further assume that the
simplifications in Figure 1 are applied to exhaustion after each step dur-
ing the transformation of a concept C into a linkless concept C ′, Sat(C ′)
can be calculated in constant time. This is obvious since after these sim-
plification a linkless concept C ′ description can only be inconsistent, if
C ′ = ⊥.

� � C = C � � C = �
⊥ � C = ⊥ ⊥ � C = C
∃R.⊥ = ⊥ ∀R.� = �

Fig. 1. Simplifications

4.2 Subsumption Queries

In Description Logics, besides the satisfiability of a concept, we are in-
terested in subsumption checks as well. In [Dar01] an operator called
conditioning is used as a technique to answer queries for a precompiled
knowledge base. In Definition 9, C denotes the complement of a concept
C, which is given in NNF and can be calculated simply by transforming
¬C in NNF.

We will now transfer the idea of the conditioning operator to Descrip-
tion Logics.

Definition 9. (Conditioning Operator) Let C be a linkless concept
description and α = C1 � . . . � Cn where Ci is either a concept literal or
has the form ∃R.C ′i or ∀R.C ′i with C ′i a concept literal. Then C conditioned
by α denoted by C|α is the concept description one gets by replacing each
occurrence of Ci in C by
 and each occurrence of Ci by ⊥ and simplifying
the result according to Figure 1.

The simplifications mentioned in the definition above can be easily
performed on the fly during the calculation of conditioning. It is obvious
that C ′ does not contain any concepts which occur in α as well as in C. It
is clear that the conditioning operation is linear in the size of the concept
description C. From the way C|α is constructed, it follows that C|α � α
is equivalent to C � α and obviously C|α � α is linkless.

Proposition 1. Let C be a linkless concept description and D be a dis-
junction of concept literals and role restrictions QR.B with Q ∈ {∃,∀}
where B is a concept literal. Then C � D can be tested in linear time.

Because of the structure proposition 1 claims for the concept D, ¬D
has the structure of α in Definition 9. Since the subsumption C � D holds
iff C � ¬D is unsatisfiable, it is sufficient to calculate Sat(C|¬D � ¬D)
instead. The conditioning as well as the Sat operator are linear, therefore
the subsumption C � D can be checked in linear time as well.

5 Precompilation of TBoxes

So far we only considered single concept descriptions. We transformed
a concept description into an equivalent linkless one and performed sub-
sumption checks. However this approach can be easily extended to handle
unfoldable TBoxes. In the first step we unfold the TBox as described in
[BN03]. Next we use the introduced make linkless operator to transform
the right side of each concept description of the unfolded TBox into an
equivalent linkless concept description. After that transformation sub-
sumption queries C � D can be tested. This can be done by unfolding
C � ¬D according to the precompiled TBox. In general the result of this
unfolding is not linkless. If the result of this unfolding is linkless, we can
use the Sat predicate afterwards for a linear satisfiability test.

Further, if after the unfolding of C � ¬D, C is linkless and ¬D is a
disjunction of concept literals and role restrictions QR.B with Q ∈ {∃,∀}
where B is a concept literal, the subsumption check C � D can performed
in linear time by using the conditioning operator.

Precompiling every single concept description of the TBox seperately
has the advantage that the linkless TBox can be extended very easily.
New concept descriptions can be simply added after being precompiled
as described above. So it is not necessary to precompile the whole TBox
again in order to add concept descriptions.

6 Future Work / Conclusion

In the next step we want investigate how to extend our approach for
TBoxes which are not unfoldable. Another very interesting point would
be the extension of our normal form to more expressive Description Logics
for example those allowing transitive roles. Further it would be interesting
to consider the satisfiability of concept descriptions which are almost
linkless. In this context almost linkless means that the concept description
is linkless outside of a certain scope.

Projection is a very helpful technique when different TBoxes have to
be combined. Therefore we will investigate how to project linkless concept
descriptions on a set of literals. Since linkless concept descriptions are
closely related to a normal form which allows efficient projection, it is
very likely that our normal form has this poperty as well.

Acknowledgements

The authors are grateful to Alexander Fuchs for many helpful remarks
during the development of this work.

References

[Bar96] Bart Selman and Henry Kautz. Knowledge Compilation and Theory Ap-
proximation. J. ACM, 43(2):193–224, 1996.

[BH98] Peter Balsiger and Alain Heuerding. Comparison of Theorem Provers for
Modal Logics - Introduction and Summary. In Harrie C. M. de Swart,
editor, TABLEAUX, volume 1397 of Lecture Notes in Computer Science,
pages 25–26. Springer, 1998.

[BN03] F. Baader and W. Nutt. Basic Description Logics. In Franz Baader,
Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors, The Description Logic Handbook: Theory, Implementa-
tion, and Applications, pages 43–95. Cambridge University Press, 2003.

[Dar01] Adnan Darwiche. Decomposable Negation Normal Form. Journal of the
ACM, 48(4), 2001.

[Dar02] Adnan Darwiche. A Logical Approach to Factoring Belief Networks. In
Proceedings of KR, pages 409–420, 2002.

[DH05] Adnan Darwiche and Jinbo Huang. DPLL with a Trace: From SAT to
Knowledge Compilation. In 19th International Joint Conference on Artifi-
cial Intelligence (IJCAI 05), Nagoya, 2005.

[DM02] Adnan Darwiche and Pierre Marquis. A Knowlege Compilation Map. Jour-
nal of Artificial Intelligence Research, 17:229–264, 2002.

[Hor98] Ian R. Horrocks. Using an Expressive Description Logic: FaCT or Fiction?
In Anthony G. Cohn, Lenhart Schubert, and Stuart C. Shapiro, editors,
KR’98: Principles of Knowledge Representation and Reasoning, pages 636–
645. Morgan Kaufmann, San Francisco, California, 1998.

[Hor03] Ian Horrocks. Implementation and Optimization Techniques. In Franz
Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors, Description Logic Handbook, pages 306–346.
Cambridge University Press, 2003.

[Mac91] Robert M. MacGregor. Inside the LOOM Description Classifier. SIGART
Bulletin, 2(3):88–92, 1991.

[MR93] Neil V. Murray and Erik Rosenthal. Dissolution: Making Paths Vanish. J.
ACM, 40(3):504–535, 1993.

[MR03] Neil V. Murray and Erik Rosenthal. Tableaux, Path Dissolution, and
Decomposable Negation Normal Form for Knowledge Compilation. In
Marta Cialdea Mayer and Fiora Pirri, editors, Automated Reasoning with
Analytic Tableaux and Related Methods, volume 2796 of Lecture Notes in
Computer Science. Springer, 2003.

[PSMB91] Peter F. Patel-Schneider, Deborah L. McGuinness, and Alexander Borgida.
The CLASSIC Knowledge Representation System: Guiding Principles and
Implementation Rationale. SIGART Bulletin, 2(3):108–113, 1991.

[RBG+97] Alan L. Rector, Sean Bechhofer, Carole A. Goble, Ian Horrocks, W. A.
Nowlan, and W. D. Solomon. The GRAIL concept modelling language for
medical terminology. Artificial Intelligence in Medicine, 9(2):139–171, 1997.

[TH06] Dmitry Tsarkov and Ian Horrocks. Description Logic Reasoner: System
Description. In Ulrich Furbach and Natarajan Shankar, editors, IJCAR,
volume 4130 of Lecture Notes in Computer Science, pages 292–297. Springer,
2006.

[Wer07] Christoph Wernhard. Tableau between proving projection and compilation.
Technical Report 18/2007, Universität Koblenz-Landau, 2007.

