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Abstract. Rule-based programming paradigm is omnipresent in num-
ber of engineering domains. However, there are some fundamental se-
mantical differences between it, and classic programming approaches.
No generic solution for using rules to model business logic in classic
software has been provided so far. In this paper a new approach for
Generalized Rule-based Programming (GREP) is given. It is based on
a use of advanced rule representation called XTT, which includes an
extended attribute-based language, a non-monotonic inference strategy,
with explicit inference control on the rule level. The paper shows, how
some typical programming constructions, as well as classic programs can
be modelled in this approach. The paper also presents possibilities of
efficient integration of this technique with existing software systems.

1 Introduction

Rule-based programming paradigm is omnipresent in number of engineering do-
mains such as control and reactive systems, diagnosis and decision support. Re-
cently, there has been a lot of effort to use rules to model business logic in classic
software. However, there are some fundamental semantical differences between
it, and classic procedural, or object-oriented programming approaches. This is
why no generic modelling solution has been provided so far. The motivation of
this paper is to investigate possibility of modelling some typical programming
structures with the rule-based programming with use of on extended forward-
chaining rule-based system.
In this paper a new approach for generalized rule-based programming is given.

The Generalized Rule Programming (GREP) is based on the use of an advanced
rule representation, which includes an extended attribute-based language [1], a
non-monotonic inference strategy, with explicit inference control at the rule level.
The paper shows, how some typical programming constructions (such as loops),
as well as classic programs (such as factorial) can be modelled in this approach.
The paper presents possibilities of an efficient integration of this technique with
existing software systems in different ways.
� The paper is supported by the Hekate Project funded from 2007–2009 resources for
science as a research project.



In Sect. 2 some basics of rule-based programming are given, and in Sect. 3
some fundamental differences between software and knowledge engineering are
identified. Then, in Sect. 4 the extended model for rule-based systems is con-
sidered. The applications of this model are discussed in Sect. 5. This model
could be integrated in a classic software system in several ways, considered in
Sect. 6. The research presented in this paper is work-in-progress. Directions for
the future research as well as concluding remarks are given in Sect. 7.

2 Concepts of Rule-Based Programming

Rule-Based Systems (RBS) constitute a powerful AI tool [2] for specification
of knowledge in design and implementation of systems in the domains such as
system monitoring and diagnosis, intelligent control, and decision support. For
the state-of-the-art in RBS see [3,4,1]. From a point of view of classical knowl-
edge engineering (KE) a rule-based expert system consists of a knowledge base
and an inference engine. The KE process aims at designing and evaluating the
knowledge base, and implementing the inference engine. The process of building
the knowledge base involves the selection of a knowledge representation method,
knowledge acquisition, and possibly low-level knowledge encoding.
In order to design and implement a RBS in an efficient way, the knowledge

representation method chosen should support the designer introducing a scal-
able visual representation. As the number of rules exceeds even relatively very
low quantities, it is hard to keep the rule-base consistent, complete, and correct.
These problems are related to knowledge-base verification, validation, and test-
ing. To meet security requirements a formal analysis end verification of RBS
should be carried out [5]. This analysis usually takes place after the design.
However, there are design and implementation methods, such as the XTT, that
allow for an on-line verification during the design and gradual refinement of the
system.
Supporting rule base modelling remains an essential aspect of the design

process. The simplest approach consists in writing rules in the low-level RBS
language, such as one of Jess (www.jessrules.com). More sophisticated are
based on the use of some classic visual rule representations. This is a case of
LPA VisiRule, (www.lpa.co.uk) which uses decision trees. Approaches such as
XTT aim at developing new visual language for visual rule modelling.

3 Knowledge in Software Engineering

Rule-based systems (RBS) constitute today one of the most important classes
of the so-called Knowledge Based Systems (KBS). RBS found wide range of
industrial applications is some „classic AI domains” such as decision support,
system diagnosis, or intelligent control. However, due to some fundamental dif-
ferences between knowledge and software engineering, the technology did not
find applications in the mainstream software engineering.



Building real-life KBS is a complex task. Since their architecture is funda-
mentally different from classic software, typical Software Engineering approaches
cannot be applied efficiently. Some specific development methodologies, com-
monly referred to as Knowledge Engineering (KE), are required. What makes
KBS distinctive is the separation of the the knowledge base from the knowledge
processing facilities. In order to store knowledge, KBS use various knowledge rep-
resentation methods, which are declarative in nature. What is important about
the process, is the fact that it should capture the expert knowledge and repre-
sent it in a way that is suitable for processing (this is the task for a knowledge
engineer). The level at which KE should operate is often referred to as the knowl-
edge level [6]. In case of KBS there is no single universal engineering approach,
or universal modelling method (such as UML in software engineering).
Software engineering (SE) is a domain where a number of mature and well-

proved design methods exist. What makes the SE process different from knowl-
edge engineering is the fact that systems analysts try to model the structure of
the real-world information system in the structure of computer software system.
So the structure of the software corresponds, to some extent, to the structure of
the real-world system.
The fundamental differences between the KE and SE approaches include:

declarative vs. procedural point-of-view, semantic gaps present in the SE process,
between the requirements, design, and implementation, and the application of
gradual abstraction as the main approach to the design. The solution introduced
in this paper aims at integrating a classic KE methodology of RBS with SE. It is
hoped, that the model considered here, Generalized Rule Programming (GREP),
could serve as an effective bridge between SE and KE.

4 Extended Rule Programming Model

The approach considered in this paper is based on an extended rule-based model.
The model uses the XTT knowledge method with certain modifications and
additions. The XTT method was aimed at forward chaining rule-based systems
(RBS). In order to be applied to general programming, it is extended in several
aspects.

4.1 XTT – EXtended Tabular Trees

The XTT (EXtended Tabular Trees) knowledge representation [7], has been
proposed in order to solve some common design, analysis and implementation
problems present in RBS. In this method three important representation levels
has been addressed:

– visual – the model is represented by a hierarchical structure of linked ex-
tended decision tables,
– logical – tables correspond to sequences of extended decision rules,
– implementation – rules are processed using a Prolog representation.



On the visual level the model is composed of extended decision tables. A
single table is presented in Fig. 1. The table represents a set of rules, having the
same attributes. A rule can be read as follows:
(A1 ∈ a11) ∧ . . . ∧ (An ∈ a1n) → retract(X = x1), assert(Y = y1), do(H = h1)
It includes two main extensions compared to classic RBS: 1) non-atomic

attribute values, used both in conditions and decisions, 2) non-monotonic rea-
soning support, with dynamic assert/retract operations in decision part. Every
table row correspond to a decision rule. Rows are are interpreted from top row to
the bottom one. Tables can be linked in a graph-like structure. A link is followed
when rule (row) is fired.

A1 An −X +Y H

a11 a1n x1 y1 h1

am1 amn xm ym hm

Fig. 1. A single XTT table.

On the logical level a table corresponds to a number of rules, processed in
a sequence. If a rule is fired and it has a link, the inference engine processes
the rule in another table. The rule is based on an attributive language [1]. It
corresponds to a Horn clause: ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pk ∨ h where p is a literal
in SAL (set attributive logic, see [1]) in a form Ai(o) ∈ t where o ∈ O is a
object referenced in the system, and Ai ∈ A is a selected attribute of this object
(property), t ⊆ Di is a subset of attribute domain Ai. Rules are interpreted using
a unified knowledge and fact base, that can be dynamically modified during the
inference process using Prolog-like assert/retract operators in rule decision part.
Rules are implemented using Prolog-based representation, using terms, which is
a flexible solution (see [8]). However, it requires a dedicated meta-interpreter [9].
This model has been successfully used to model classic rule-based expert

systems. For the needs of general programming described in this paper, some
important modifications are proposed.

4.2 Extending XTT into GREP

Considering using XTT for general applications, there have been several exten-
sions proposed regarding the base XTT model. These are: Grouped Attributes,
Attribute-Attribute Comparison, Link Labeling, Not-Defined Operator, Scope Op-
erator, Multiple Rule Firing. Applying these extensions constitute GREP. Ad-
ditionally there are some examples given in Section 5 regarding the proposed
extensions.



Grouped Attributes provide means for putting together some number of at-
tributes to express relationships among them and their values. As a result a
complex data structure, called a group, is created which is similar to constructs
present in programming languages (i.e. C structures). A group is expressed as:

Group(Attrinbute1, Attribute2, . . . , AttributeN)

Attributes within a group can be referenced by their name:

Group.Attribute1

or position within the group:
Group/1

An application of Grouped Attributes could be expressing spatial coordinates:

Position(X, Y )

where Position is the group name, X and Y are attribute names.
The Attribute-Attribute Comparison concept introduces powerful mechanism

to the existing XTT comparison model. In addition to comparing an attribute
value against a constant (Attribute-Value Comparison) it allows for comparing an
attribute value against another attribute value. The Attribute-Value Comparison
can be expressed as a condition:

if (Attribute OPERATOR Value) then ...

where OPERATOR is a comparison operator i.e. equal, greater then, less than etc.,
while Attribute-Attribute Comparison is expressed as a condition:

if (Attribute1 OPERATOR Attribute2) then ...

where OPERATOR is a comparison operator or a function, in a general case:

if (OPERATOR(Attribute1,...,AttributeN)) then ...

The operators and functions are predefined.
The Link Labeling concept allows to reuse certain XTTs which is similar

to subroutines in procedural programming languages. Such a reused XTT can
be executed in several contexts. There are incoming and outgoing links. Links
might be labeled (see Fig.2). In such a case, if control comes from a labeled link
it has to be directed through an outgoing link with the same label. There can be
multiple labeled links for a single rule then. If an outgoing link is not labeled it
means that if a corresponding rule is fired the link will be followed regardless of
the incoming link label. Such a link (or links) might be used to provide control
for exception-like situations.
The proposed Not-Defined (N/D) operator checks if a value for a given at-

tribute has been defined. It has a broad application regarding modelling basic
programming structures, i.e. to make a certain rule fired if the XTT is executed
for the first time (see 5.2).
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Fig. 2. Link Labeling.

The graphical Scope Operator provide a basis for modularized knowledge base
design. It allows for treating a set of XTT as a certain Black Box with well defined
input and output (incoming and outgoing links), see Fig. 3. Scope Operators can
be nested. In such a way a hierarchy of abstraction levels of the system being
designed is provided, making modelling of conceptually complex systems easier.
The scope area is denoted with a dashed line. Outside the given scope only
conditional attributes for the incoming links and the conclusion attributes for
the outgoing links are visible. In the given example (Fig. 3) attributes A, B,
C are input, while H, I are outputs. Any value changes regarding attributes:
E, F , and G are not visible outside the scope area, which consists of table-b0
and table=b1 XTTs; no changes regarding values of E, F , and G are visible to
table-a0, table-a1 or any other XTT outside the scope.

table−b0

A B C H I

table−b1

H IE F G

table−a1table−a0

Fig. 3. Graphical scope.



Since multiple values for a single attribute are already allowed, it is worth
pointing out the the new inference engine being developed treats them in a
more uniform and comprehensive way. If a rule is fired and the conclusion or
assert/retract use a multivalue attribute such a conclusion is executed as many
times as there are values of the attribute. It is called Multiple Rule Firing. This
behavior allows to perform aggregation or set based operations easily. Some
examples are given in Sec. 5.

5 Applications of GREP

The following section presents some typical programming constructs developed
using the XTT model. It turned out that extending XTT with the modifications
described in 4.2 allows applying XTT in other domains than rule-based systems
making it a convenient programming tool.

5.1 Modelling Basic Programming Structures

Two main constructs considered here are: a conditional statement, and a loop.
Programming a conditional with rules is both simple and straightforward,

since a rule is by definition a conditional statement. In Fig. 4 a single table
system is presented. The first row of the table represents the main conditional
statement (then) using a given value v of the attribute C, while the next row
implements the else statement when the condition is not met. The F attribute
is the decision one.

C
=v
!=v

h1
h2

if−then−else

F

Fig. 4. A conditional statement.

A loop can be easily programmed, using the dynamic fact base modification
feature. In Fig. 5 a simple system implementing the for -like loop is presented.
In the XTT table the initial execution, as well as the subsequent ones are pro-
grammed. The I attribute serves as the index. In the body of the loop the value
of the decision attribute Y is modified depending on the value of the conditional
attribute X. The loop ends when the index attribute value is greater then the
value z. This could be easily generalized into the while loop. Using the non-
atomic attribute values (an attribute can have a set of values) the foreach loop
could also be constructed.

5.2 Modelling Simple Programming Cases

A set of rules to calculate a factorial is showed in Fig. 6. An argument is given
as attribute X. The calculated result is given as Y . The iterative algorithm is
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Fig. 5. A loop statement.

implemented which uses S attribute as a counter. Since no scope operator is
defined, S is accessible globally, its value is visible in other XTTs.

S

N/D

Y

=1

X

=1

=0

>1

factorial0

N/D

=X

=1

=1

S

factorial1

>1

=1

Y S

=Y*S =S−1

ANY N/D

Fig. 6. Factorial implementation.

Since an attribute can be assigned more than a single value (i.e. using the
assert feature), certain operations can be performed on such a set (it is similar
to aggregation operations regarding Relational Databases). An example of sum
function is given in Fig. 7. It adds up all values assigned to X and stores the
result as a value of Sum attribute. The logic behind is as follows. If Sum is
not defined then make it 0 and loop back. Than, the second rule is fired, since
Sum is already set to 0. The conclusion is executed as many times as values are
assigned to X. If Sum has a value set by other XTTs prior to the one which
calculates the sum, the result is increased by this value.

X Sum
ANY

Sum
N/D =0

ANY ANY =Sum+X

sum

Fig. 7. Sum implementation.

There is also an alternate implementation given in Fig. 8. The difference,
comparing with Fig. 7, is that there is an incoming link pointing at the sec-
ond rule, not the first one. Such an approach utilizes the partial rule execution
feature. It means that only the second (and subsequent, if present) rule is inves-
tigated. This implementation adds up all values of X regardless if Sum is set in
previous XTTs.



sum

ANY

X
ANY

ANY
ANY
Sum Sum

=0
=Sum+X

Fig. 8. Sum, an alternate implementation.

Assigning a set of values to an attribute based on values of another attribute
is given in Fig. 9. The given XTT populates Y with all values assigned to X. It
uses the XTT assert feature.

=X
+YX

ANY

copy

Fig. 9. Copying elements of a set.

Using XTT, even a complex task such as browsing a tree can be implemented
easily. A set of XTTs finding successors of a certain node in a tree is given in
Fig.10. It is assumed that the tree is expressed as group of attributes t(P,N),
where N is a node name, and P is a parent node name. The XTTs find all
successors of a node which name is given as a value of attribute P (it is allowed
to specify multiple values here). A set of successors is calculated as values of F .
The first XTT computes immediate child nodes of the given one. If there are
any child nodes control is passed to the XTT labeled tree2. It finds child nodes
of the children computed by tree1 and loops over to find children’s children until
no more child nodes can be found. The result is stored as values of F .

t.P t.N
ANY

+F
=t.N

+F
=t.N

t.PF
=F

ANYANY

P
ANY
ANY

=P

tree1 tree2

ANY
ANYANYANY

t.N

ANYANY
!=F

Fig. 10. Finding successors in a tree.

5.3 Modelling Business Rules

From the very beginning, the XTT was created to design complex decision rules.
Recently, a new approach to practical knowledge representation based on rules,
has been gaining popularity. This is the so-called Business Rules Approach (BR).
The approach [10,11] is based on concepts borrowed from KE and RBS.



Business rules design uses some established visual representations. Depending
on the design approach these are some classic tools such as simple propositional
decision tables, or some high-level conceptual tools such as URML [12], the
UML-Based Rule Modeling Language, which allows visual rule modeling based
on UML class models. There are attempts to officially define main aspects of the
approach. Another good example is the paper [13].
Using the XTT-based GREP it easy to model business rules, since the se-

mantics of these methods are very close. In order to design a BR set using GREP
system attributes present in the particular set of BR has to identified. The rule
set can be decomposed to a number of tables, representing different paths in the
inference process. In practical applications, BR make an extensive use of features
not present in the original XTT, but proposed as extensions in this paper. These
include: attribute to attribute comparison, and grouped attributes. For practical
design of business rules using this approach see [14].

6 Model Integration

Up to now GREP has been discussed only on the conceptual level, using the
visual representation. However, it has to be accompanied by some kind of runtime
environment. Two main approaches to provide such an environment has been
considered.
The first one consists in generating native code in some classic object-oriented

language such as Java. This solves both the practical implementation as well as
runtime problem. This solution is used in products such as JBoss Rules (formerly
Drools). However, it does has a major drawback: the object-oriented semantics
is very distant from the declarative rule semantics of GREP. This instantly
unveils a semantic gap which turns out to be a major limitation during the
implementation and testing of the system.
The second approach is the one of the classic XTT. It is based on using a

high level Prolog representation of GREP. Prolog semantics includes all of the
concepts present in GREP. Prolog has the advantages of flexible symbolic rep-
resentation, as well as advanced meta-programming facilities [9]. The GREP-in-
Prolog solution is based on the XTT implementation in Prolog, presented in [8].
In this case a term-based representation is used, with an advanced meta inter-
preter engine provided. Now the question remains how a Prolog-based GREP
model can be integrated with a Java application. Here Java is considered a stan-
dard object-oriented platform for general software.
Two solutions are being investigated. The first one consists in linking the

Prolog-based GREP interpreter with a Java application using Prolog-to-Java
interface provided for some advanced Prolog implementations, such as SWI (www.
swi-prolog.org). In this approach the SWI Prolog JPL [15] interface is being
used to communicate from the Prolog programs with Java objects.
Another one relies on the idea of embedding the whole interpreter in a Java

application, with use of Java-based Prolog interpreters. So far the JIProlog
(www.ugosweb.com/jiprolog) has been considered. JIProlog, or the Java In-



ternet Prolog is a cross-platform pure Java Prolog interpreter which integrates
Prolog and Java languages. JIProlog allows to call Prolog predicates from Java
without dealing with native code (JNI) and allows to invoke Java methods from
Prolog in the same way you call predicates. JIProlog is compliant with the ma-
jor Prolog interpreters. It supports most of ISO specifications, and many of the
most common and used built-in predicates [16].

7 Evaluation and Future Work

In the paper the results of the research in the field of knowledge and software
engineering are presented. The research aims at the unification of knowledge
engineering methods with software engineering. The paper presents a new ap-
proach for Generalized Rule-based Programming called GREP. It is based on
a use of advanced rule representation called XTT, which includes an extended
attribute-based language, a non-monotonic inference strategy, with explicit in-
ference control on the rule level.
The original contribution of the paper consists in the extension of the XTT

rule-based systems knowledge representation method, into GREP, a more general
programming solution; as well as the demonstration how some typical program-
ming constructions (such as loops), as well as classic programs (such as factorial,
tree search) can be modelled in this approach. The expressiveness and complete-
ness of this solution has been already investigated with respect to number of
programming problems which were showed.
However, GREP lacks features needed to replace traditional programming

languages at the current stage. The problem areas include: general data struc-
tures support, limited actions/operations in the decision and precondition parts,
and input/output operations, including environment communication. Anther
limitation can be the current attribute-based language. It is quite simple com-
pared to object-oriented or ontology approaches. This is why, enhanced property
modelling approaches should also be investigated in the future.
Future work will be focused on the GREP extensions, especially hybrid opera-

tors and use cases. Hybrid operators, defined in similar way as Prolog predicates,
could offer an extended processing capabilities for attributes, especially grouped
ones, serving for generative, restrictive or triggering operations. These are to gen-
erate attribute values, restrict admissible attribute values, or trigger arbitrary
code execution, respectively. Functionality of such operators would be defined in
a backward chaining manner to provide query-response characteristics.
While proposing extensions to GREP one should keep in mind, that in order

to be both coherent and efficient, GREP cannot make an extensive use of some
of the facilities of other languages, even Prolog. Even though Prolog semantics is
quite close to the one of GREP there are some important differences. They are
related to the different inference (forward in GREP, backward in Prolog) and
some programming features such as recursion and unification. On the other hand
GREP offers a clear visual representation that support a high level logic design.
Number of failed visual logic programming attempts show, that the powerful



semantics of Prolog cannot be easily modelled [17]. So from this perspective,
GREP expressiveness is, and should remain weaker than that of Prolog.
In its current stage GREP can successfully model number of programming

constructs and approaches. This proves GREP can be applied as a general pur-
pose programming environment. However, the research should be considered an
experimental one, and definitely work in progress.
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