
A Big Data Approach for Sequences Indexing on the
Cloud via Burrows Wheeler Transform

Mario Randazzo and Simona E. Rombo1

Abstract. Indexing sequence data is important in the context of
Precision Medicine, where large amounts of “omics” data have to
be daily collected and analyzed in order to categorize patients and
identify the most effective therapies. Here we propose an algorithm
for the computation of Burrows Wheeler transform relying on Big
Data technologies, i.e., Apache Spark and Hadoop. Our approach is
the first that distributes the index computation and not only the input
dataset, allowing to fully benefit of the available cloud resources.

1 INTRODUCTION
Precision Medicine aims to design individualized strategies for di-
agnostic or therapeutic decision-making, based on both genotypic
and phenotypic information. It allows scientists and clinicians to un-
derstand which therapeutic and preventive approaches to a specific
illness can work effectively in subgroups of patients based on their
genetic make-up, lifestyle, and environmental factors [15]. The diffu-
sion of high-throughput assays, such as next-generation sequencing
(NGS) and mass spectrometry (MS), has led to fast accumulation of
sequences and other omics data which can be used to enable Preci-
sion Medicine in practice. As an example, specific disease biomark-
ers may be identified by cleaning up raw data generated by NGS or
MS, and then experimentally validated in laboratory.

An important problem in this context is the indexing of NGS data
[8]. In particular, an index is a data structure that enables efficient
retrieval of stored objects. Indexing strategies used in NGS allow
space-efficient storage of biological sequences in a full-text index
that enables fast querying, in order to return exact or approximate
string matches. Popular full-text index data structures include vari-
ants of suffix arrays [1], FM-index based on the Burrows–Wheeler
Transform (BWT) together with some auxiliary tables [4], and hash
tables [9]. The choice of a specific index structure is often a trade-off
between query speed and memory consumption. For example, hash
tables can be very fast but their memory footprint is sometimes pro-
hibitive for large string collections [14].

Here we address the problem of computing BWT in the dis-
tributed, exploiting Big Data technologies such as Apache Spark
[16]. In particular, previous research has been proposed on the BWT
computation in a MapReduce [3] fashion based on Apache Hadoop
[12]. The use of Spark and Hadoop together, as proposed here, have
shown to notably improve the performance in several application
contexts, due to the optimal exploitation of both memory and cloud.

1 DMI, University of Palermo, Italy, email:
mario.randazzo@community.unipa.it, simona.rombo@unipa.it
Copyright © 2020 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0). This
volume is published and copyrighted by its editors. Advances in Artificial
Intelligence for Healthcare, September 4, 2020, Virtual Workshop.

Another available tool relying on Hadoop and BWT computation is
BigBWA [2]. However, the BigBWA parallelism is intended only to
split the input sequences and then apply another existing framework,
i.e., BWA [10], in order to align them via BWT. Therefore, the BWT
computation is not based itself on Big Data technologies in BigBWA.

We propose an algorithm for BWT computation that fully exploits
parallelism afforded by a cloud computing environment, combining
advantages of MapReduce paradigm and Spark Resilient Distributed
Datasets (RDD). The presented strategy is based on the computa-
tion of Suffix Arrays in the distributed by revisiting the idea of prefix
doubling presented in [6]. Validation results obtained on real biolog-
ical datasets, including genomic and proteomic data, are provided,
showing that our approach improves the performance for BWT com-
putation with respect to its competitors. The entire implementation
source code is available on the Github repository 2.

2 METHODS

2.1 Background

Let S be a string of n characters defined on the alphabet Σ. We de-
note by S(i) the i-th character in S and by Si its i-th suffix. We recall
the following basic notions.

BWT The Burrows-Wheeler transform of S is useful in order to
rearrange it into runs of similar characters. This may have advantages
both for indexing and for compressing more efficiently S. The BWT
applied to S returns:

• a permutation bwt(S) of S, obtained by sorting all its circular
shifts in lexicographic order, and then extracting the last column;

• the index (0-based) I of the row containing the original string S.

Among the most important properties of BWT, it is reversible. Fig-
ure 1 shows an example of BWT for the string S=BANANA$. In
particular, bwt(S) = BNN$AAA, and I = 3.

Suffix Array The suffix array SA of S is defined as an array of
integers providing the starting positions of suffixes of S in lexico-
graphical order. Therefore, an entry SA[i] contains the starting posi-
tion of the i-th suffix in S among those in lexicographic order. Figure
2 shows the Suffix Array for the same example of BWT.

Inverse Suffix Array Inverse Suffix Array of S, ISA[i] = j
means that the rank of the suffix i is j, i.e., SA[j] = i.

2 https://github.com/MR6996/spark-bwt

All rotations of S Lexicographic sorting
BANANA$ ANANA$B
$BANANA ANA$BAN
A$BANAN A$BANAN
NA$BANA BANANA$
ANA$BAN NANA$BA
NANA$BA NA$BANA
ANANA$B $BANANA

Figure 1. Example of BWT.

i Suffixes Sorted Suffixes SA[i]
1 BANANA$ ANANA$ 2
2 ANANA$ ANA$ 4
3 NANA$ A$ 6
4 ANA$ BANANA$ 1
5 NA$ NANA$ 3
6 A$ NA$ 5
7 $ $ 7

Figure 2. Example of Suffix Array.

2.2 Proposed Approach
The more crucial aspect for the BWT computation considered here is
the calculation of the Suffix Array of the input string. Indeed, BWT
can be calculated from the Suffix Array in a MapReduce fashion via
join operation. Therefore, the algorithm proposed for the computa-
tion of the Suffix Array, based on the idea of prefix doubling inspired
by [6], is described below.

Input: Let S be a string of length n, the input tuples set is:

Input = {(null, S(i)) : i = 1, . . . , n)}

In the following, we assume that the input string S ends with a sen-
tinel character $. This is typically used in the inverse transformation,
however it is unimportant for the purpose of the algorithm.

Output: A set of tuples of the form (i, r), where i is the index
of a suffix in S and r is its rank (i.e., its position in the list of the
sorted suffixes). In the literature this is referred to as the ISA. For our
purpose, the resulting output is inverted in order to obtain the Suffix
Array of S and, then, its BWT.

Initialization: The first step is starting from the Input set and ini-
tialize the set of tuples (i, r), as described in the previous paragraph.
In this phase, the rank is calculated by the first character of the suffix.
In particular, let Occ(c) be the number of occurrences of the charac-
ter lexicographically smaller of c in the string S, then the rank of the
suffix i can be determined as Occ(S(i)).
In a MapReduce fashion, this can be accomplished by first counting
the occurrences of each character in S, and then computing the cu-
mulative sum Occ on the sorted counts. The map and reduce steps
are:

map: (null, S(i))→ (S(i), 1)

reduce: (c,list[1, 1, . . . , 1])→ (c, sum of ones)

From this Occ is calculated locally by collecting the result.
The ISA set can be then initialized with the following map step:

map: (null, S(i))→ (i, occ(S(i)))

ISA Extending: The next step is to extend each rank contained
in the initialized ISA by the whole suffix. Here we use a technique
called Prefix Doubling which is based on the following statement:

Given that the suffixes of a string are already sorted by their prefix
of length h, we can deduce their ordering by their prefix of length

2h.

Given two suffixes Si and Sj with an identical prefix of length h, we
can deduce their sorting by comparing the order of the suffixes Si+h

and Sj+h. Thus the idea is to pair, for each suffix Si, its rank with
the rank of the suffix Si+h (i.e., (ISA[i]), ISA[i + h])) and sort all
these pairs in order to obtain the sorting by the prefix of length 2h.
Indeed, an iteration double the prefix, since the longest suffix has size
n, all suffixes will be sorted after at most log2(n) iterations.

Shifting and Paring To implement the above idea in a MapRe-
duce fashion, we apply the two considered map steps to the latest
ISA calculated to obtain two different sets:

map: (i, r)→ (i, (r, 0))

map: (i, r)→ (i− 2k, (−r, 0))

where k is the number of the iterations minus one. The indices of
rank are shifted this way, then the rank is paired by a reduce step. It
is worth noticing that a negative number is used to denote a shifted
rank, and the value is mapped as a tuple with a zero term in order to
consider the ranks shifted that overflow the string length.
The union of the two obtained sets is considered and all tuples with a
negative key are discarded (the corresponding ranks do not pair with
any other rank in the set). The following reduce step is applied to the
union:

reduce: (i,list[(r1, 0), (r2, 0)])→ (i, (r1,−r2))

where r2 is the rank shifted. Some ranks may occur that are not re-
duced due to the unique key. These ranks overflow the length of S
and remain paired with zero. We denote the final set derived from
this phase by Pairs.

Re-Ranking Our purpose is to extend the previous rank with a
new rank, obtained by considering the prefix doubled. Therefore, we
compute the new rank according to the tuple in Pairs as follows: firs
we sort all tuples by value, then we compare each tuple at position
i (after sorting) with the one in position i − 1. If they are equal, the
new rank is equal to the rank of the previous tuple, otherwise the new
rank is i. Finally, a new ISA set with rank extended is obtained, and
the procedure is iterated on it again. All operations described above
can be achieved also in a distributed manner:

• For the sorting operation, a certain number of partitions can be
identified by range into roughly equal ranges the elements in the
set (the ranges can be determined by sampling the data). Then for
each partition a sorting algorithm is applied that sort each partition
locally. This is easily provided by the framework Apache Spark.

• In order to compute the new rank, the partition identified previ-
ously is considered and the procedure above is applied locally, as
described before, using the length of the partition and the offset
(i.e., the number of elements in the previous partition) for com-
puting the position of the tuples.

2.3 Example
Let S = BANANA$ be the input string of length n = 7. The input
pairs are:

Input = {(null, B), (null, A), (null, N),

(null, A), (null, N), (null, A), (null, $)}

As for Occ(c), it is shown in Table 1.

c A B N $
Occ(c) 0 3 4 6

Table 1. Computation of Occ(c).

After the initialization, the initial ISA set is:

ISA = {(0, 3), (1, 0), (2, 4), (3, 0),

(4, 4), (5, 0), (6, 6)}

After the first iteration, the shifted tuples are:

Shifted = {(−1, (−3, 0)), (0, (0, 0)), (1, (−4, 0)),

(2, (0, 0)), (3, (−4, 0)), (4, (0, 0)), (5, (−6, 0))}

After the the pairing we obtain the set:

Pairs={(0, (3, 0)), (1, (0, 4)), (2, (4, 0), (3, (0, 4),

(4, (4, 0), (5, (0, 6), (6, (6, 0)}

Finally, we sort by value and we re-rank the indices. Then the new
ISA is:

ISA = {(0, 3), (1, 1), (2, 4), (3, 1),

(4, 4), (5, 0), (6, 6)}

We observe that the only rank updated in this iteration is the one with
index 5, indeed shifting by 1 it is possible to distinguish among the
prefixes AN , AN and A$ corresponding to the suffixes S1, S3 and
S5.

3 VALIDATION
The presented algorithm has been evaluated on real datasets taken
from the Pizza&Chili website [11], where a set of text collections
of various types and sizes are available to test experimentally com-
pressed indexes. In particular, the text collections stored on this web-
site have been selected to form a representative sample of different
applications where indexed text searching might be useful. From this
collection, we have chosen the following three datasets:

• PROTEINS, containing a sequence of newline-separated protein
sequences obtained from the Swissprot database.

• DNA, a sequence of newline-separated gene DNA sequences ob-
tained from files of the Gutenberg Project.

• ENGLISH, the concatenation of English text files selected from
collections of the Gutenberg Project.

The main competitor of our approach is the algorithm proposed
in [12], which is based on MapReduce as well and divides the suffix
array construction into multiple independent ranges that are then in-
dependently solved. In more detail, the partition points are selected

and sorted, the ranges are well-balanced across processing cores, and
the final output forms a total order to the array.

We have implemented in Apache Spark both the algorithm de-
scribed here and the approach proposed in [12], in order to provide
a suitable comparison, and we have run them on the GARR Cloud
Platform. In particular, we have configured the cluster with 1 mas-
ter and 48 slave nodes, each node with 8 VCore, 32 GB of RAM
and 200 GB for disk. We have used Apache Hadoop 3.1.3 and Spark
2.3.4.

Results are shown in Table 2 (when the running time was larger
than 10 hours it has not been reported). For the PROTEINS dataset,
it has been considered the only first 25 MB, the only first 100 MB
and the full dataset.

Input Time
Competitor Proposed Algorithm

Proteins.200MB (25 MB) 4.25 minutes 3.86 minutes
Proteins.200MB (100 MB) 3.05 hours 11.36 minutes
Proteins.200MB (Full) - 22.03 minutes
Dna.200MB - 26.78 minutes
English.1024MB - 3.4 Hours

Table 2. Performance comparison between our algorithm and its
competitor.

It is evident that our approach outperforms its competitor on all
considered datasets. This is what we expected due to the fact that,
as already discussed in the Introduction, we have presented the first
method which introduces parallelism in the computation of BWT,
allowing to fully benefit of cloud computing. It is worth notice that
the algorithm in [12] has been implemented here in Apache Spark,
therefore it has been put in equal terms than our one in the compari-
son (i.e., the difference in performance cannot be referred to the fact
that Spark allows optimizations with respect to Hadoop for a more
efficient use of memory).

4 CONCLUSION
We have proposed a MapReduce algorithm for the implementation
of a full-text index, that is, the Burrows Wheeler transform. We have
implemented our approach in Apache Spark and we have proved by
experimental evaluation that it is more efficient than its competitors
already proposed in the literature.

Among the various applications where an efficient and distributed
implementation of BWT may be useful (e.g., data compression, pat-
tern matching, etc.), and with a special attention to the Precision
Medicine context, we mention that searching for a suitable combi-
nation of Indexing and Machine Learning techniques has recently
proved to be a promising issue [7, 13, 5]. Therefore, we plan to focus
our future studies in this direction.

ACKNOWLEDGEMENTS
Part of the research presented here has been funded by the MIUR-
PRIN research project “Multicriteria Data Structures and Algo-
rithms: from compressed to learned indexes, and beyond”, grant n.
2017WR7SHH.

REFERENCES
[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch,

‘Replacing suffix trees with enhanced suffix arrays’, J. Discrete Algo-
rithms, 2(1), 53–86, (2004).

[2] José Manuel Abuı́n, Juan Carlos Pichel, Tomás F. Pena, and Jorge
Amigo, ‘Bigbwa: approaching the burrows-wheeler aligner to big data
technologies’, Bioinformatics, 31(24), 4003–4005, (2015).

[3] Jeffrey Dean and Sanjay Ghemawat, ‘Mapreduce: a flexible data pro-
cessing tool’, Commun. ACM, 53(1), 72–77, (2010).

[4] Paolo Ferragina and Giovanni Manzini, ‘Indexing compressed text’, J.
ACM, 52(4), 552–581, (2005).

[5] Paolo Ferragina and Giorgio Vinciguerra, ‘The pgm-index: a fully-
dynamic compressed learned index with provable worst-case bounds’,
Proc. VLDB Endow., 13(8), 1162–1175, (2020).

[6] Patrick Flick and Srinivas Aluru, ‘Parallel distributed memory construc-
tion of suffix and longest common prefix arrays’, in Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2015, Austin, TX, USA, November 15-20,
2015, pp. 16:1–16:10, (2015).

[7] Daniel J. Graham and Brian P. Robinson, ‘On the internal correlations
of protein sequences probed by non-alignment methods: Novel sig-
natures for drug and antibody targets via the Burrows-Wheeler trans-
form’, Chemometrics and Intelligent Laboratory Systems, 193, 103809,
(2019).

[8] Vahid Jalili, Matteo Matteucci, Marco Masseroli, and Stefano Ceri, ‘In-
dexing next-generation sequencing data’, Inf. Sci., 384, 90–109, (2017).

[9] Wan-Ping Lee, Michael P. Stromberg, Alistair Ward, Chip Stewart,
Erik P. Garrison, and Gabor T. Marth, ‘Mosaik: A hash-based algo-
rithm for accurate next-generation sequencing short-read mapping’,
PLoS One, 9(3), e90581, (2014).

[10] Heng Li and Richard Durbin, ‘Fast and accurate short read alignment
with burrows-wheeler transform’, Bioinformatics, 25(14), 1754–1760,
(2009).

[11] Giovanni Manzini and Gonzalo Navarro, ‘The pizza and chili corpus
home page’, Web site: http://pizzachili. dcc. uchile, (2007).

[12] Rohith K. Menon, Goutham P. Bhat, and Michael C. Schatz, ‘Rapid par-
allel genome indexing with mapreduce’, in Proceedings of the Second
International Workshop on MapReduce and Its Applications, MapRe-
duce ’11, pp. 51–58, New York, NY, USA, (2011). Association for
Computing Machinery.

[13] Edward Raff, Charles Nicholas, and Mark McLean. A new burrows
wheeler transform markov distance, 2019.

[14] Bertil Schmidt and Andreas Hildebrandt, ‘Next-generation sequencing:
big data meets high performance computing’, Drug Discovery Today,
22(4), 712–717, (2017).

[15] Jason L. Vassy, Bruce R. Korf, and Robert C. Green, ‘How to know
when physicians are ready for genomic medicine’, Science Transla-
tional Medicine, 7(287), 287fs19–287fs19, (2015).

[16] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica, ‘Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing’, in Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 12), pp. 15–28, San Jose, CA, (2012).

