
Live Software Inspection and Refactoring
Sara Fernandesa, Ademar Aguiara,b and André Restivoa,c

aFaculty of Engineering, University of Porto, Porto Portugal
bInstitute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
cArtificial Intelligence and Computer Science Laboratory, Porto, Portugal

Abstract
With the increasing complexity of software systems, software developers would benefit from instant
and continuous guidance about the system they are maintaining and evolving. Despite existing several
solutions providing feedback and suggesting improvements, many tools require explicit invocation,
leading to developers missing improvement opportunities, such as important refactorings, due to lost
of train of thought. Therefore, to address these limitations, we propose an approach where developers
receive instant and continuous feedback about their software systems. This guidance would include the
detection of code smells and the suggestion of refactorings to improve the system, justified by relevant
software quality metrics related to the recommendations. This research aims to improve the experience of
developing and maintaining software systems by providing a live environment for continuous inspection
and refactoring of software systems, that is informative, responsive, and tactically predictive, and thus
helping developers to identify and solve quality problems in a quicker and better way.

Keywords
Software and its engineering → Software maintenance tools

1. Introduction

Software systems are increasingly complex and extensive, and, as a result, approximately 75% of
the costs associated with software development occur after finishing a particular system, or after
inspecting it. Sometimes, simple tasks, like adding or modifying a feature, are generally hard
and time-consuming due to the size and complexity of the system. Refactoring aims to mitigate
existing code smells, usually a result of bad programming practices, without changing the current
results while, at the same time, improving the maintainability and comprehensibility [1].

Several approaches are capable of detecting several code smells by analyzing specific software
quality metrics. Also, there are already tools that suggest refactoring techniques to improve
the overall quality of a program. However, the feedback provided to developers is not always
detailed, fast enough, and optimal to effectively enhance the software systems. Then, we
are exploring the introduction of liveness to enhance this guidance loop to provide real-time
information that will help them change their programs beforehand so that when it comes to
adding or modifying features, it will not be as hard for them as usually is [2].

The main objective of this research is to tighten the feedback loop associated with refactoring,
making it immediate and continuous, during development, through the analysis of quality

8th SEDES, Software Engineering Doctoral Symposium, September 08–11, 2020, Algarve, Portugal
email: up201405955@fe.up.pt (S. Fernandes); aaguiar@fe.up.pt (A. Aguiar); arestivo@fe.up.pt (A. Restivo)
orcid:

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:up201405955@fe.up.pt
mailto:aaguiar@fe.up.pt
mailto:arestivo@fe.up.pt
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

metrics, detection of code smells, identification of refactoring opportunities, and visualization
of metrics related to each recommendation. Therefore, we aim to increase, improve, and
speed up the feedback given to developers regarding their software systems. The main research
question is to find the best combination of features to combine and provide in a live development
environment, so that (1) developers can become aware of existing code smells, (2) refactoring
opportunities can be appropriately suggested to developers, together with their expected quality
impact, without being intrusive, (3) the developer experience can motivate them to quickly fix
code issues, without strictly needing to compile or execute the system under development.

2. State-of-the-art

Liveveness is the possibility to shorten the edit-compile-run loop by providing real-time infor-
mation to developers about their systems. Bringing liveness to the development of software
systems makes them easier and simpler to understand, visualize, maintain, and evolve [2].

In 1990 and later in 2013, Tanimoto proposed a hierarchy composed of several liveness levels.
The first level is merely an informative level, where developers had access to information
using different visual methods such as flowcharts. Level two was a more evolved level where
developers needed to ask for a response from their systems, and shortly afterward, they could
check the results obtained. In level three, computers would wait for programmers to stop
developing their systems showing the results of the respective program automatically. In the
fourth level, the computer did not wait for the developer to finish programming since it was
executing the program while it was being created, instantaneously showing its results. In level
five, the computer not only runs the software while it is being developed but also forecasts a
group of actions that the programmer may be interested in, executing one or more versions of
these predicted actions. Finally, in level six, the forecasted steps are strategically selected to
cover the majority of the software behaviors [3].

Currently, there are some live tools like Quokka, which is a live visualization tool of Kaluta
emulations (enterprise software emulator able to represent large-scale environments), enabling
a developer to see the emulation’s endpoints and the respective interactions with external
software systems while they are occurring [4].

We also have the concept ofCode Smells. A code smell is any bad implementation characteristic
present in the source code of any software system that can eventually represent a more profound
problem [1]. In contrast, Refactoring is the process of modifying the design of a software system
to improve its quality and reduce the code smells, without changing the behaviors previously
implemented. These kinds of actions make the program cleaner and self-explanatory [1, 5].

Tarwani et al. [6] used a Greedy algorithm to determine the optimal refactoring sequence
to be executed in a program. Each refactoring produces a specific maintainability degree,
and the Greedy algorithm tries to find the chain of refactorings that will lead to the higher
maintainability value. It supports refactorings like “Extract Method”, “Move Method”, “Extract
Class”, etc. Meananeatra [7] used a methodology to obtain the best refactorings to solve “Long
Method” smells. He used a four criteria method, to select the optimal sequence, composed
by (i) the number of code smells removed, (ii) the maintainability degree of the solution, (iii)
the size of the created sequence, and (iv) the number of elements of the source code changed.

This approach includes refactorings such as “Decomposed Conditional”, or “Replace Method with
Method Object”.

Although there are already advances in detecting code smells, identifying refactoring oppor-
tunities, and developing live tools, they are not well integrated yet. They do not capitalize on
all the existing potential, such as giving immediate feedback and guidance to programmers.
By combining these approaches, first, and to explore their synergies, after, we are convinced
that it will be possible to tighten and improve the support provided to developers. They would
have instant and continuous access to their code quality through the detection of specific smells
and identification of refactoring opportunities, while coding, and they could choose the most
appropriate actions based on the impacted metrics (i.e., before versus after refactoring).

3. Research objectives and methodological approach

This section describes all of our main research objectives, stating the hypothesis and research
questions that we aim to answer with this project. Besides, we summarize the approach that
we intend to use to develop and validate our solution.

3.1. Objectives

This project aims to tighten the refactoring feedback loop, making it instantaneous and con-
tinuous, while developers are programming. We expect to achieve this objective by analyzing
software quality metrics and suggesting and applying refactoring methods to solve several code
smells. Besides, we want to provide information about the evolution of specific metrics related
to the refactoring recommended to complement the feedback given to the programmers.

Therefore, this research project is based on the hypothesis that “A higher level of liveness
combined with the constant exposure to refactoring suggestions can increase the overall quality of
software systems and reduce their development time.”

Based on the previous statement, the main research questions of our project are:

RQ1 ““Are the identified refactorings capable of mitigating the code smells detected?” We aim
to verify if the refactorings suggested by our approach are able to extinguish the code
smells detected on the source code.

RQ2 “When developers constantly receive refactoring suggestions, can they reach better program-
ming solutions, with more quality?” We aim to analyze if developers can converge to
better programming solutions when they are constantly exposed to refactoring sugges-
tions complemented by information about specific metrics that will be increased when a
refactoring is applied.

RQ3 “When we apply a higher level of liveness in a refactoring suggestion approach, are developers
able to shorten their total development time?” We aim to verify if it is possible to reduce
the development time when developers know which refactorings they should apply on
their code.

3.2. Proposed Approach

Our research project will mainly follow the Engineering Research Method [8]. Therefore, we
expect to develop a tool for VSCode capable of providing live feedback to developers about
their software systems. This feedback will be presented as refactoring recommendations that
aim to mitigate specific code smells implemented in the code. Besides, each refactoring will
be complemented by information related to the quality metrics improved by its execution.
Therefore, developers will be able to make more informed decisions when they are refactoring
their programs.

The development of our solution will be divided into four implementation stages. In the first
stage, we want to analyze a set of quality metrics that will be used to detect specific code smells
on a project. To calculate each metric, we will analyze the program’s abstract syntax tree and,
when necessary, it will apply mathematical formulas to measure specific metrics like the volume
of a method [9]. Then, in the second phase, we will analyze each metric previously calculated
to detect specific code smells like “God Class” or “Long Method” [1]. To help in this task, we will
create a catalog that associates the software quality metrics with possible code smells. Besides,
we will try to apply some machine learning or data mining algorithms to make the detection
mechanism more efficient and informed. After that, in the third main step, we will use the
detected smells to suggest several refactoring techniques that aim to solve them. As it happens
in the previous phase, we will create a catalog that will associate the code smells and metrics
with the possible refactorings that can be applied. For each of the recommended refactorings,
the developers will have access to the evolution of specific metrics to decide which is the best
refactoring to be executed on their systems. In the fourth phase, we will try to increase the
liveness level of this entire process, up to level five. With the introduction of this subject, the
proposed tool will be capable of reducing the “edit-compile-run” cycle. Then, the feedback
will be faster and more fluid. Thus, we will create a “live refactoring recommendation” tool
that assists any programmer, since it allows implementing the best programming practices in a
faster and more informed way.

We also expect to execute different validation tests, using the observational and controlled
methodologies to validate the proposed approach. We expect to execute different experiments,
using academic and industrial case studies, to achieve the main goals on the validation of our
solution. Each participant will have to complete a list with several programming tasks, with
and without the developed tool. We will then use hypothesis tests with the data collected to
validate our research questions and the main hypothesis. Besides, we aim to create robotic
developers, who guided by public git repositories, will use the proposed tool in both a full and
semi-automated way to change code driven by commits and assess the expected quality with
and without doing the recommended refactorings.

4. Past work and preliminary results

During the development of the master’s thesis, we implemented a plugin for Visual Studio Code,
for JavaScript and TypeScript programs, which analyzed several software quality metrics, while
developers were programming their systems. In this project, we calculated metrics like the
number of lines of code, cyclomatic complexity, or maintainability degree. The measurement of

each metric was done using the abstract syntax tree (AST) or specific mathematical formulas
[9]. Then, the information about these values was given through bar charts on the IDE’s side
menu.

After developing that tool, we tried to validate our hypothesis by doing an empirical study
with programming students. However, we used a very simple case study, with a low complexity
degree, which did not allow us to collect enough relevant data to validate any of the research
questions of that project or even its main hypothesis.

Regarding the current doctoral research project, we already analyzed the problem that this
Ph.D. will solve. We proposed the respective, and we also studied the current state-of-the-art on
the main topic of this project. Besides, we already started our tool by analyzing some software
quality metrics that were not included in the master thesis’ project.

5. Future work and expected results

As mentioned before, we already started developing the proposed tool, and currently, we are
analyzing more quality metrics, and we are also cataloging the metrics and associated code
smells.

As future work, after finishing the catalog, we expect to start the mechanism to detect code
smells using the measured metrics and the developed catalog. We also intend to use machine
learning and data mining algorithms to predict parts of the code that can suffer from some
bad programming practices. Then, after detecting the code smells, we want to create a catalog
that associates each code smell and respective metrics with the refactoring techniques that
can solve them. We will use Fowler’s refactorings catalog [1] for that. However, we also
want to investigate more code smells and refactorings beyond the ones already known. After
finishing this catalog, we intend to apply intelligent algorithms to suggest the optimal sequence
of refactorings for a given programming context. In each refactoring indicated, we also expect
to present the evolution of specific software quality metrics to complement the information
provided to developers. After this last development step, we will implement the mechanism that
will automatically execute a refactoring when a developer accepts the refactoring suggestion
provided by our tool.

Next, we plan to confirm the main hypothesis using hypothesis tests with the data collected
through the controlled experiment. In this experiment, we pretend to use academic and industrial
case studies. Finally, in the last step, we intend to write the respective dissertation.

With this, we expect to achieve three different results. The first one is the state-of-the-art
analysis, which aims to introduce the current approaches, techniques, or tools related to the
most relevant topics of this thesis. Secondly, we aim to develop a live refactoring suggestion
tool for Visual Studio Code that will allow developers to receive feedback – in the form of
restructuring recommendations – about their software systems, while they are programming.

6. Conclusions

More and more, developers need to have support tools that help them understand and change
their software systems. When developers have to maintain their programs, sometimes they

have great difficulty in doing precisely that, because their code is hard to read. Then, they have
to refactor the code turning it more clean and self-explanatory, increasing its overall quality.

Therefore, we proposed a new tool capable of doing exactly that. This tool has its merit and
respective impact, mainly regarding the software development cycle, since it focuses on the
development and maintenance stages, inspecting the code to find possible problems. We think
that this project has several benefits: (1) efficiency, as it is expected that through this approach
the software development time could be reduced significantly; (2) automation, because the
suggestions will be made automatically while the developer is programming; and (3) source
code quality since it is expected that at the end, the source code would have better quality. We
also believe that our approach has an impact in the area of Software Engineering, because (1)
our approach helps developers to understand and correct their systems, if necessary, in early
development stages; and (2) can be used in the industry, simplifying their systems that usually
are complex, with millions of lines of code.

References

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, don Roberts, Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999.

[2] A. Aguiar, A. Restivo, F. F. Correia, H. S. Ferreira, J. P. Dias, Live software development —
tightening the feedback loops, in: Proceedings of the 5th Programming Experience (PX)
Workshop, 2019, pp. 1–6.

[3] S. L. Tanimoto, A perspective on the evolution of live programming, in: Proceedings of the
1st International Workshop on Live Programming, LIVE ’13, IEEE Press, Piscataway, NJ,
USA, 2013, pp. 31–34. URL: http://dl.acm.org/citation.cfm?id=2662726.2662735.

[4] C. Hine, J.-G. Schneider, J. Han, S. Versteeg, Quokka: visualising interactions of enterprise
software environment emulators, in: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering - ASE 2012, ACM Press, New York, New
York, USA, 2012, p. 370. URL: http://dl.acm.org/citation.cfm?doid=2351676.2351750. doi:10.
1145/2351676.2351750 .

[5] K. Cassell, C. Anslow, L. Groves, P. Andreae, Visualizing the refactoring of classes via
clustering, Conferences in Research and Practice in Information Technology Series 113
(2011) 63–72.

[6] S. Tarwani, A. Chug, Sequencing of refactoring techniques by Greedy algorithm for
maximizing maintainability, 2016 International Conference on Advances in Computing,
Communications and Informatics (ICACCI) (2016) 1397–1403. URL: http://ieeexplore.ieee.
org/document/7732243/. doi:10.1109/ICACCI.2016.7732243 .

[7] P. Meananeatra, Identifying Refactoring Sequences for Improving Software Maintainability
Categories and Subject Descriptors The Scope of Our Approach, Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering (2012) 406–409.

[8] M. V. Zelkowitz, D. R. Wallace, Experimental models for validating technology, Computer
31 (1998) 23–31.

[9] M. H. Halstead, Elements of Software Science (Operating and Programming Systems Series),
Elsevier Science Inc., New York, NY, USA, 1977.

http://dl.acm.org/citation.cfm?id=2662726.2662735
http://dl.acm.org/citation.cfm?doid=2351676.2351750
http://dx.doi.org/10.1145/2351676.2351750
http://dx.doi.org/10.1145/2351676.2351750
http://ieeexplore.ieee.org/document/7732243/
http://ieeexplore.ieee.org/document/7732243/
http://dx.doi.org/10.1109/ICACCI.2016.7732243

A. Work Plan

In this appendix, we present the Gantt Chart of our work plan with the idealized tasks and main
objectives of our Ph.D. research project. We also describe the different tasks, milestones, and
papers that we aim to publish about the results we achieve over this project.

B. Poster

In this appendix, we present the poster that summarizes our Ph.D. research project. There, we
give an overview of our motivation, main objectives, and proposed approach.

Object ives

Live Sof t ware Inspect ion and Refact or ing

Sara Fernandes* , Adem ar Aguiar * ^, André Rest ivo* +

* Facult y of Engineer ing, Universit y of Por t o

^INESC-TEC, +LIACC

{up201405955, aaguiar , arest ivo}@fe.up.pt

Mot ivat ion

Background

References

- Besides developing software systems, developers need

to m aint ain them;

- The ef for t and t im e needed to underst and or

m aint ain a complex software system are very high ;

- Development environments already give some

assist ance to developers;

- But they could provide bet t er real-t im e feedback and

suppor t .

Increase, im prove, and speed up the feedback about the

qualit y of t he code design , given to developers regarding

their software systems:

- Helping developers to make bet t er decisions about

the code design;

- Increasing the source code quality;

- Speeding-up the convergence to a good solution.

Liveness
Real-time feedback that

shortens the edit-compile-run
cycle [1]

Sof t ware Met r ics
Measurement of specific

software characteristics [2]

[1] Steven L. Tanimoto. Viva: A visual language for image processing. Journal of Visual
Languages and Computing, 1(2):127 ? 139, 1990.

[2] Maurice H. Halstead. Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc., New York, NY, USA, 1977.

[3] Kent Beck, John Brant, William Opdyke, Martin Fowler and don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

Live Inspect ion and Refact or ing

A higher level of liveness combined with the constant exposure

to software quality metrics and refactoring suggestions can

increase the overall quality of software systems, and reduce

their development time.

Code Sm ell
Surface indicator that usually

corresponds to a deeper
problem in the system [3]

Refact or ing
Changes made in a software

system, without modifying the
behavior implemented [3]

Past Work

- VSCode Ext ension that analyzes sof t ware m et r ics, in

real and programming time, to detect specific code smells;

- Then, it suggests refact or ing techniques to solve the

code sm ells, providing information about the evolution

of particular m et r ics.

Conclusions

- We propose a solution capable of providing l ive

feedback to developers about their software systems;

- With this software developers will be able to improve the

overall qualit y of their software systems.

- Development of a tool for VSCode that analyzes qualit y

m et r ics in real and programming time;

- It also detects "Extract Variable" and "Split Variable"

refactoring opportunities.

Fut ure Work
- Development of the proposed tool for VSCode;

- Empirical validation of the hypot hesis, using

academ ic and indust r ial case studies.

- RQ1: Are the identified refactorings capable of mitigating the code

smells detected?

- RQ2: When developers constantly receive refactoring suggestions,

can they reach better programming solutions, with more quality?

- RQ3: When we apply a higher level of liveness in a refactoring

suggestion approach, are developers able to shorten their total

development time?

	1 Introduction
	2 State-of-the-art
	3 Research objectives and methodological approach
	3.1 Objectives
	3.2 Proposed Approach

	4 Past work and preliminary results
	5 Future work and expected results
	6 Conclusions
	A Work Plan
	B Poster

