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Abstract

Validation and verification of modern safety-critical systems demand an increasing amount of time and
effort as systems become more complicated. Fault Injection (FI) is a well-known testing method that
stresses the system in an unusual way to examine system’s behavior. Traditional FI methods are not
preferable in modern Cyber-Physical Systems (CPS) as they require too much effort to locate critical
faults in the system. To tackle this problem, we propose an approach where the Machine Learning (ML)
algorithm aids FI by efficiently injecting faults in the model under test automatically. The ML algorithm
uses domain knowledge and simulation models at different abstraction levels to predict catastrophic
faults, which fail the model’s properties.
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1. Introduction

Validation, verification, and safety assessment of modern Cyber-Physical Systems (CPS) are
challenging as they become more complicated, large scale, and heterogeneous [1]. In safety-
critical industries like the automotive industry, safety assessment is crucial for vendors, and a
tremendous amount of time is spent on testing their products [2]. There are many approaches
to test and verify the system properties, but this paper focuses on Fault Injection (FI), which is a
well-known method that uses simulation and experiments to perform safety analysis.

Fl is traditionally applied to hardware and software prototypes. In FI, a tester stresses a small
part of the system (physical or virtual) in an unusual way to observe the system behavior [3]. In
FL, faults have three main attributes which establish fault space. They are (i) type (what should
be injected?) (ii) time (when should be activated?), and (iii) location (where should be injected?)
[4]. Traditional FI approaches are usually based on a random-based method [5], as such they
are not efficient in terms of fault coverage (the ratio of the number of catastrophic faults to the
total number of injected faults) [4] and performance. By increasing the complexity of modern
CPS, applying traditional methods is inefficient with regard to the tremendous cost.

To address this inefficiency, we propose a model-based FI approach in which the user provides
domain knowledge for a Machine Learning (ML) algorithm to aid FI in finding the potential
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critical faults. Model-based FI injects a fault model into the model under test, which can violate
safety specifications. The ML algorithms chooses the fault parameter in each simulation, based
on the parameter of the injected fault and the simulation result. As the proposed method
intelligently and (semi-)automatically determines the faults with less manual effort, fewer
simulation, and higher coverage, it mends some of the scalability issues found in traditional
approaches. Furthermore, by leveraging multiple levels of abstraction, we also reduce the
computational cost of executing computationally intensive simulations which reduces the total
experimentation time. Finally, by applying our techniques to the model of the system, the
analysis already starts in earlier design phases which decreases the cost of experiment.

The rest of the paper is organized as follows. In section 2 we explain recent advances in FL
Next, we describe the research objective and the proposed approach in section 3. Then, we
express the past work in section 4 and the plan in detail in section 5. Finally, we conclude the
paper in section 6.

2. State-of-the-Art

In this section, we briefly address some of the recent advances in the Fault Injection (FI) technique
in different applications and domains. There is a large body of literature about software-based
and hardware-based FL; however, researchers in academia and industry pay less attention to
model-implemented FI compare to the others [6]. The model-based techniques facilitate data
analysis, validation, and verification of the system in an earlier phase of system design [7]. For
example, authors in [8] modeled common faults in hardware and applied FI in Matlab Simulink,
and authors in [9] proposed a domain independent tool that utilizes model-based mutation.

There are some researches, using Machine Learning (ML) algorithm to increase fault coverage.
Authors in [10] exploit an ML algorithm to classify relevant and non-relevant fault campaigns
and found a correlation between injected fault and system characteristics. In [11], the authors
utilized a learn-based method to create a simplified model of the system under test by applying
inputs and observing outputs. Then, they validate and verified the model under test using
model checking techniques. Besides, in [12], authors use an ML algorithm to predict accident
conditions of a vehicle and inject fault around accident time.

Some literature used fault space pruning to explore limited fault space that have higher
potential to fail the system. The model-based FI utilizes this technique through injection
simulation or before simulation. Authors in [13] prune the fault space by using probability
analysis to score and rank potential fault locations. They applied their technique to sequential
logic, and they increased their speed and scalability. In [14], authors divided the fault space
into equivalence classes and chose one fault from each equivalence class to inject. They also
use domain knowledge to cut unnecessary parts of the fault space.

Authors in [5] used a statistical approach to extract information about critical faults. They
run numerous simulations to find fault propagation path and fault combinations that can affect
system specifications.
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(a) Traditional method. (b) Proposed method.

Figure 1: Comparing Fl in industrial practice to our proposed approach.

3. Research Objectives and Methodological Approach

In this study, the research objective is to improve the model-implemented FI process in terms of
fault coverage and simulation time in CPSs. Traditional approaches are less effective in modern
CPS as these systems are tremendously complex. In the traditional approaches of FI in Fig. 1a,
the tester designs the fault campaign and continuously checks the results and analyzes them.
However in the proposed technique in Fig. 1b, we utilize domain knowledge (marked by A) and
an ML-based (marked by B) approach to choose the fault campaign in a way to increase the fault
coverage and performance in the earlier design phase. Furthermore, in typical model-based
systems engineering processes, the system is described at different levels of detail. We leverage
the different levels to efficiently train the ML algorithm as it requires lots of data. Models at a
higher level of abstraction are typically less computationally expensive to simulate.

The domain knowledge provides the ML algorithm some primary knowledge about the model
under test such as discontinuity, input boundaries, different modes of system, etc. The ML
algorithm exploits this knowledge to find critical faults which can violate system specification
and efficiently explore the fault space. In addition, in our approach the tester is less involved in
the testing procedure which reduces tester error and increases efficiency.

4. Past Work and Preliminary Results

Our past research results consist of three contributions to the state of art in FI. In our first
contribution, we created a generic framework to apply FI at the model level [6]. Our approach
uses model transformation to inject faults into models [15]. The user defines injection rules,
and the framework automatically generates faulty models and runs the model-in-the-loop
simulation. The framework gets the results and compares it with the result of the normal
simulation to check the system’s specification. Furthermore, we also generate source code
for running the hardware-in-the-loop simulation. We validated the technique by creating a
prototype tool to inject faults into the well known Mathworks Simulink tool.

A second contribution aims to efficiently apply FI in black-box models. In [16], we worked on
FI in Functional Mock-up Interface (FMI) standard [17]. The FMI standards define a container and
an interface for black-box simulation of CPS. With black-box models, we have less knowledge



about the system under test and thus less freedom to inject faults. We proposed to use sensitivity
analysis before the injection process to gain knowledge about where the most effective signals
are, how strong the amplitude of fault must be, and when the fault must be injected. We
validated the technique on a model of an automotive power window. Other work accomplished
has focused on the configuration of FMI simulations, with the aim of future integration of FI
[18].

Our final contribution aims to reduce the fault space (what, where and when) of FI. We
investigated the use of Reinforcement Learning (RL) [19]. We applied RL to efficiently search the
fault space and to find the critical faults that violate the safety specifications. The technique was
applied to Adaptive Cruise Control (ACC) application'. In our limited validation, we showed
that our approach is more effective than traditional Monte-Carlo FI in terms of fault coverage
and the number of simulations to find the first critical faults. This approach can be applied to
broader applications such as hardware-based and software-based FI.

5. Future Work and Expected Results

As briefly described in section 3, we work on a ML-assisted model-implemented FI using
domain knowledge. We plan to use probabilistic automata as a formalism to model the domain
knowledge and system properties such that both the algorithm and tester can interact with.
The current choice is Bayesian Networks (BN) that comprise both states and transitions and can
describe the behavior of the model at a higher abstraction level. For example, signal’s ranges
and different modes of the system can be modeled as states and transitions. In the proposed
algorithm, we have three main steps as (i) modeling the domain knowledge in BN, (ii) continual
learning, and (iii) searching for the critical faults by FL

In the first step, the user models the system under test, based on BN along with its specifica-
tions, limitations, developer assumption, etc. This model describes the system and corresponding
constraints or properties in a high-level abstraction. For example, in the ACC use case, we can
model different modes of the state machine (which controls the acceleration of vehicle) as states
in BN, and we can map the sensors data to transition between these states. The ML algorithm
uses this model as a behavioral model and interacts with it at the later steps. In future work, we
will also investigate semi-automated techniques to create the model. The resulting model is
extended by the ML algorithm in the second phase.

In the second phase, we must train the BN, but we lack a static data set for training. Therefore,
the ML algorithm must run simulations and interact with both the BN and the model under
test. It uses different predefined input scenarios to update or extend the underlying BN. The
user needs to assist the training by defining rules in the domain knowledge and using multiple
abstraction levels. For example, the tester can add some equations describing relations between
probabilities in different transitions. For instance, in the ACC, we relate the probability of
having an accident to probability of stopping the lead vehicle (the vehicle which is in front of
the current vehicle) in the street, and these two probabilities have a positive relation with each
other. Formulating those relationship aid the ML algorithm to converge to the ideal value faster.

Thttps://www.mathworks.com/help/driving/examples/adaptive-cruise-control-with-sensor-fusion.html



Finally, the ML algorithm predicts the fault parameter based on the trained BN, which is
trained in the previous step and generates the fault campaign. The ML ranks the faults based
on their corresponding probability and starts the injection process. This prediction calculation
is based on the conditional probability, as specified for two events A and B in the BN in Eq. 1.

P(A|B) = P(B|A) x P(A)/P(B) (1)

The ML algorithm iterates on the FI and evaluating its results to optimally creates the next fault
campaign, until finding the critical faults. We will compare our method with random-based
and statistical-based method to measure its effectiveness. We expect the proposed method to
find more critical faults (higher fault coverage) than other methods, with less simulation and
computational time, because the injection process is based on reasoning and probability analysis.
The decision-making ability of the ML algorithm has been proven in many applications such as
planning and prediction in autonomous vehicle [20]. Furthermore, preliminary experiments by
different authors show a higher fault coverage compared to random-based FI techniques [12].

6. Conclusions

This work explores the combination of Machine Learning (ML) and domain knowledge to
increase the efficiency of Fault Injection (FI) simulation at the model level. The ML algorithm uses
domain knowledge to find critical faults that have the most destructive effect on system behavior
and violate safety requirements. The proposed technique can cover broader applications with
higher complexity and larger scale as it applies to the system’s model with multiple level of
abstraction and can tackle both heterogeneous and hybrid models. Besides, this approach is
generic and can be applied not only to the white-box models, but also to the black-box as well
as the gray-box models as the domain knowledge compensates the lack of knowledge about the
model under test.
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A. Appendix

A.1. Work plan
Figure 2 represents the student’s work plan for his PhD since starting until the end of his PhD.

Year 1 Year 2 Year 3 Year 4
Tasks MM
12345678911 122[1 234567891011 1212345678911 12[12345678910 112

State-of-the-art

Literalure revie 1 # I
L f_the-art 3

Advanced research

Initial white-box optimization technique
Initial white-box technique validation
Initial black-box optimization technique
Initial black-box technique validation
Discerete event system modeling
White-box approach

Modeling domain knowledge

Baysian network training

Baysian network predictor

Feasibility

Tool implementation

Black-box approach
3 w

Parallel works

@

NI

wlw|wlw|n

[}

Figure 2: The PhD work plan.

A.2. Poster

Figure 3 demonstrates the research context, research problem, proposed method and its contri-

bution.



Machine Learning-Assisted Model-
Implemented Fault Injection

Mehrdad Moradi and Joachim Denil
8th SEDES (Software Engineering Doctoral Symposium)

QUATIC
2020

/Context

______ Rising complexity of automotive software

1985 1990 1995 2000 2005 2010

eartthatvroom.wordpress.c Tves-you-

7 h T
zentren/iamp/sp_sks/ESW2016/
1 i

OnSTPA.pdf

Dependability

esting

\

ﬂ:ault Injection (F)
P—— 1 .

Source

Fault attributes:

1

Controller
Feedback

Plant

1. Type of fault

Comp;a:rison 2. Injection time
& Reporting (when activate it?)

Source

Controller
Feedback

Plant

Qulty run

Fault Coverage

3. Injection location
(where to inject?)

J
Traditional Fl \

approach

(what must inject?)

]

Manual Fl: Costly, timely and less

Lib ®
wime
[ | o

/

# Failures
y = fault coverage
# Injected faults
V‘|_|‘7

@)posed method: Research problem:

Using domain knowledge to S 1. Higher fault coverage

(RS NG i Knowledge 2. Less simulation time and efforts

The use of Bayesian Networks

NE:

(BN) to capture relationships
Iteration and simulation to
use BN for FI

<

Approach:

Find critical fault’s attribute

automatically with fewer
simulations

~

/

Figure 3: The PhD poster.

COS S- Lab FLANDERS

Constramed Systems Lab
University of Antwerp

MAKE 3

MANUFACTURING INNOVATION NETWORK

University
of Antwerp

Mehrdad.moradi@uantwerpen.be



	1 Introduction
	2 State-of-the-Art
	3 Research Objectives and Methodological Approach
	4 Past Work and Preliminary Results
	5 Future Work and Expected Results
	6 Conclusions
	A Appendix
	A.1 Work plan
	A.2 Poster


