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Abstract  
The culture and heritage of India depicted in the ancient manuscripts are unique in its linguistic 

and traditional diversity. However, the paucity of skill and expertise in present-day research 

posed a threat to the exploration of this textual legacy. In this paper, we aim to create a visual 

narrative of one of the major epics of Indian Literature ’Ramayana’, by summarizing the major 

topics and linking them with the characters and locations using Artificial Intelligence (AI). 

Using this research, any person interested in studying these manuscripts can visualize the tenor 

of the entire script, without an intensive study. ’Ramayana’ was originally written in Sanskrit, 

but modern versions have Sanskrit text with the explanation in Hindi (as most people in India 

are well versed with Hindi). In this paper, we have divided the Hindi and Sanskrit text and 

considered only Hindi text for our further research. We have used existing scientific models 

(that are trained on the Hindi Language) to find events/topics, summaries, characters and 

locations that are later used to produce a visual narrative of the data. For the evaluation of our 

results, we have tried to review the understanding of our summaries and topics. We achieved 

this by providing a part of our input text and its summary as well as topics/events created by 

our data pipeline, to 30 people (who are well versed with the Hindi Language). From the 

survey, it was found that 70%of the respondents understood the summarized text, while 56%of 

the respondents understood the topics clearly, that is generated from our model. 
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1. Introduction 

At present, there is a growing enthusiasm 

among historians and humanitarians for 

exploring the quintessence of ancient Indian 

manuscripts. As there exists physical evidence 

of the events occurring in most of these 

scriptures, we can gain information about the 

demography and cultural aspects of ancient 

India. Also, other important aspects like 

architecture, medicine, engineering, beliefs, 

etc. can be studied through these manuscripts. 

Hence, the underlying notion behind this 

research is to create a pipeline, where-in any 

ancient manuscript can be provided as an input,   
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resulting in the formulation of events/topics and 

summaries from the text, that can provide an 

overview of that scripture even without any 

domain knowledge. For our research we have 

used one of the two major epics in the ancient 

Indian history  ’Ramayana’. There exists 

around300 versions of ’Ramayana’ throughout 

the world [1]. We have used a subset of the 

’Valmiki Ramayana’ for our research, that is 

downloaded from the website1 in pdf format. 

This version is an epic tale narrated by Rishi 

Valmiki (written in Sanskrit) describing the 

journey of Lord Rama, his wife Sita and brother 

Lakshmana and how he, i.e., Lord Rama, 

triumphed over the evil forces of Ravana, the 

Demon King of Lanka.Not only the characters 

in this scripture are considered as gods in India, 

also there exists physical evidence of the events 



stated in these scriptures, that can be traced 

back to present-day locations in India and Sri 

Lanka. Our downloaded data consists of the 

original Sanskrit Shlokas followed by its 

interpretation in Hindi. 

 

From this data we want to produce a visual 

narrative so that any individual can understand 

the gist of the entire text without having to read 

the entire text. Our pseudo-pipeline can be used 

to reproduce similar results for any Indian 

manuscript. Our designed pipeline can be 

divided into five major components. These 

components are:  

 

1. Input data (Digitize the data for further 

processing)  The main aim of this process is 

to digitize the given input data that is in pdf 

format. Firstly, we need to fetch each page 

and convert it into PNG format. Then these 

images are fed into an OCR engine that will 

convert the images into machine readable 

text. The OCR engine used for our study is 

the Py-Tesseract OCR2 for Devanagari 

Scripts. 

 

2. Basic Pre - Processing (Preparing the 

data)  After getting the data in machine -

readable text, we need to clean the data, as 

the OCR’d text might be wrongly read, and 

if this wrong text is further processed in our 

pipeline, then the results can be hugely 

impacted. The first step in this process is to 

remove the headers from the text document, 

as they do not provide any value to the data. 

Now, we have the data with both Sanskrit 

and Hindi text. We decided to use only 

Hindi text for further processing, as the 

Hindi text contains the description of the 

Sanskrit Sargas that should provide better 

results for our Summarization and Topic 

Modeling models (due to considerable 

amount of data as compared to Sanskrit 

text). Hence, the Sanskrit and Hindi texts we 

reseparated (using some keyword 

identifiers) and stored in 2 different files. 

The Hindi text was then divided into 26 

parts based on a word limit, that would help 

in creating small summaries and would 

make it easier to find events from the 

divided subtext. All these summaries and 

topics/events can then be used to find the 

 
2 https://github.com/madmaze/pytesseract 
 

quintessence of the entire data. From this 

step, the data was simultaneously sent into 2 

different processes, i.e., one for Text -

Summarization and NER Tagging, and other 

for Topic Modeling. 

 

3. Summarization and NER Tagging 

(creating a concise summary and then 

finding locations/persons involved in those 

summaries using NER Tagging)  This step 

is divided into 2 processes as described 

below: 

 

• Summarization (summing up the most 

important or relevant information from the 

entire text)  The main process of the Text 

Summarization producing a concise and 

fluent summary of the text while preserving 

key information content and overall mean-

ing [2]. There are two types of 

Summarization techniques i.e., Extractive 

Summarization and Abstractive 

Summarization. Extractive Summarization 

works by identifying important sections of 

the text and combining them to make a 

summary [2]. While Abstractive 

Summarization entails paraphrasing and 

shortening parts of the source document, 

thus producing important material in a new 

way [2]. For our research, we are performing 

Extractive Summarization using the text 

rank algorithm3, that is modeled using a 

combination of sk-learn and netor-kx 

opensource libraries in python. 

• NER Tagging (tagging per-

sons/locations/organizations, etc. from the 

summarized text) we have used Named 

entity recognition (NER) algorithm to find 

and cluster named entities in text into any 

desired categories such as person names 

(PER), organizations (ORG), locations 

(LOC), time expressions, etc. [3]. For, 

training the model the opensource Python 

library Flair [4] has been used. Also, to train 

the model, the Fire 2013 Hindi NER Corpus 

[5] from AUKBC research Centre, India was 

used. 

 

4. Topic Modeling (finding topics/events 

from the divided Hindi input text)  Further 

preprocessing is required to performs Topic 

Modeling. These preprocessing steps and 

3 https://datawarrior.wordpress.com/2015/05/20/birdview2rankingeverythingan-

overviewoflinkanalysisusingpagerankalgorithm 



the Topic Modeling process are described 

below: 

 

• Preprocessing for Topic Modeling 

(preparing the data for Topic Modeling): To 

perform Topic Modeling on our data, some 

preprocessing steps are required (remove 

irrelevant words that might affect the 

probabilistic LDA model, working on the 

principle of bag of words analysis). Three 

procedures are performed in this step i.e., 

lemmatization, stop words removal and 

removal of other irrelevant words. 

Lemmatization is the process of grouping 

together synonymous words so that they can 

be inferred as a single word. We performed 

lemmatization using opensource python 

library Stanford NLP [6]. Then some more 

unused words like prepositions were 

removed in the ’stop word removal’ process. 

A list of stop words was manually created 

for this research. In the last step for the data 

cleaning process, some garbage data like 

miss interpreted English words, 

punctuation’s, numbers, etc. were removed. 

 

• Topic Modeling (finding 

topics/events): Topic Modeling is the 

process of identifying topics/events from a 

given text input. The” topics” signify the 

hidden, to be estimated, variable relations 

that link words in vocabulary and their 

occurrence in documents. Topic models 

discover the hidden themes throughout the 

collection and annotate the documents ac-

cording to those themes [7]. To perform this 

the LDA algorithm is used, that finds the 

probabilistic word frequencies from the bag 

of words. For our research, we are using the 

LDA based topic model for the Hindi text of 

python opensource library Gensim [8] 

 

5. Visualization (creating a storyline from 

the available text summaries, topics/Events 

and identified locations and characters)  All 

the above components of our pipeline are 

designed using Python, and the visualization 

of our results is performed using Tableau. 

The obtained NER tags were validated and 

filtered using some validation datasets. For 

creating a visual narrative of the above 

obtained results, two dashboards were built. 

In one of the dashboards, the locations 

 
4 https://github.com/stanfordnlp/stanfordnlp 

(retrieved using the NER Tags) were plotted 

on the map of Indian Subcontinent and when 

hovered over a mapped location, the 

summary linked to that location is displayed. 

Using this, anyone can be able to create a 

mental image of the story that was described 

in its summary. The other dashboard 

displays the characters (retrieved using the 

NER Tags) distributed according to their 

corresponding summary. And, when 

hovered each character, the topics/events 

associated with that character are displayed. 

Using both these dashboards, anyone can 

easily find the quintessence of the whole 

script without doing intensive study on it.  

 

2. Literature Review 

In this section, we discuss the existing 

papers from which the basic scientific models 

used for our study, have been influenced. 

Richman, Paula [1] has collected all the dif-

ferent versions of Ramayana produced by many 

authors and performers and supported by many 

patrons. This book was referred to understand 

the different variations of Ramayana. 

 

Qi, Peng et al. [6] introduced Stanford NLP 

the end-to-end neural pipeline for text 

processing. Taking raw input text and 

performing all the operations like sentence 

segmentation, tokenization, lemmatization, 

POS tagging, and most importantly the author 

talked about dependency parser. With the 

dependency parser we can analyze the structure 

of sentence grammatically and established the 

relationship between the head word in sentence 

and words associated with it. For tokenization 

and POS tagging functionality, a standford nlp 

opensource library has been used in the 

pipeline. The source code can be found on the 

GitHub4. 

 

Pre-processing is the most important part of 

the text processing system. In the preprocessing 

pipeline, the removal of functional words (stop 

words) is important in in sense of performance 

of text processing. Jha, Vandana et.al.[9] The 

preponderance of contribution work is done on 

how to remove stop words, based on a 

dictionary of stop words and pattern matching 



and removing the words in the text. The Corpus 

for Hindi stop word can be found on the 

GitHub, expanded with more stop words5. 

 

In the journal paper by Allahyari, Mehdi et 

al., text summarization and its techniques are 

explained in detail, which was very useful to get 

a background knowledge of text summarization 

and its types. The survey of Text 

Summarization for Indian and foreign language 

Dhawale, Apurva et al. [10], summarization is 

an interpretation that bargains with timesaving 

and providing the user the result with the least 

text without altering its essence. This paper 

displays the progressions which have initiated 

research for text summarization in multiple 

global and local languages. Federico Barrios 

et.al.[11], Text Summarization offers new 

choices to the similarity function for the Text 

Rank algorithm. This algorithmic 

accommodates toward automatic 

summarization of texts. The fundamental idea 

performed by a graph based ranking model is 

that of polling or recommendation. If one-point 

bonds to another one, it is choosing a vote for 

that point. The greater the number of votes cast 

for a point, the higher the weight of that point 

gensim GitHub6. 

 

Athvale, Vinayak et al.in their paper” 

Towards deep learning in Hindi NER: An 

approach to tackle the labelled data scarcity 

„provide describe an end-to-end Neural Model 

for Named Entity Recognition (NER) which is 

based on Bi Directional RNN-LSTM. The 

authors claim state of the art performance in 

both English and Hindi without the use of any 

morphological analysis or without using 

gazetteers of any sort. Sharma, Rajesh et.al.[12] 

presents the Named Entity Recognition (NER) 

System for Hindi using CRF approach. Akbik, 

Alanet al. [4] propose to leverage the internal 

state of the trained character language model to 

produce a unique type of word embedding. In 

the process of building embedding model, first 

trained without any specific knowledge of 

words and therefore basically model words as a 

series of characters, and second contextualized 

by their surrounding text, meaning that the 

same word will have different embeddings 

depending on its contextual use. The author 

claims that across four classic sequence 

 
5 https://github.com/amjha/hindiExtractio 
6 https://github.com/RaReTechnologies/gensim 
7 https://github.com/flairNLP/flair 

labeling tasks, they consistently outperform the 

previous state of the art. Also, exceed prior 

work on English and German named entity 

recognition (NER). All the code and language 

models are available in GitHub7. The initial 

corpus to feed the NER model was requested 

from AUKBC Research Centre, India. This 

corpus is in column form at which contains the 

words followed by its POS Tags and NER Tags 

(represented in different columns). 

 

The paper by Zhou Tong and Haiyi, Zhang 

[7] explains the topic modeling process using 

Latent Dirichlet Allocation (LDA) for English 

textual data. Based on this model, our model 

was implemented using the open source python 

library Gensim. 

 

3. Methodology 

For the creation of the visual narrative, there 

was a need for text mining and preparation of 

the Valmiki Ramayana data set. The steps 

involved in attaining the same were identified 

as: creation of input files, text preprocessing, 

text Summarization, Named Entity Recognition 

(NER) tagging and topic modeling. The output 

from these steps were used as inputs for the 

visualization process. The complete workflow 

of the text processing   and mining is shown in 
Figure 1: Workflow of Text preparation for the 

Visual Narrative 

The first part of the workflow was about 

creating the input files in the format of 

machine-readable texts for further processing. 

The single pdf file of Valmiki Ramayana was 

converted into 394 images in PNG format with 

300 dpi resolution using a free image utility 

software called ImageMagick8. For converting 

the images into editable text documents, 

Optical Character Recognition (OCR) process 

was used. Tesseract-OCR [13] is one of the 

OCR engines which can recognize characters of 

more than 100 languages and has a language 

model for Hindi as well. Py-tesseract9, a 

wrapper for the Tesseract OCR engine, was 

used in our case as it could read all image types 

including jpeg, png, gif, bmp, tiff etc. The 

converted images from pdf file were then given 

8 https://github.com/imagemagick/imagemagick 
9 https://github.com/madmaze/pytesseact 



as input to the Py-tesseract using Devanagari 

language model. The output was obtained as 

text documents with around 90%-character 

accuracy.  

 

 
Figure 1: Workflow of Text preparation for 

the Visual Narrative 

The output of Py-tesseract i.e., the OCR’d 

text documents contained some data such as 

page headers like book’s name (e.g. श्रीवाल्मीकि 

रामायण) on odd numbered pages and chapter’s 

name (e.g.सुन्दर िण्ड) on even numbered 

pages, page numbers; that were not required for 

text mining. These unwanted texts were 

captured using regular expressions and were 

cleaned out from the text corpus. The 

documents also consisted of the multi-lingual 

texts: Sanskrit and Hindi. It was decided to 

continue further processing using only Hindi 

texts considering the factors such as the good 

number of resources available for Hindi 

language w.r.t. text processing and mining, the 

relatively greater length of the Hindi text 

documents than the Sanskrit texts in our case 

 
10 https://github.com/amjha/hindiExtraction 

and the popularity of Hindi over Sanskrit. Hindi 

and Sanskrit texts were separated using” मूल” 

and” टीिा” keywords from the all the 

documents, respectively. 

 

There was a fork in further processing of the 

Hindi texts: one or Text Summarization and 

another for Topic Modeling. Atopic model is a 

probabilistic model for finding out the abstract 

topics that appear in a collection of text 

documents. Topic Modeling is the most used 

text mining tool for discovering latent semantic 

structures in textual data. For the topic Model-

ing branch in our workflow, additional text pre-

processing was required. To extract topics, the 

text documents were tokenized into words. In 

the text documents, the most commonly 

appearing words were the articles, prepositions, 

helping verbs, etc., known as the stop words. 

These stop words could affect the topic model 

as it is generally based on the frequency of 

words occurring in a document. So, they needed 

to be removed. As there was not out of the box 

Hindi stop words removal functionality 

available, a list of Hindi stop words10 was 

created and this was used to remove stop words 

from the tokenized list of words. 

Lemmatization is the text processing step of 

grouping together the different forms of a word 

so they can be analyzed as a single word. This 

also helps in reducing redundancy of the same 

root word in the topics extracted. Stanford NLP 

[14], an opensource library that has pretrained 

Hindi models for lemmatization and Part of -

Speech tagging, was used to lemmatize the 

tokenized words’ list. After looking at text 

samples, additional cleaning steps like removal 

of punctuation, English letters and numbers 

from the tokenized list were performed. Latent 

Dirichlet Allocation is a Topic Modeling 

algorithm based on the bag of words (BOW) 

and counts of word document. It is a fully 

generative model where documents are 

assumed to have been generated according toa 

per-document topic and per-topic word 

distribution. The list of tokenized words was 

fed to the LDA model using Gensim [8] and 

topics were extracted for the whole Hindi texts. 

To improve the output of Topic Modeling, few 

iterations were run with some steps redone in 

the preprocessing blocklike extending stop 

words list, to remove the left-out words that 

were not significant enough to be in the topics, 



and some manual garbage removal i.e., words 

that were wrongly interpreted by the OCR 

model. After this, results fetched from the topic 

models became more relevant to the actual 

story, the preprocessing steps were then 

finalized and no further iterations were made to 

change the prepared data. 

 

The other branch of the fork is Text 

Summarization. Text Summarization refers to 

the process of compacting a large text. The 

reason behind this is to create a comprehensible 

and expressive summary having only the main 

points outlined in the text. There are two main 

methods to summarize the text in NLP, 

Extraction based summarization and 

Abstraction based summarization. We are using 

extraction-based summarization for our 

research. Summarization of the text is based on 

the ranks of text sentences using a variation of 

the Text Rank algorithm. Text Rank is an 

automatic summarization technique, is 

implemented in two different ways in our 

pipeline, the Gensim python open-source 

library [11] and the other one is a combination 

of the sk-learn and networkx library. Gensim 

summarizer takes input as a string whereas the 

other approach takes a list of sentences. Taking 

a list of sentences was a better option as there is 

no clear separation between the whole text. 

Input text was divided into 26 documents where 

each document consists of 25 sentences. 

Dividing the text by character may loose the 

sentence meaning/grammar. As Gensim uses a 

string as input and division by character length 

was not a good option, So, the other 

implementation Text Rank algorithm 

(Networkx and Sk-learn) was selected for the 

pipeline. Graph based ranking algorithms are a 

way for deciding the importance of a vertex 

within a graph, based on global information 

recursively drawn from the entire graph. A 

graph has been built that represents the text, 

inter-connects words or other text entities with 

meaningful relations. Sentence extraction is 

favorable over keyword/token extraction. 

 

Named entity recognition (NER) plays an 

important role to complete the narrative model. 

Using this concept, the persons/characters, as 

well as the location, can be extracted from the 

story text [3]. The objective of using NER in 

this project is quite straightforward. It is used to 

find, and cluster named entities in text into any 

desired categories such as person names (PER), 

locations (LOC), etc. Most of the present, State 

of art NER models for the Hindi language are 

either very limited or not available in the public 

domain. For Training the model, Flair Python 

library [4] and Google cloud platform (GCP) 

resources have been used. Flair’s framework 

builds directly on Py-Torch, one of the best 

deep learning frames works. It has the 

flexibility of using the state of art embedding 

model, also there is an embedding model 

available for the Hindi language. NER initial 

corpus is requested from the Indian Statistical 

Institute [5] from AU-KBC Research Centre, 

India. This corpus is later extended for model 

training. 

 

Our complete narrative model’s aim was to 

have a story of events. So, for our final step of 

the pipeline we built two dashboards using 

Tableau. The output from both; the 

summarization as well as the topic Modeling 

branch were fed into tableau and the events 

were tagged with a topic, a summary and NER 

tags to help pick out characters and locations. 

In the first dashboard, satellite view of the map 

is used for plotting, the identified locations 

from the scripture. For plotting the story on the 

map, a validation dataset of names and places 

of the events is manually created. This data is 

matched with the words which are tagged with 

B-LOCATION and I-LOCATION NER tags. 

After identification of the matched location, 

they are associated with the respective latitude 

and longitude values so that it can be plotted on 

maps correctly. The lines between two places 

on the map shows the sequence of the 

mentioned locations in the narrated story. A line 

between two places on the map is created using 

Tableau’s spatial functions Make Line and 

Make Point. As seen in the Fig. 2, the narration 

comprises location “मैकिली” (birth place of Sita) 

“कित्रिूट” (Forest in which Ram and Sita went 

for staying ), “अतःपुर” (A village in Kishkindha 

where Ram met Hanuman and his friends), 

”महेन्द्र” (Mahendragiri is a name of a mountain 

from where Hanuman jumped towards Shri 

Lanka in order to search for Sita), “महासागर” 

(The ocean between India and Shri Lanka), 

“पवतत” (Trikoot parvat where Hanuman landed 

after jumping from Mahendra Giri Moutain), 

“अशोिवैन” (Ashok Vatika garden where Sita 

was kept as a captive by Ravana). On hovering 

over each line origin city with its corresponding 

destination city and summary of the text is 



shown in the tooltip. Dealing with such kind of 

ancient geo spatial data is some of crucial. 

Gettty thesaurus playa a significant role in this. 

Getty is an opensource Geo data base where all 

possible occurrences of every Geo name 

include its ancient name can tagged with a 

unique number. Through this number we can 

visualize that geo name wit longitude and 

latitude. Getty plays a crucial role in our project 

as well for geo data visualization. We used 

Geety for Geo data visualization. 

 

 
Figure 2: Locations in Ramayana 

 

In the second dashboard, symbol chart is 

used to represent different characters of the 

Ramayana. The sequence of the story from 0 to 

25 is plotted from left to right and the 

occurrence of every character is plotted as per 

its reference in the text associated with that 

sequence. The validation dataset of the 

character names in the Ramayana are matched 

with Hindi words tagged with B-PERSON and 

I-PERSON NER tags. The matched names do 

not identify the synonyms of the same name. In 

Ramayana, each person has been associated 

with various names, e.g., “सीता” is also known 

by the names “जानिी” or “जनिपुत्री” in the 

same story. So, the result of plotting such data 

lead to plotting three different points for the 

same Symbol. To avoid this, grouping of such 

names under one name is performed in Tableau. 

As Ramayana is a story and stories are narrated 

in sequence, Tableau’s page control 

functionality is used to make the dashboard 

dynamic.The top topic and the summary of text 

is shown below the symbol chart. As the 

sequence changes in the page control the 

 
11 https://github.com/rajrohan/ramayanaocr 

characters in the symbol chart unfolds along 

with their corresponding summary in the Fig. 3. 

All the symbols and characters names are 

shown as legends. Each symbol is manually 

designed as per its characteristics in the 

Ramayana epic. On hovering over each 

character, the related topics for the given 

summarized is shown in the tool tip. 

 

The source code for our research can be 

found on GitHub11 

 

 
Figure3: Topic Modeling based on characters. 

 

4. Evaluation 

For the evaluation of our model, we conducted 

a survey in which 30 persons participated. The 

respondents were chosen based on the criteria, 

that they should be competent in understanding 

Hindi text. They were provided with the input 

text and the summary as well as the topics 

created by our data pipeline. The two metrics, 

Text Summarization, and Topic Modeling were 

evaluated in the survey. There are four options 

to choose from and each option has a 20% 

bucket size; 80100%, 6080%, 4060% or less 

than 40%. Selecting the first option i.e., 80-

100%, implies that the individual has 

understood the summarized text, and the same 

goes for the second and third options. Anyone 

choosing the fourth option i.e., less than 40%, 

be understood. The results of the survey can be 

seen in the following chart at Fig.4. 

 



 
Figure 4: Survey results for Text Summarization 

 

It can be inferred from the Fig. 4 that 70% of 

the respondents were able to understand the 

summarized text whereas 30% of the 

respondents were not able to understand the 

summarized text. From Fig. 5 around 56% of 

the respondents understood the topic clearly 

and around 44% of the respondents were not 

able to understand the topic. 

 

5. Discussion 

The major objective of the envisioned pipeline 

has been achieved but the pipeline can be 

further improved. Due to drawbacks in the 

process’s in pipeline (due to unavailability of 

proficient models for Hindi textual data), we 

could not achieve the optimal result. We were 

not able to find a better-quality input file which 

could have helped the OCR model to identify 

the characters in a much better way. 

 
Figure 5: Survey results for Topic Modeling 

This reduced the quality of NER tags that we 

obtained after running our NER model. At first, 

we were not able to build a NER Models we 

were not able to procure the Hindi NER tag data 

and creating the data from scratch was not 

possible in the given timeframe of the research. 

After failing to find Hindi NER tagged corpus 

online, we were helped by AU-KBC research 

Centre [5], India. They provided us the tagged 

Hindi NER data as a result of which we were 

able to train our NER model. Using NER tags 

instead of POS tags has made the visual 

experience significantly better. NER when 

performed on the generated topics yields very 

few results as compared to when it is performed 

on the summarized text. Therefore, we built the 

NER model using the summarized text as an 

input. We also tried performing Abstractive 

Summarization on the script but were unable to 

achieve it because the model cannot be trained 

on our data to provide the desired output. So, 

we have used only Extractive Summarization 

method in our pipeline. During the initial phase 

of our project, we had an idea of visualizing the 

events chronologically to make it more visually 

informative. However, the chronology cannot 

be obtained as the script is quite old and no 

dates are present in the data. The alternate to not 

having any dates, is to use time as ’t’ and keep 

on incriminating it after every shloka to obtain 

a certain chronological order. Having said that, 

as the script discusses different timelines in the 

same shlokas, this method cannot be used to get 

the chronology of events. 

 

6. Conclusions 

For our input dataset, Ramayana, it is 

observed that our model reaches the score of 

more than 70 percent in explaining the 

Summarized text and about 70 percent in 

explaining the topic/events generated from the 

script. It can also be concluded that the NER 

done on the summarized text generates better 

results than when it is performed on the topics/ 

events. Taking usability into account we were 

successful in making a pipeline for the visual 

narration of Ramayana. Using our visualization 

someone even with very little knowledge on 

Ramayana can easily understand the whole 

summary of the script. The demo is built on an 

image-based input and can be later extended to 

other sources and languages too. However, for 



its application to all other Devanagari 

languages, their respective models should be 

available. We can prove the physical evidence 

of the locations mentioned in the script by 

plotting the coordinates of the present day 

location along with the events that took place 

on these locations. 
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