
A Visual Narrative of Ramayana using Extractive

Summarization, Topic Modeling and Named Entity Recognition

Sree Ganesh Thottempudi

School of Technology, SRH University, Berlin, Germany

Abstract
The culture and heritage of India depicted in the ancient manuscripts are unique in its linguistic

and traditional diversity. However, the paucity of skill and expertise in present-day research

posed a threat to the exploration of this textual legacy. In this paper, we aim to create a visual

narrative of one of the major epics of Indian Literature ’Ramayana’, by summarizing the major

topics and linking them with the characters and locations using Artificial Intelligence (AI).

Using this research, any person interested in studying these manuscripts can visualize the tenor

of the entire script, without an intensive study. ’Ramayana’ was originally written in Sanskrit,

but modern versions have Sanskrit text with the explanation in Hindi (as most people in India

are well versed with Hindi). In this paper, we have divided the Hindi and Sanskrit text and

considered only Hindi text for our further research. We have used existing scientific models

(that are trained on the Hindi Language) to find events/topics, summaries, characters and

locations that are later used to produce a visual narrative of the data. For the evaluation of our

results, we have tried to review the understanding of our summaries and topics. We achieved

this by providing a part of our input text and its summary as well as topics/events created by

our data pipeline, to 30 people (who are well versed with the Hindi Language). From the

survey, it was found that 70%of the respondents understood the summarized text, while 56%of

the respondents understood the topics clearly, that is generated from our model.

Keywords
Ramayana, OCR, Hindi, Named Entity Recognition, Topic modeling, Text Summarization,

Visualization, Storytelling

1. Introduction

At present, there is a growing enthusiasm

among historians and humanitarians for

exploring the quintessence of ancient Indian

manuscripts. As there exists physical evidence

of the events occurring in most of these

scriptures, we can gain information about the

demography and cultural aspects of ancient

India. Also, other important aspects like

architecture, medicine, engineering, beliefs,

etc. can be studied through these manuscripts.

Hence, the underlying notion behind this

research is to create a pipeline, where-in any

ancient manuscript can be provided as an input,

ACI’21: Workshop on Advances in Computational
Intelligence at ISIC 2021, February 25-27, 2021, Delhi, India
EMAIL: sganeshhcu@mail.com (Sree Ganesh Thottempudi)

©️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

1 https://archive.org/details/in.ernet.dli.2015.345471/page/n1/mode/2up

resulting in the formulation of events/topics and

summaries from the text, that can provide an

overview of that scripture even without any

domain knowledge. For our research we have

used one of the two major epics in the ancient

Indian history ’Ramayana’. There exists

around300 versions of ’Ramayana’ throughout

the world [1]. We have used a subset of the

’Valmiki Ramayana’ for our research, that is

downloaded from the website1 in pdf format.

This version is an epic tale narrated by Rishi

Valmiki (written in Sanskrit) describing the

journey of Lord Rama, his wife Sita and brother

Lakshmana and how he, i.e., Lord Rama,

triumphed over the evil forces of Ravana, the

Demon King of Lanka.Not only the characters

in this scripture are considered as gods in India,

also there exists physical evidence of the events

stated in these scriptures, that can be traced

back to present-day locations in India and Sri

Lanka. Our downloaded data consists of the

original Sanskrit Shlokas followed by its

interpretation in Hindi.

From this data we want to produce a visual

narrative so that any individual can understand

the gist of the entire text without having to read

the entire text. Our pseudo-pipeline can be used

to reproduce similar results for any Indian

manuscript. Our designed pipeline can be

divided into five major components. These

components are:

1. Input data (Digitize the data for further

processing) The main aim of this process is

to digitize the given input data that is in pdf

format. Firstly, we need to fetch each page

and convert it into PNG format. Then these

images are fed into an OCR engine that will

convert the images into machine readable

text. The OCR engine used for our study is

the Py-Tesseract OCR2 for Devanagari

Scripts.

2. Basic Pre - Processing (Preparing the

data) After getting the data in machine -

readable text, we need to clean the data, as

the OCR’d text might be wrongly read, and

if this wrong text is further processed in our

pipeline, then the results can be hugely

impacted. The first step in this process is to

remove the headers from the text document,

as they do not provide any value to the data.

Now, we have the data with both Sanskrit

and Hindi text. We decided to use only

Hindi text for further processing, as the

Hindi text contains the description of the

Sanskrit Sargas that should provide better

results for our Summarization and Topic

Modeling models (due to considerable

amount of data as compared to Sanskrit

text). Hence, the Sanskrit and Hindi texts we

reseparated (using some keyword

identifiers) and stored in 2 different files.

The Hindi text was then divided into 26

parts based on a word limit, that would help

in creating small summaries and would

make it easier to find events from the

divided subtext. All these summaries and

topics/events can then be used to find the

2 https://github.com/madmaze/pytesseract

quintessence of the entire data. From this

step, the data was simultaneously sent into 2

different processes, i.e., one for Text -

Summarization and NER Tagging, and other

for Topic Modeling.

3. Summarization and NER Tagging

(creating a concise summary and then

finding locations/persons involved in those

summaries using NER Tagging) This step

is divided into 2 processes as described

below:

• Summarization (summing up the most

important or relevant information from the

entire text) The main process of the Text

Summarization producing a concise and

fluent summary of the text while preserving

key information content and overall mean-

ing [2]. There are two types of

Summarization techniques i.e., Extractive

Summarization and Abstractive

Summarization. Extractive Summarization

works by identifying important sections of

the text and combining them to make a

summary [2]. While Abstractive

Summarization entails paraphrasing and

shortening parts of the source document,

thus producing important material in a new

way [2]. For our research, we are performing

Extractive Summarization using the text

rank algorithm3, that is modeled using a

combination of sk-learn and netor-kx

opensource libraries in python.

• NER Tagging (tagging per-

sons/locations/organizations, etc. from the

summarized text) we have used Named

entity recognition (NER) algorithm to find

and cluster named entities in text into any

desired categories such as person names

(PER), organizations (ORG), locations

(LOC), time expressions, etc. [3]. For,

training the model the opensource Python

library Flair [4] has been used. Also, to train

the model, the Fire 2013 Hindi NER Corpus

[5] from AUKBC research Centre, India was

used.

4. Topic Modeling (finding topics/events

from the divided Hindi input text) Further

preprocessing is required to performs Topic

Modeling. These preprocessing steps and

3 https://datawarrior.wordpress.com/2015/05/20/birdview2rankingeverythingan-

overviewoflinkanalysisusingpagerankalgorithm

the Topic Modeling process are described

below:

• Preprocessing for Topic Modeling

(preparing the data for Topic Modeling): To

perform Topic Modeling on our data, some

preprocessing steps are required (remove

irrelevant words that might affect the

probabilistic LDA model, working on the

principle of bag of words analysis). Three

procedures are performed in this step i.e.,

lemmatization, stop words removal and

removal of other irrelevant words.

Lemmatization is the process of grouping

together synonymous words so that they can

be inferred as a single word. We performed

lemmatization using opensource python

library Stanford NLP [6]. Then some more

unused words like prepositions were

removed in the ’stop word removal’ process.

A list of stop words was manually created

for this research. In the last step for the data

cleaning process, some garbage data like

miss interpreted English words,

punctuation’s, numbers, etc. were removed.

• Topic Modeling (finding

topics/events): Topic Modeling is the

process of identifying topics/events from a

given text input. The” topics” signify the

hidden, to be estimated, variable relations

that link words in vocabulary and their

occurrence in documents. Topic models

discover the hidden themes throughout the

collection and annotate the documents ac-

cording to those themes [7]. To perform this

the LDA algorithm is used, that finds the

probabilistic word frequencies from the bag

of words. For our research, we are using the

LDA based topic model for the Hindi text of

python opensource library Gensim [8]

5. Visualization (creating a storyline from

the available text summaries, topics/Events

and identified locations and characters) All

the above components of our pipeline are

designed using Python, and the visualization

of our results is performed using Tableau.

The obtained NER tags were validated and

filtered using some validation datasets. For

creating a visual narrative of the above

obtained results, two dashboards were built.

In one of the dashboards, the locations

4 https://github.com/stanfordnlp/stanfordnlp

(retrieved using the NER Tags) were plotted

on the map of Indian Subcontinent and when

hovered over a mapped location, the

summary linked to that location is displayed.

Using this, anyone can be able to create a

mental image of the story that was described

in its summary. The other dashboard

displays the characters (retrieved using the

NER Tags) distributed according to their

corresponding summary. And, when

hovered each character, the topics/events

associated with that character are displayed.

Using both these dashboards, anyone can

easily find the quintessence of the whole

script without doing intensive study on it.

2. Literature Review

In this section, we discuss the existing

papers from which the basic scientific models

used for our study, have been influenced.

Richman, Paula [1] has collected all the dif-

ferent versions of Ramayana produced by many

authors and performers and supported by many

patrons. This book was referred to understand

the different variations of Ramayana.

Qi, Peng et al. [6] introduced Stanford NLP

the end-to-end neural pipeline for text

processing. Taking raw input text and

performing all the operations like sentence

segmentation, tokenization, lemmatization,

POS tagging, and most importantly the author

talked about dependency parser. With the

dependency parser we can analyze the structure

of sentence grammatically and established the

relationship between the head word in sentence

and words associated with it. For tokenization

and POS tagging functionality, a standford nlp

opensource library has been used in the

pipeline. The source code can be found on the

GitHub4.

Pre-processing is the most important part of

the text processing system. In the preprocessing

pipeline, the removal of functional words (stop

words) is important in in sense of performance

of text processing. Jha, Vandana et.al.[9] The

preponderance of contribution work is done on

how to remove stop words, based on a

dictionary of stop words and pattern matching

and removing the words in the text. The Corpus

for Hindi stop word can be found on the

GitHub, expanded with more stop words5.

In the journal paper by Allahyari, Mehdi et

al., text summarization and its techniques are

explained in detail, which was very useful to get

a background knowledge of text summarization

and its types. The survey of Text

Summarization for Indian and foreign language

Dhawale, Apurva et al. [10], summarization is

an interpretation that bargains with timesaving

and providing the user the result with the least

text without altering its essence. This paper

displays the progressions which have initiated

research for text summarization in multiple

global and local languages. Federico Barrios

et.al.[11], Text Summarization offers new

choices to the similarity function for the Text

Rank algorithm. This algorithmic

accommodates toward automatic

summarization of texts. The fundamental idea

performed by a graph based ranking model is

that of polling or recommendation. If one-point

bonds to another one, it is choosing a vote for

that point. The greater the number of votes cast

for a point, the higher the weight of that point

gensim GitHub6.

Athvale, Vinayak et al.in their paper”

Towards deep learning in Hindi NER: An

approach to tackle the labelled data scarcity

„provide describe an end-to-end Neural Model

for Named Entity Recognition (NER) which is

based on Bi Directional RNN-LSTM. The

authors claim state of the art performance in

both English and Hindi without the use of any

morphological analysis or without using

gazetteers of any sort. Sharma, Rajesh et.al.[12]

presents the Named Entity Recognition (NER)

System for Hindi using CRF approach. Akbik,

Alanet al. [4] propose to leverage the internal

state of the trained character language model to

produce a unique type of word embedding. In

the process of building embedding model, first

trained without any specific knowledge of

words and therefore basically model words as a

series of characters, and second contextualized

by their surrounding text, meaning that the

same word will have different embeddings

depending on its contextual use. The author

claims that across four classic sequence

5 https://github.com/amjha/hindiExtractio
6 https://github.com/RaReTechnologies/gensim
7 https://github.com/flairNLP/flair

labeling tasks, they consistently outperform the

previous state of the art. Also, exceed prior

work on English and German named entity

recognition (NER). All the code and language

models are available in GitHub7. The initial

corpus to feed the NER model was requested

from AUKBC Research Centre, India. This

corpus is in column form at which contains the

words followed by its POS Tags and NER Tags

(represented in different columns).

The paper by Zhou Tong and Haiyi, Zhang

[7] explains the topic modeling process using

Latent Dirichlet Allocation (LDA) for English

textual data. Based on this model, our model

was implemented using the open source python

library Gensim.

3. Methodology

For the creation of the visual narrative, there

was a need for text mining and preparation of

the Valmiki Ramayana data set. The steps

involved in attaining the same were identified

as: creation of input files, text preprocessing,

text Summarization, Named Entity Recognition

(NER) tagging and topic modeling. The output

from these steps were used as inputs for the

visualization process. The complete workflow

of the text processing and mining is shown in
Figure 1: Workflow of Text preparation for the

Visual Narrative

The first part of the workflow was about

creating the input files in the format of

machine-readable texts for further processing.

The single pdf file of Valmiki Ramayana was

converted into 394 images in PNG format with

300 dpi resolution using a free image utility

software called ImageMagick8. For converting

the images into editable text documents,

Optical Character Recognition (OCR) process

was used. Tesseract-OCR [13] is one of the

OCR engines which can recognize characters of

more than 100 languages and has a language

model for Hindi as well. Py-tesseract9, a

wrapper for the Tesseract OCR engine, was

used in our case as it could read all image types

including jpeg, png, gif, bmp, tiff etc. The

converted images from pdf file were then given

8 https://github.com/imagemagick/imagemagick
9 https://github.com/madmaze/pytesseact

as input to the Py-tesseract using Devanagari

language model. The output was obtained as

text documents with around 90%-character

accuracy.

Figure 1: Workflow of Text preparation for

the Visual Narrative

The output of Py-tesseract i.e., the OCR’d

text documents contained some data such as

page headers like book’s name (e.g. श्रीवाल्मीकि

रामायण) on odd numbered pages and chapter’s

name (e.g.सुन्दर िण्ड) on even numbered

pages, page numbers; that were not required for

text mining. These unwanted texts were

captured using regular expressions and were

cleaned out from the text corpus. The

documents also consisted of the multi-lingual

texts: Sanskrit and Hindi. It was decided to

continue further processing using only Hindi

texts considering the factors such as the good

number of resources available for Hindi

language w.r.t. text processing and mining, the

relatively greater length of the Hindi text

documents than the Sanskrit texts in our case

10 https://github.com/amjha/hindiExtraction

and the popularity of Hindi over Sanskrit. Hindi

and Sanskrit texts were separated using” मूल”

and” टीिा” keywords from the all the

documents, respectively.

There was a fork in further processing of the

Hindi texts: one or Text Summarization and

another for Topic Modeling. Atopic model is a

probabilistic model for finding out the abstract

topics that appear in a collection of text

documents. Topic Modeling is the most used

text mining tool for discovering latent semantic

structures in textual data. For the topic Model-

ing branch in our workflow, additional text pre-

processing was required. To extract topics, the

text documents were tokenized into words. In

the text documents, the most commonly

appearing words were the articles, prepositions,

helping verbs, etc., known as the stop words.

These stop words could affect the topic model

as it is generally based on the frequency of

words occurring in a document. So, they needed

to be removed. As there was not out of the box

Hindi stop words removal functionality

available, a list of Hindi stop words10 was

created and this was used to remove stop words

from the tokenized list of words.

Lemmatization is the text processing step of

grouping together the different forms of a word

so they can be analyzed as a single word. This

also helps in reducing redundancy of the same

root word in the topics extracted. Stanford NLP

[14], an opensource library that has pretrained

Hindi models for lemmatization and Part of -

Speech tagging, was used to lemmatize the

tokenized words’ list. After looking at text

samples, additional cleaning steps like removal

of punctuation, English letters and numbers

from the tokenized list were performed. Latent

Dirichlet Allocation is a Topic Modeling

algorithm based on the bag of words (BOW)

and counts of word document. It is a fully

generative model where documents are

assumed to have been generated according toa

per-document topic and per-topic word

distribution. The list of tokenized words was

fed to the LDA model using Gensim [8] and

topics were extracted for the whole Hindi texts.

To improve the output of Topic Modeling, few

iterations were run with some steps redone in

the preprocessing blocklike extending stop

words list, to remove the left-out words that

were not significant enough to be in the topics,

and some manual garbage removal i.e., words

that were wrongly interpreted by the OCR

model. After this, results fetched from the topic

models became more relevant to the actual

story, the preprocessing steps were then

finalized and no further iterations were made to

change the prepared data.

The other branch of the fork is Text

Summarization. Text Summarization refers to

the process of compacting a large text. The

reason behind this is to create a comprehensible

and expressive summary having only the main

points outlined in the text. There are two main

methods to summarize the text in NLP,

Extraction based summarization and

Abstraction based summarization. We are using

extraction-based summarization for our

research. Summarization of the text is based on

the ranks of text sentences using a variation of

the Text Rank algorithm. Text Rank is an

automatic summarization technique, is

implemented in two different ways in our

pipeline, the Gensim python open-source

library [11] and the other one is a combination

of the sk-learn and networkx library. Gensim

summarizer takes input as a string whereas the

other approach takes a list of sentences. Taking

a list of sentences was a better option as there is

no clear separation between the whole text.

Input text was divided into 26 documents where

each document consists of 25 sentences.

Dividing the text by character may loose the

sentence meaning/grammar. As Gensim uses a

string as input and division by character length

was not a good option, So, the other

implementation Text Rank algorithm

(Networkx and Sk-learn) was selected for the

pipeline. Graph based ranking algorithms are a

way for deciding the importance of a vertex

within a graph, based on global information

recursively drawn from the entire graph. A

graph has been built that represents the text,

inter-connects words or other text entities with

meaningful relations. Sentence extraction is

favorable over keyword/token extraction.

Named entity recognition (NER) plays an

important role to complete the narrative model.

Using this concept, the persons/characters, as

well as the location, can be extracted from the

story text [3]. The objective of using NER in

this project is quite straightforward. It is used to

find, and cluster named entities in text into any

desired categories such as person names (PER),

locations (LOC), etc. Most of the present, State

of art NER models for the Hindi language are

either very limited or not available in the public

domain. For Training the model, Flair Python

library [4] and Google cloud platform (GCP)

resources have been used. Flair’s framework

builds directly on Py-Torch, one of the best

deep learning frames works. It has the

flexibility of using the state of art embedding

model, also there is an embedding model

available for the Hindi language. NER initial

corpus is requested from the Indian Statistical

Institute [5] from AU-KBC Research Centre,

India. This corpus is later extended for model

training.

Our complete narrative model’s aim was to

have a story of events. So, for our final step of

the pipeline we built two dashboards using

Tableau. The output from both; the

summarization as well as the topic Modeling

branch were fed into tableau and the events

were tagged with a topic, a summary and NER

tags to help pick out characters and locations.

In the first dashboard, satellite view of the map

is used for plotting, the identified locations

from the scripture. For plotting the story on the

map, a validation dataset of names and places

of the events is manually created. This data is

matched with the words which are tagged with

B-LOCATION and I-LOCATION NER tags.

After identification of the matched location,

they are associated with the respective latitude

and longitude values so that it can be plotted on

maps correctly. The lines between two places

on the map shows the sequence of the

mentioned locations in the narrated story. A line

between two places on the map is created using

Tableau’s spatial functions Make Line and

Make Point. As seen in the Fig. 2, the narration

comprises location “मैकिली” (birth place of Sita)

“कित्रिूट” (Forest in which Ram and Sita went

for staying), “अतःपुर” (A village in Kishkindha

where Ram met Hanuman and his friends),

”महेन्द्र” (Mahendragiri is a name of a mountain

from where Hanuman jumped towards Shri

Lanka in order to search for Sita), “महासागर”

(The ocean between India and Shri Lanka),

“पवतत” (Trikoot parvat where Hanuman landed

after jumping from Mahendra Giri Moutain),

“अशोिवैन” (Ashok Vatika garden where Sita

was kept as a captive by Ravana). On hovering

over each line origin city with its corresponding

destination city and summary of the text is

shown in the tooltip. Dealing with such kind of

ancient geo spatial data is some of crucial.

Gettty thesaurus playa a significant role in this.

Getty is an opensource Geo data base where all

possible occurrences of every Geo name

include its ancient name can tagged with a

unique number. Through this number we can

visualize that geo name wit longitude and

latitude. Getty plays a crucial role in our project

as well for geo data visualization. We used

Geety for Geo data visualization.

Figure 2: Locations in Ramayana

In the second dashboard, symbol chart is

used to represent different characters of the

Ramayana. The sequence of the story from 0 to

25 is plotted from left to right and the

occurrence of every character is plotted as per

its reference in the text associated with that

sequence. The validation dataset of the

character names in the Ramayana are matched

with Hindi words tagged with B-PERSON and

I-PERSON NER tags. The matched names do

not identify the synonyms of the same name. In

Ramayana, each person has been associated

with various names, e.g., “सीता” is also known

by the names “जानिी” or “जनिपुत्री” in the

same story. So, the result of plotting such data

lead to plotting three different points for the

same Symbol. To avoid this, grouping of such

names under one name is performed in Tableau.

As Ramayana is a story and stories are narrated

in sequence, Tableau’s page control

functionality is used to make the dashboard

dynamic.The top topic and the summary of text

is shown below the symbol chart. As the

sequence changes in the page control the

11 https://github.com/rajrohan/ramayanaocr

characters in the symbol chart unfolds along

with their corresponding summary in the Fig. 3.

All the symbols and characters names are

shown as legends. Each symbol is manually

designed as per its characteristics in the

Ramayana epic. On hovering over each

character, the related topics for the given

summarized is shown in the tool tip.

The source code for our research can be

found on GitHub11

Figure3: Topic Modeling based on characters.

4. Evaluation

For the evaluation of our model, we conducted

a survey in which 30 persons participated. The

respondents were chosen based on the criteria,

that they should be competent in understanding

Hindi text. They were provided with the input

text and the summary as well as the topics

created by our data pipeline. The two metrics,

Text Summarization, and Topic Modeling were

evaluated in the survey. There are four options

to choose from and each option has a 20%

bucket size; 80100%, 6080%, 4060% or less

than 40%. Selecting the first option i.e., 80-

100%, implies that the individual has

understood the summarized text, and the same

goes for the second and third options. Anyone

choosing the fourth option i.e., less than 40%,

be understood. The results of the survey can be

seen in the following chart at Fig.4.

Figure 4: Survey results for Text Summarization

It can be inferred from the Fig. 4 that 70% of

the respondents were able to understand the

summarized text whereas 30% of the

respondents were not able to understand the

summarized text. From Fig. 5 around 56% of

the respondents understood the topic clearly

and around 44% of the respondents were not

able to understand the topic.

5. Discussion

The major objective of the envisioned pipeline

has been achieved but the pipeline can be

further improved. Due to drawbacks in the

process’s in pipeline (due to unavailability of

proficient models for Hindi textual data), we

could not achieve the optimal result. We were

not able to find a better-quality input file which

could have helped the OCR model to identify

the characters in a much better way.

Figure 5: Survey results for Topic Modeling

This reduced the quality of NER tags that we

obtained after running our NER model. At first,

we were not able to build a NER Models we

were not able to procure the Hindi NER tag data

and creating the data from scratch was not

possible in the given timeframe of the research.

After failing to find Hindi NER tagged corpus

online, we were helped by AU-KBC research

Centre [5], India. They provided us the tagged

Hindi NER data as a result of which we were

able to train our NER model. Using NER tags

instead of POS tags has made the visual

experience significantly better. NER when

performed on the generated topics yields very

few results as compared to when it is performed

on the summarized text. Therefore, we built the

NER model using the summarized text as an

input. We also tried performing Abstractive

Summarization on the script but were unable to

achieve it because the model cannot be trained

on our data to provide the desired output. So,

we have used only Extractive Summarization

method in our pipeline. During the initial phase

of our project, we had an idea of visualizing the

events chronologically to make it more visually

informative. However, the chronology cannot

be obtained as the script is quite old and no

dates are present in the data. The alternate to not

having any dates, is to use time as ’t’ and keep

on incriminating it after every shloka to obtain

a certain chronological order. Having said that,

as the script discusses different timelines in the

same shlokas, this method cannot be used to get

the chronology of events.

6. Conclusions

For our input dataset, Ramayana, it is

observed that our model reaches the score of

more than 70 percent in explaining the

Summarized text and about 70 percent in

explaining the topic/events generated from the

script. It can also be concluded that the NER

done on the summarized text generates better

results than when it is performed on the topics/

events. Taking usability into account we were

successful in making a pipeline for the visual

narration of Ramayana. Using our visualization

someone even with very little knowledge on

Ramayana can easily understand the whole

summary of the script. The demo is built on an

image-based input and can be later extended to

other sources and languages too. However, for

its application to all other Devanagari

languages, their respective models should be

available. We can prove the physical evidence

of the locations mentioned in the script by

plotting the coordinates of the present day

location along with the events that took place

on these locations.

7. Reference

[1] P. Richman, Ed.,Many Ramayanas: The

Diversity of a Narrative Tradition in South

Asia. University of California Press, 1991.

[2] M. Allahyari, S. Pouriyeh, M. Assefi, S.

Safaei, E. Trippe, J. Gutierrez,and K.

Kochut, “Text summarization techniques:

A brief survey” International Journal of

Advanced Computer Science and

Applications (IJACSA), vol. 8, pp. 397–

405, 07 2017.

[3] V. Athavale, S. Bharadwaj, M. Pamecha, A.

Prabhu, and M. Shrivastava,“Towards deep

learning in Hindi NER: An approach to

tackle the labelled data scarcity,” 2016.

[4] A. Akbik, T. Bergmann, and R. Vollgraf,

“Pooled contextualized embeddings for

named entity recognition,” in NAACL

2019, 2019 Annual Conference of the North

American Chapter of the Association

for Computational Linguistics, 2019, p.

724–728.

[5] C. M. Sobha Lalitha Devi., Pattabhi RK

Rao. and R. V. S. Ram, “Indian language

ner annotated fire 2013 corpus (fire 2013

NER corpus),”in Named Entity

Recognition Indian Languages FIRE 2013

Evaluation Track, 2013.

[6] P. Qi, T. Dozat, Y. Zhang, and C. D.

Manning, “Universal dependency parsing

from scratch,” in Proceedings of the

CoNLL2018 Shared Task: Multilingual

Parsing from Raw Text to Universal

Dependencies. Brussels, Belgium:

Association for Computational Linguistics,

October 2018, pp. 160–170. [Online].

Available:

https://nlp.stanford.edu/pubs/qi2018univers

al.pdf

[7] Z. Tong and H. Zhang, “A text mining

research based on lda topic modelling,” in

Proceedings of

the Sixth International Conference on

Computer Science, Engineering and

Information Technology (CCSEIT),2016,

pp. 21–22.

[8] R. Rehurek and P. Sojka, “Software

Framework for Topic Modelling with Large

Corpora,” in Proceedings of the LREC 2010

Workshop on New Challenges for NLP

Frameworks. Valletta, Malta: ELRA,

May2010, pp. 45–50.

[9] V. Jha, N. Manjunath, P. Shenoy, and V. K

R, “Hsra: Hindi stop word removal

algorithm,” 01 2016, pp. 1–5.

[10] A. D. Dhawale, S. B. Kulkarni, and V.

Kumbhakarna, “Survey of progressive era

of text summarization for Indian and

foreign languages using natural language

processing,” in Innovative Data

Communication Technologies and

Application, J. S. Raj, A. Bashar, and S. R.

J. Ramson,Eds. Cham: Springer

International Publishing, 2020, pp. 654–

662.

[11] F. Barrios, F. López, L. Argerich, and R.

Wachenchauzer, “Variations of the

similarity function of text rank for

automated summarization,” 2016.

[12] R. Sharma and V. Goyal, “Name entity

recognition systems for Hindi using CRF

approach,” in Information Systems for

Indian Languages, C. Singh, G. Singh

Lehal, J. Sengupta, D. V. Sharma, and V.

Goyal,Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 31–35.

[13] R. Smith, “An overview of the tesseract

OCR engine,” in Ninth International

Conference on Document Analysis and

Recognition (ICDAR2007), vol. 2, Sep.

2007, pp. 629–633.

[14] C. D. Manning, M. Surdeanu, J. Bauer, J.

Finkel, S. J. Bethard,and D. McClosky,

“The Stanford Core NLP natural language

processing toolkit,” In Association for

Computational Linguistics (ACL) System

Demonstrations, 2014, pp. 55–60.

https://nlp.stanford.edu/pubs/qi2018universal.pdf
https://nlp.stanford.edu/pubs/qi2018universal.pdf

